未验证 提交 9fd61d8b 编写于 作者: F feifei-111 提交者: GitHub

[phi] Migrate dropout and dropout_grad XPU kernel to phi (#45561)

* test=kunlun

* test=kunlun
上级 56869d99
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <memory>
#include <string>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/platform/device/device_wrapper.h"
namespace paddle {
namespace operators {
#ifdef PADDLE_WITH_XPU
using Tensor = framework::Tensor;
template <typename DeviceContext, typename T>
class DropoutXPUKernel : public framework::OpKernel<T> {
using XPUTyp = typename XPUTypeTrait<T>::Type;
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* x = context.Input<Tensor>("X");
auto* y = context.Output<Tensor>("Out");
const auto* x_data = x->data<T>();
auto* y_data = y->mutable_data<T>(context.GetPlace());
float dropout_prob = context.Attr<float>("dropout_prob");
auto dropout_implementation =
context.Attr<std::string>("dropout_implementation");
auto& dev_ctx = context.template device_context<DeviceContext>();
auto* seed =
context.HasInput("Seed") ? context.Input<Tensor>("Seed") : nullptr;
int is_upscale = (dropout_implementation == "upscale_in_train");
if (!context.Attr<bool>("is_test")) {
int seed_data = 0;
if (seed) {
if (platform::is_xpu_place(seed->place())) {
memory::Copy(platform::CPUPlace(),
&seed_data,
seed->place(),
seed->data<int>(),
sizeof(int));
} else {
seed_data = *(seed->data<int>());
}
} else {
seed_data =
context.Attr<bool>("fix_seed") ? context.Attr<int>("seed") : 0;
}
auto* mask = context.Output<Tensor>("Mask");
auto* mask_data = mask->mutable_data<T>(context.GetPlace());
// Special case when dropout_prob is 1.0
if (dropout_prob == 1.0f) {
int r = xpu::constant(dev_ctx.x_context(),
reinterpret_cast<XPUTyp*>(y_data),
y->numel(),
XPUTyp(0));
PADDLE_ENFORCE_XDNN_SUCCESS(r, "constant");
r = xpu::constant(dev_ctx.x_context(),
reinterpret_cast<XPUTyp*>(mask_data),
mask->numel(),
XPUTyp(0));
PADDLE_ENFORCE_XDNN_SUCCESS(r, "constant");
return;
}
int r = xpu::dropout(dev_ctx.x_context(),
reinterpret_cast<const XPUTyp*>(x->data<T>()),
reinterpret_cast<XPUTyp*>(y->data<T>()),
reinterpret_cast<XPUTyp*>(mask_data),
seed_data,
mask->numel(),
is_upscale,
dropout_prob);
PADDLE_ENFORCE_XDNN_SUCCESS(r, "dropout");
} else {
float scale =
(is_upscale) ? (1.0) : (static_cast<float>(1.0f - dropout_prob));
int r = xpu::scale(dev_ctx.x_context(),
reinterpret_cast<const XPUTyp*>(x_data),
reinterpret_cast<XPUTyp*>(y_data),
x->numel(),
false,
scale,
0.0f);
PADDLE_ENFORCE_XDNN_SUCCESS(r, "scale");
}
}
};
template <typename DeviceContext, typename T>
class DropoutGradXPUKernel : public framework::OpKernel<T> {
using XPUType = typename XPUTypeTrait<T>::Type;
public:
void Compute(const framework::ExecutionContext& context) const override {
PADDLE_ENFORCE_EQ(!context.Attr<bool>("is_test"),
true,
platform::errors::InvalidArgument(
"GradOp is only callable when is_test is false"));
auto* grad_x = context.Output<Tensor>(framework::GradVarName("X"));
auto* grad_y = context.Input<Tensor>(framework::GradVarName("Out"));
auto* mask = context.Input<Tensor>("Mask");
grad_x->mutable_data<T>(context.GetPlace());
auto& dev_ctx = context.template device_context<DeviceContext>();
