Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
9ffa79cd
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
提交
9ffa79cd
编写于
9月 20, 2017
作者:
G
guosheng
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add gemm with stride
上级
d865b047
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
239 addition
and
0 deletion
+239
-0
paddle/operators/math/math_function.cc
paddle/operators/math/math_function.cc
+26
-0
paddle/operators/math/math_function.cu
paddle/operators/math/math_function.cu
+36
-0
paddle/operators/math/math_function.h
paddle/operators/math/math_function.h
+7
-0
paddle/operators/math/math_function_test.cc
paddle/operators/math/math_function_test.cc
+170
-0
未找到文件。
paddle/operators/math/math_function.cc
浏览文件 @
9ffa79cd
...
...
@@ -48,6 +48,32 @@ void gemm<platform::CPUPlace, double>(const platform::DeviceContext& context,
beta
,
C
,
ldc
);
}
template
<
>
void
gemm
<
platform
::
CPUPlace
,
float
>
(
const
platform
::
DeviceContext
&
context
,
const
bool
transA
,
const
bool
transB
,
const
int
M
,
const
int
N
,
const
int
K
,
const
float
alpha
,
const
float
*
A
,
const
int
lda
,
const
float
*
B
,
const
int
ldb
,
const
float
beta
,
float
*
C
,
const
int
ldc
)
{
cblas_sgemm
(
CblasRowMajor
,
transA
==
false
?
CblasNoTrans
:
CblasTrans
,
transB
==
false
?
CblasNoTrans
:
CblasTrans
,
M
,
N
,
K
,
alpha
,
A
,
lda
,
B
,
ldb
,
beta
,
C
,
ldc
);
}
template
<
>
void
gemm
<
platform
::
CPUPlace
,
double
>
(
const
platform
::
DeviceContext
&
context
,
const
bool
transA
,
const
bool
transB
,
const
int
M
,
const
int
N
,
const
int
K
,
const
double
alpha
,
const
double
*
A
,
const
int
lda
,
const
double
*
B
,
const
int
ldb
,
const
double
beta
,
double
*
C
,
const
int
ldc
)
{
cblas_dgemm
(
CblasRowMajor
,
transA
==
false
?
CblasNoTrans
:
CblasTrans
,
transB
==
false
?
CblasNoTrans
:
CblasTrans
,
M
,
N
,
K
,
alpha
,
A
,
lda
,
B
,
ldb
,
beta
,
C
,
ldc
);
}
template
<
>
void
matmul
<
platform
::
CPUPlace
,
float
>
(
const
platform
::
DeviceContext
&
context
,
const
framework
::
Tensor
&
matrix_a
,
...
...
paddle/operators/math/math_function.cu
浏览文件 @
9ffa79cd
...
...
@@ -63,6 +63,42 @@ void gemm<platform::GPUPlace, double>(const platform::DeviceContext& context,
cuTransB
,
cuTransA
,
N
,
M
,
K
,
&
alpha
,
B
,
ldb
,
A
,
lda
,
&
beta
,
C
,
N
));
}
template
<
>
void
gemm
<
platform
::
GPUPlace
,
float
>
(
const
platform
::
DeviceContext
&
context
,
const
bool
transA
,
const
bool
transB
,
const
int
M
,
const
int
N
,
const
int
K
,
const
float
alpha
,
const
float
*
A
,
const
int
lda
,
const
float
*
B
,
const
int
ldb
,
const
float
beta
,
float
*
C
,
const
int
ldc
)
{
// Note that cublas follows fortran order, so the order is different from
// the cblas convention.
cublasOperation_t
cuTransA
=
transA
==
false
?
CUBLAS_OP_N
:
CUBLAS_OP_T
;
cublasOperation_t
cuTransB
=
transB
==
false
?
CUBLAS_OP_N
:
CUBLAS_OP_T
;
PADDLE_ENFORCE
(
platform
::
dynload
::
cublasSgemm
(
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
context
)
.
cublas_handle
(),
cuTransB
,
cuTransA
,
N
,
M
,
K
,
&
alpha
,
B
,
ldb
,
A
,
lda
,
&
beta
,
C
,
ldc
));
}
template
<
>
void
gemm
<
platform
::
GPUPlace
,
double
>
(
const
platform
::
DeviceContext
&
context
,
const
bool
transA
,
const
bool
transB
,
const
int
M
,
const
int
N
,
const
int
K
,
const
double
alpha
,
const
double
*
A
,
const
int
lda
,
const
double
*
B
,
const
int
ldb
,
const
double
beta
,
double
*
C
,
const
int
ldc
)
{
// Note that cublas follows fortran order, so the order is different from
// the cblas convention.
cublasOperation_t
cuTransA
=
transA
==
false
?
