未验证 提交 9f8c8f96 编写于 作者: T Thunderbrook 提交者: GitHub

heterps support pscore (#32093)

* pscore support heterps

* fleet cmake

* fleet wrapper

* macro

* solve conflict

* solve conflict

* add unitest

* paddle enforce

* unitest

* unitest

* unitest
上级 668a0d3b
...@@ -184,6 +184,7 @@ option(WITH_XBYAK "Compile with xbyak support" ON) ...@@ -184,6 +184,7 @@ option(WITH_XBYAK "Compile with xbyak support" ON)
option(WITH_CONTRIB "Compile the third-party contributation" OFF) option(WITH_CONTRIB "Compile the third-party contributation" OFF)
option(WITH_GRPC "Use grpc as the default rpc framework" ${WITH_DISTRIBUTE}) option(WITH_GRPC "Use grpc as the default rpc framework" ${WITH_DISTRIBUTE})
option(WITH_PSCORE "Compile with parameter server support" ${WITH_DISTRIBUTE}) option(WITH_PSCORE "Compile with parameter server support" ${WITH_DISTRIBUTE})
option(WITH_HETERPS "Compile with heterps" OFF})
option(WITH_INFERENCE_API_TEST "Test fluid inference C++ high-level api interface" OFF) option(WITH_INFERENCE_API_TEST "Test fluid inference C++ high-level api interface" OFF)
option(PY_VERSION "Compile PaddlePaddle with python3 support" ${PY_VERSION}) option(PY_VERSION "Compile PaddlePaddle with python3 support" ${PY_VERSION})
option(WITH_DGC "Use DGC(Deep Gradient Compression) or not" ${WITH_DISTRIBUTE}) option(WITH_DGC "Use DGC(Deep Gradient Compression) or not" ${WITH_DISTRIBUTE})
......
...@@ -173,6 +173,9 @@ if(WITH_PSCORE) ...@@ -173,6 +173,9 @@ if(WITH_PSCORE)
add_definitions(-DPADDLE_WITH_PSCORE) add_definitions(-DPADDLE_WITH_PSCORE)
endif() endif()
if(WITH_HETERPS)
add_definitions(-DPADDLE_WITH_HETERPS)
endif()
if(WITH_GRPC) if(WITH_GRPC)
add_definitions(-DPADDLE_WITH_GRPC) add_definitions(-DPADDLE_WITH_GRPC)
......
...@@ -16,6 +16,7 @@ set_source_files_properties(communicator.cc PROPERTIES COMPILE_FLAGS ${DISTRIBUT ...@@ -16,6 +16,7 @@ set_source_files_properties(communicator.cc PROPERTIES COMPILE_FLAGS ${DISTRIBUT
set_source_files_properties(service.cc PROPERTIES COMPILE_FLAGS ${DISTRIBUTE_COMPILE_FLAGS}) set_source_files_properties(service.cc PROPERTIES COMPILE_FLAGS ${DISTRIBUTE_COMPILE_FLAGS})
set_source_files_properties(brpc_ps_server.cc PROPERTIES COMPILE_FLAGS ${DISTRIBUTE_COMPILE_FLAGS}) set_source_files_properties(brpc_ps_server.cc PROPERTIES COMPILE_FLAGS ${DISTRIBUTE_COMPILE_FLAGS})
set_source_files_properties(brpc_ps_client.cc PROPERTIES COMPILE_FLAGS ${DISTRIBUTE_COMPILE_FLAGS}) set_source_files_properties(brpc_ps_client.cc PROPERTIES COMPILE_FLAGS ${DISTRIBUTE_COMPILE_FLAGS})
set_source_files_properties(ps_local_client.cc PROPERTIES COMPILE_FLAGS ${DISTRIBUTE_COMPILE_FLAGS})
set_source_files_properties(brpc_utils.cc PROPERTIES COMPILE_FLAGS ${DISTRIBUTE_COMPILE_FLAGS}) set_source_files_properties(brpc_utils.cc PROPERTIES COMPILE_FLAGS ${DISTRIBUTE_COMPILE_FLAGS})
set_source_files_properties(heter_server.cc PROPERTIES COMPILE_FLAGS ${DISTRIBUTE_COMPILE_FLAGS}) set_source_files_properties(heter_server.cc PROPERTIES COMPILE_FLAGS ${DISTRIBUTE_COMPILE_FLAGS})
...@@ -29,7 +30,8 @@ set_source_files_properties(graph_brpc_client.cc PROPERTIES COMPILE_FLAGS ${DIST ...@@ -29,7 +30,8 @@ set_source_files_properties(graph_brpc_client.cc PROPERTIES COMPILE_FLAGS ${DIST
cc_library(brpc_utils SRCS brpc_utils.cc DEPS tensor device_context ${COMMON_DEPS} ${RPC_DEPS}) cc_library(brpc_utils SRCS brpc_utils.cc DEPS tensor device_context ${COMMON_DEPS} ${RPC_DEPS})
cc_library(downpour_server SRCS graph_brpc_server.cc brpc_ps_server.cc DEPS boost eigen3 table brpc_utils simple_threadpool ${RPC_DEPS}) cc_library(downpour_server SRCS graph_brpc_server.cc brpc_ps_server.cc DEPS boost eigen3 table brpc_utils simple_threadpool ${RPC_DEPS})
cc_library(downpour_client SRCS graph_brpc_client.cc brpc_ps_client.cc DEPS boost eigen3 table brpc_utils simple_threadpool ${RPC_DEPS}) cc_library(downpour_client SRCS graph_brpc_client.cc brpc_ps_client.cc