auto& dropout_implementation =
context.Attr<std::string>("dropout_implementation");
float dropout_prob = context.Attr<float>("dropout_prob");
const T* mask_data = mask->data<T>();
if (dropout_implementation != "upscale_in_train") {
int r = xpu::mul(dev_ctx.x_context(),
reinterpret_cast<const XPUType*>(grad_y->data<T>()),
reinterpret_cast<const XPUType*>(mask_data),
reinterpret_cast<XPUType*>(grad_x->data<T>()),
grad_y->numel());
PADDLE_ENFORCE_XDNN_SUCCESS(r, "mul");
return;
}
auto version = platform::get_xpu_version(context.GetPlace().GetDeviceId());
if (version == phi::backends::xpu::XPUVersion::XPU1) {
xpu::ctx_guard RAII_GUARD(dev_ctx.x_context());
XPUType* mask_new = RAII_GUARD.alloc_l3_or_gm<XPUType>(mask->numel());
float scale =
(dropout_prob == 1.0f) ? (1.0f) : (1.0f / (1.0f - dropout_prob));
int r = xpu::scale(dev_ctx.x_context(),
reinterpret_cast<const XPUType*>(mask->data<T>()),
reinterpret_cast<XPUType*>(mask_new),
mask->numel(),
false,
scale,
0.0f);
PADDLE_ENFORCE_XDNN_SUCCESS(r, "scale");
r = xpu::mul(dev_ctx.x_context(),
reinterpret_cast<const XPUType*>(grad_y->data<T>()),
reinterpret_cast<const XPUType*>(mask_new),
reinterpret_cast<XPUType*>(grad_x->data<T>()),
grad_y->numel());
PADDLE_ENFORCE_XDNN_SUCCESS(r, "mul");
} else {
int r =
xpu::dropout_grad(dev_ctx.x_context(),
reinterpret_cast<const XPUType*>(mask->data<T>()),
reinterpret_cast<const XPUType*>(grad_y->data<T>()),
reinterpret_cast<XPUType*>(grad_x->data<T>()),
dropout_prob,
grad_y->numel());
PADDLE_ENFORCE_XDNN_SUCCESS(r, "dropout_grad");
}
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OP_XPU_KERNEL(
dropout,
ops::DropoutXPUKernel<paddle::platform::XPUDeviceContext, float>,
ops::DropoutXPUKernel<paddle::platform::XPUDeviceContext, plat::float16>);
REGISTER_OP_XPU_KERNEL(
dropout_grad,
ops::DropoutGradXPUKernel<paddle::platform::XPUDeviceContext, float>,
ops::DropoutGradXPUKernel<paddle::platform::XPUDeviceContext,
plat::float16>);
#endif
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/dropout_grad_kernel.h"
#include <memory>
#include <string>
#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "paddle/phi/core/kernel_registry.h"
namespace phi {
template <typename T, typename Context>
void DropoutGradRawKernel(const Context& dev_ctx,
const DenseTensor& mask,
const DenseTensor& out_grad,
const Scalar& p,
bool is_test,
const std::string& mode,
DenseTensor* x_grad) {
using XPUType = typename XPUTypeTrait<T>::Type;
PADDLE_ENFORCE_EQ(!is_test,
true,
phi::errors::InvalidArgument(
"GradOp is only callable when is_test is false"));
auto* grad_x = x_grad;
auto* grad_y = &out_grad;
dev_ctx.template Alloc<T>(grad_x);
float dropout_prob = p.to<float>();
const T* mask_data = mask.data<T>();
if (mode != "upscale_in_train") {
int r = xpu::mul(dev_ctx.x_context(),
reinterpret_cast<const XPUType*>(grad_y->data<T>()),
reinterpret_cast<const XPUType*>(mask_data),
reinterpret_cast<XPUType*>(grad_x->data<T>()),
grad_y->numel());
PADDLE_ENFORCE_XDNN_SUCCESS(r, "mul");
return;
}
auto version =
phi::backends::xpu::get_xpu_version(dev_ctx.GetPlace().GetDeviceId());
if (version == phi::backends::xpu::XPUVersion::XPU1) {
xpu::ctx_guard RAII_GUARD(dev_ctx.x_context());