CUBLAS_OP_N
:
CUBLAS_OP_T
;
cublasOperation_t
cuTransB
=
transB
==
false
?
CUBLAS_OP_N
:
CUBLAS_OP_T
;
PADDLE_ENFORCE
(
platform
::
dynload
::
cublasDgemm
(
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
context
)
.
cublas_handle
(),
cuTransB
,
cuTransA
,
N
,
M
,
K
,
&
alpha
,
B
,
ldb
,
A
,
lda
,
&
beta
,
C
,
ldc
));
}
template
<
>
void
matmul
<
platform
::
GPUPlace
,
float
>
(
const
platform
::
DeviceContext
&
context
,
const
framework
::
Tensor
&
matrix_a
,
...
...
paddle/operators/math/math_function.h
浏览文件 @
9ffa79cd
...
...
@@ -70,6 +70,13 @@ void gemm(const platform::DeviceContext& context, const CBLAS_TRANSPOSE transA,
const
CBLAS_TRANSPOSE
transB
,
const
int
M
,
const
int
N
,
const
int
K
,
const
T
alpha
,
const
T
*
A
,
const
T
*
B
,
const
T
beta
,
T
*
C
);
// gemm wrapper with stride args for matrix uncontinuous in memory
template
<
typename
Place
,
typename
T
>
void
gemm
(
const
platform
::
DeviceContext
&
context
,
const
bool
transA
,
const
bool
transB
,
const
int
M
,
const
int
N
,
const
int
K
,
const
T
alpha
,
const
T
*
A
,
const
int
lda
,
const
T
*
B
,
const
int
ldb
,
const
T
beta
,
T
*
C
,
const
int
ldc
);
// matrix multiply with continuous memory
template
<
typename
Place
,
typename
T
>
void
matmul
(
const
platform
::
DeviceContext
&
context
,
...
...
paddle/operators/math/math_function_test.cc
浏览文件 @
9ffa79cd
...
...
@@ -72,4 +72,174 @@ TEST(math_function, trans_mul_notrans) {
EXPECT_EQ
(
out_ptr
[
8
],
29
);
delete
gpu_place
;
}
TEST
(
math_function
,
gemm_notrans_cublas
)
{
paddle
::
framework
::
Tensor
input1
;
paddle
::
framework
::
Tensor
input2
;
paddle
::
framework
::
Tensor
input3
;
paddle
::
framework
::
Tensor
input1_gpu
;
paddle
::
framework
::
Tensor
input2_gpu
;
paddle
::
framework
::
Tensor
input3_gpu
;
int
m
=
2
;
int
n
=
3
;
int
k
=
3
;
auto
*
cpu_place
=
new
paddle
::
platform
::
CPUPlace
();
float
*
input1_ptr
=
input1
.
mutable_data
<
float
>
({
2
,
3
},
*
cpu_place
);
float
arr1
[
6
]
=
{
0
,
1
,
2
,
3
,
4
,
5
};
memcpy
(
input1_ptr
,
arr1
,
6
*
sizeof
(
float
));
float
*
input2_ptr
=
input2
.
mutable_data
<
float
>
({
3
,
4
},
*
cpu_place
);
float
arr2
[
12
]
=
{
0
,
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
10
,
11
};
memcpy
(
input2_ptr
,
arr2
,
12
*
sizeof
(
float
));
float
*
input3_ptr
=
input3
.
mutable_data
<
float
>
({
2
,
4
},
*
cpu_place
);
float
arr3
[
8
]
=
{
0
,
1
,
2
,
3
,
4
,
5
,
6
,
7
};
memcpy
(
input3_ptr
,
arr3
,
8
*
sizeof
(
float
));
auto
*
gpu_place
=
new
paddle
::
platform
::
GPUPlace
(
0
);
paddle
::
platform
::
CUDADeviceContext
context
(
*
gpu_place
);
input1_gpu
.
CopyFrom
<
float
>
(
input1
,
*
gpu_place
);
input2_gpu
.
CopyFrom
<
float
>
(
input2
,
*
gpu_place
);
input3_gpu
.
CopyFrom
<
float
>
(
input3
,
*
gpu_place
);
float
*
a
=
input1_gpu
.
data
<
float
>
();
float
*
b
=
input2_gpu
.
data
<
float
>
();
float
*
c
=
input3_gpu
.
mutable_data
<
float
>
(
*
gpu_place
);
paddle
::
operators
::
math
::
gemm
<
paddle
::
platform
::
GPUPlace
,
float
>
(
context
,
false
,
false
,
m
,
n
,
k
,
1
,
a
,
3
,
b
+
1
,
4
,
1
,
c
+
1
,
4
);
input3
.
CopyFrom
<
float
>
(
input3_gpu
,
*
cpu_place
);
// numpy code:
// a = np.arange(6).reshape(2, 3)
// b = np.arange(12).reshape(3, 4)[:, 1:]
// c = np.arange(8).reshape(2, 4)[:, 1:]
// out = np.arange(8).reshape(2, 4)
// out[:, 1:] = np.dot(a, b) + c
EXPECT_EQ
(
input3_ptr
[
0
],
0
);
EXPECT_EQ
(
input3_ptr
[
1
],
24
);
EXPECT_EQ
(
input3_ptr
[
2
],
28
);
EXPECT_EQ
(
input3_ptr
[
3
],
32
);
EXPECT_EQ
(
input3_ptr
[
4
],
4
);
EXPECT_EQ
(
input3_ptr
[
5
],
73
);
EXPECT_EQ
(
input3_ptr
[
6
],
86
);
EXPECT_EQ
(
input3_ptr
[
7
],
99
);
delete
gpu_place
;
}
TEST
(
math_function
,
gemm_trans_cublas
)
{
paddle
::
framework
::
Tensor
input1
;
paddle
::
framework
::
Tensor
input2
;
paddle
::
framework
::
Tensor
input3
;
paddle
::
framework
::
Tensor
input1_gpu
;
paddle
::
framework
::
Tensor
input2_gpu
;
paddle
::
framework
::
Tensor
input3_gpu
;
int
m
=
2
;
int
n
=
3
;
int
k
=
3
;
auto
*
cpu_place
=
new
paddle
::
platform
::
CPUPlace
();
float
*
input1_ptr
=
input1
.
mutable_data
<
float
>
({
2
,
3
},
*
cpu_place
);
float
arr1
[
6
]
=
{
0
,
1
,
2
,
3
,
4
,
5
};
memcpy
(
input1_ptr
,
arr1
,
6
*
sizeof
(
float
));
float
*
input2_ptr
=
input2
.
mutable_data
<
float
>
({
4
,
3
},
*
cpu_place
);
float
arr2
[
12
]
=
{
0
,
4
,
8
,
1
,
5
,
9
,
2
,
6
,
10
,
3
,
7
,
11
};
memcpy
(
input2_ptr
,
arr2
,
12
*
sizeof
(
float
));
float
*
input3_ptr
=
input3
.
mutable_data
<
float
>
({
2
,
4
},
*
cpu_place
);
float
arr3
[
8
]
=
{
0
,
1
,
2
,
3
,
4
,
5
,
6
,
7
};
memcpy
(
input3_ptr
,
arr3
,
8
*
sizeof
(
float
));
auto
*
gpu_place
=
new
paddle
::
platform
::
GPUPlace
(
0
);
paddle
::
platform
::
CUDADeviceContext
context
(
*
gpu_place
);
input1_gpu
.
CopyFrom
<
float
>
(
input1
,
*
gpu_place
);
input2_gpu
.
CopyFrom
<
float
>
(
input2
,
*
gpu_place
);
input3_gpu
.
CopyFrom
<
float
>
(
input3
,
*
gpu_place
);
float
*
a
=
input1_gpu
.
data
<
float
>
();
float
*
b
=
input2_gpu
.
data
<
float
>
();
float
*
c
=
input3_gpu
.
mutable_data
<
float
>
(
*
gpu_place
);
paddle
::
operators
::
math
::
gemm
<
paddle
::
platform
::
GPUPlace
,
float
>
(
context
,
false
,
true
,
m
,
n
,
k
,
1
,
a
,
3
,
b
+
3
,
3
,
1
,
c
+
1
,
4
);
input3
.
CopyFrom
<
float
>
(
input3_gpu
,
*
cpu_place
);
EXPECT_EQ
(
input3_ptr
[
0
],
0
);
EXPECT_EQ
(
input3_ptr
[
1
],
24
);
EXPECT_EQ
(
input3_ptr
[
2
],
28
);
EXPECT_EQ
(
input3_ptr
[
3
],
32
);
EXPECT_EQ
(
input3_ptr
[
4
],
4
);
EXPECT_EQ
(
input3_ptr
[
5
],
73
);
EXPECT_EQ
(
input3_ptr
[
6
],
86
);
EXPECT_EQ
(
input3_ptr
[
7
],
99
);
delete
gpu_place
;
}
#endif
TEST
(
math_function
,
gemm_notrans_cblas
)
{
paddle
::
framework
::
Tensor
input1
;
paddle
::
framework
::
Tensor
input2
;
paddle
::
framework
::
Tensor
input3
;
int
m
=
2
;
int
n
=
3
;
int
k
=
3
;
auto
*
cpu_place
=
new
paddle
::
platform
::
CPUPlace
();
float
*
input1_ptr
=
input1
.