XPUType* mask_new = RAII_GUARD.alloc_l3_or_gm<XPUType>(mask.numel());
float scale =
(dropout_prob == 1.0f) ? (1.0f) : (1.0f / (1.0f - dropout_prob));
int r = xpu::scale(dev_ctx.x_context(),
reinterpret_cast<const XPUType*>(mask.data<T>()),
reinterpret_cast<XPUType*>(mask_new),
mask.numel(),
false,
scale,
0.0f);
PADDLE_ENFORCE_XDNN_SUCCESS(r, "scale");
r = xpu::mul(dev_ctx.x_context(),
reinterpret_cast<const XPUType*>(grad_y->data<T>()),
reinterpret_cast<const XPUType*>(mask_new),
reinterpret_cast<XPUType*>(grad_x->data<T>()),
grad_y->numel());
PADDLE_ENFORCE_XDNN_SUCCESS(r, "mul");
} else {
int r =
xpu::dropout_grad(dev_ctx.x_context(),
reinterpret_cast<const XPUType*>(mask.data<T>()),
reinterpret_cast<const XPUType*>(grad_y->data<T>()),
reinterpret_cast<XPUType*>(grad_x->data<T>()),
dropout_prob,
grad_y->numel());
PADDLE_ENFORCE_XDNN_SUCCESS(r, "dropout_grad");
}
}
} // namespace phi
PD_REGISTER_KERNEL(dropout_grad,
XPU,
ALL_LAYOUT,
phi::DropoutGradRawKernel,
float,
phi::dtype::float16) {}
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/dropout_kernel.h"
#include <memory>
#include <string>
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "paddle/phi/core/kernel_registry.h"
namespace phi {
template <typename T, typename Context>
void DropoutRawKernel(const Context& dev_ctx,
const DenseTensor& x,
const paddle::optional<DenseTensor>& seed_tensor,
const Scalar& p,
bool is_test,
const std::string& mode,
int seed,
bool fix_seed,
DenseTensor* out,
DenseTensor* mask) {
using XPUType = typename XPUTypeTrait<T>::Type;
auto* y = out;
const auto* x_data = x.data<T>();
auto* y_data = dev_ctx.template Alloc<T>(y);
float dropout_prob = p.to<float>();
int is_upscale = (mode == "upscale_in_train");
if (!is_test) {
int seed_data = 0;
if (seed_tensor.get_ptr() != nullptr) {
if ((seed_tensor->place()).GetType() == phi::AllocationType::XPU) {
paddle::memory::Copy(phi::CPUPlace(),
&seed_data,
seed_tensor->place(),
seed_tensor->data<int>(),
sizeof(int));
} else {
seed_data = *(seed_tensor->data<int>());
}
} else {
seed_data = fix_seed ? seed : 0;
}
auto* mask_data = dev_ctx.template Alloc<T>(mask);
// Special case when dropout_prob is 1.0
if (dropout_prob == 1.0f) {
int r = xpu::constant(dev_ctx.x_context(),
reinterpret_cast<XPUType*>(y_data),
y->numel(),
XPUType(0));
PADDLE_ENFORCE_XDNN_SUCCESS(r, "constant");
r = xpu::constant(dev_ctx.x_context(),
reinterpret_cast<XPUType*>(mask_data),
mask->numel(),
XPUType(0));
PADDLE_ENFORCE_XDNN_SUCCESS(r, "constant");
return;
}
int r = xpu::dropout(dev_ctx.x_context(),
reinterpret_cast<const XPUType*>(x.data<T>()),
reinterpret_cast<XPUType*>(y->data<T>()),
reinterpret_cast<XPUType*>(mask_data),
seed_data,
mask->numel(),
is_upscale,
dropout_prob);
PADDLE_ENFORCE_XDNN_SUCCESS(r, "dropout");
} else {
float scale =
(is_upscale) ? (1.0) : (static_cast<float>(1.0f - dropout_prob));
int r = xpu::scale(dev_ctx.x_context(),
reinterpret_cast<const XPUType*>(x_data),
reinterpret_cast<XPUType*>(y_data),
x.numel(),
false,
scale,
0.0f);
PADDLE_ENFORCE_XDNN_SUCCESS(r, "scale");
}
}
} // namespace phi
PD_REGISTER_KERNEL(dropout,
XPU,
ALL_LAYOUT,
phi::DropoutRawKernel,
float,
phi::dtype::float16) {}
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册