mutable_data
<
float
>
({
2
,
3
},
*
cpu_place
);
float
arr1
[
6
]
=
{
0
,
1
,
2
,
3
,
4
,
5
};
memcpy
(
input1_ptr
,
arr1
,
6
*
sizeof
(
float
));
float
*
input2_ptr
=
input2
.
mutable_data
<
float
>
({
3
,
4
},
*
cpu_place
);
float
arr2
[
12
]
=
{
0
,
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
10
,
11
};
memcpy
(
input2_ptr
,
arr2
,
12
*
sizeof
(
float
));
float
*
input3_ptr
=
input3
.
mutable_data
<
float
>
({
2
,
4
},
*
cpu_place
);
float
arr3
[
8
]
=
{
0
,
1
,
2
,
3
,
4
,
5
,
6
,
7
};
memcpy
(
input3_ptr
,
arr3
,
8
*
sizeof
(
float
));
paddle
::
platform
::
CPUDeviceContext
context
(
*
cpu_place
);
paddle
::
operators
::
math
::
gemm
<
paddle
::
platform
::
CPUPlace
,
float
>
(
context
,
false
,
false
,
m
,
n
,
k
,
1
,
input1_ptr
,
3
,
input2_ptr
+
1
,
4
,
1
,
input3_ptr
+
1
,
4
);
EXPECT_EQ
(
input3_ptr
[
0
],
0
);
EXPECT_EQ
(
input3_ptr
[
1
],
24
);
EXPECT_EQ
(
input3_ptr
[
2
],
28
);
EXPECT_EQ
(
input3_ptr
[
3
],
32
);
EXPECT_EQ
(
input3_ptr
[
4
],
4
);
EXPECT_EQ
(
input3_ptr
[
5
],
73
);
EXPECT_EQ
(
input3_ptr
[
6
],
86
);
EXPECT_EQ
(
input3_ptr
[
7
],
99
);
}
TEST
(
math_function
,
gemm_trans_clbas
)
{
paddle
::
framework
::
Tensor
input1
;
paddle
::
framework
::
Tensor
input2
;
paddle
::
framework
::
Tensor
input3
;
int
m
=
2
;
int
n
=
3
;
int
k
=
3
;
auto
*
cpu_place
=
new
paddle
::
platform
::
CPUPlace
();
float
*
input1_ptr
=
input1
.
mutable_data
<
float
>
({
2
,
3
},
*
cpu_place
);
float
arr1
[
6
]
=
{
0
,
1
,
2
,
3
,
4
,
5
};
memcpy
(
input1_ptr
,
arr1
,
6
*
sizeof
(
float
));
float
*
input2_ptr
=
input2
.
mutable_data
<
float
>
({
4
,
3
},
*
cpu_place
);
float
arr2
[
12
]
=
{
0
,
4
,
8
,
1
,
5
,
9
,
2
,
6
,
10
,
3
,
7
,
11
};
memcpy
(
input2_ptr
,
arr2
,
12
*
sizeof
(
float
));
float
*
input3_ptr
=
input3
.
mutable_data
<
float
>
({
2
,
4
},
*
cpu_place
);
float
arr3
[
8
]
=
{
0
,
1
,
2
,
3
,
4
,
5
,
6
,
7
};
memcpy
(
input3_ptr
,
arr3
,
8
*
sizeof
(
float
));
paddle
::
platform
::
CPUDeviceContext
context
(
*
cpu_place
);
paddle
::
operators
::
math
::
gemm
<
paddle
::
platform
::
CPUPlace
,
float
>
(
context
,
false
,
true
,
m
,
n
,
k
,
1
,
input1_ptr
,
3
,
input2_ptr
+
3
,
3
,
1
,
input3_ptr
+
1
,
4
);
EXPECT_EQ
(
input3_ptr
[
0
],
0
);
EXPECT_EQ
(
input3_ptr
[
1
],
24
);
EXPECT_EQ
(
input3_ptr
[
2
],
28
);
EXPECT_EQ
(
input3_ptr
[
3
],
32
);
EXPECT_EQ
(
input3_ptr
[
4
],
4
);
EXPECT_EQ
(
input3_ptr
[
5
],
73
);
EXPECT_EQ
(
input3_ptr
[
6
],
86
);
EXPECT_EQ
(
input3_ptr
[
7
],
99
);
}
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录