ps_local_client.cc DEPS boost eigen3 table brpc_utils simple_threadpool ${RPC_DEPS})
cc_library(client SRCS ps_client.cc DEPS downpour_client boost ${RPC_DEPS}) cc_library(client SRCS ps_client.cc DEPS downpour_client boost ${RPC_DEPS})
cc_library(server SRCS server.cc DEPS downpour_server boost ${RPC_DEPS}) cc_library(server SRCS server.cc DEPS downpour_server boost ${RPC_DEPS})
......
...@@ -880,8 +880,8 @@ std::future<int32_t> BrpcPsClient::send_client2client_msg( ...@@ -880,8 +880,8 @@ std::future<int32_t> BrpcPsClient::send_client2client_msg(
auto promise = std::make_shared<std::promise<int32_t>>(); auto promise = std::make_shared<std::promise<int32_t>>();
std::future<int> fut = promise->get_future(); std::future<int> fut = promise->get_future();
if (to_client_id >= _client_channels.size()) { if (to_client_id >= _client_channels.size()) {
LOG(FATAL) << "to_client_id is out of range clients, which size is " VLOG(0) << "to_client_id is out of range clients, which size is "
<< _client_channels.size(); << _client_channels.size();
promise->set_value(-1); promise->set_value(-1);
return fut; return fut;
} }
...@@ -1001,4 +1001,4 @@ int32_t BrpcPsClient::recv_and_save_table(const uint64_t table_id, ...@@ -1001,4 +1001,4 @@ int32_t BrpcPsClient::recv_and_save_table(const uint64_t table_id,
} }
} // namespace distributed } // namespace distributed
} // namespace paddle } // namespace paddle
\ No newline at end of file
...@@ -310,6 +310,8 @@ class Communicator { ...@@ -310,6 +310,8 @@ class Communicator {
return _worker_ptr; return _worker_ptr;
} }
RecvCtxMap &GetRecvCtxMap() { return recv_varname_to_ctx_; }
std::shared_ptr<PSClient> _worker_ptr; // pointer to worker std::shared_ptr<PSClient> _worker_ptr; // pointer to worker
protected: protected:
......
...@@ -16,12 +16,15 @@ ...@@ -16,12 +16,15 @@
#include "glog/logging.h" #include "glog/logging.h"
#include "paddle/fluid/distributed/service/brpc_ps_client.h" #include "paddle/fluid/distributed/service/brpc_ps_client.h"
#include "paddle/fluid/distributed/service/graph_brpc_client.h" #include "paddle/fluid/distributed/service/graph_brpc_client.h"
#include "paddle/fluid/distributed/service/ps_local_client.h"
#include "paddle/fluid/distributed/table/table.h" #include "paddle/fluid/distributed/table/table.h"
namespace paddle { namespace paddle {
namespace distributed { namespace distributed {
REGISTER_PSCORE_CLASS(PSClient, BrpcPsClient); REGISTER_PSCORE_CLASS(PSClient, BrpcPsClient);
REGISTER_PSCORE_CLASS(PSClient, PsLocalClient);
REGISTER_PSCORE_CLASS(PSClient, GraphBrpcClient); REGISTER_PSCORE_CLASS(PSClient, GraphBrpcClient);
int32_t PSClient::configure( int32_t PSClient::configure(
const PSParameter &config, const PSParameter &config,
const std::map<uint64_t, std::vector<paddle::distributed::Region>> &regions, const std::map<uint64_t, std::vector<paddle::distributed::Region>> &regions,
...@@ -83,4 +86,4 @@ PSClient *PSClientFactory::create(const PSParameter &ps_config) { ...@@ -83,4 +86,4 @@ PSClient *PSClientFactory::create(const PSParameter &ps_config) {
return client; return client;
} }
} // namespace distributed } // namespace distributed
} // namespace paddle } // namespace paddle
\ No newline at end of file
...@@ -118,6 +118,17 @@ class PSClient { ...@@ -118,6 +118,17 @@ class PSClient {
const uint64_t *keys, size_t num, const uint64_t *keys, size_t num,
bool is_training) = 0; bool is_training) = 0;
virtual ::std::future<int32_t> pull_sparse_ptr(char **select_values,
size_t table_id,
const uint64_t *keys,
size_t num) {
VLOG(0) << "Did not implement";
std::promise<int32_t> promise;
std::future<int> fut = promise.get_future();
promise.set_value(-1);
return fut;
}
virtual std::future<int32_t> print_table_stat(uint32_t table_id) = 0; virtual std::future<int32_t> print_table_stat(uint32_t table_id) = 0;
// 确保所有积攒中的请求都发起发送 // 确保所有积攒中的请求都发起发送
...@@ -150,7 +161,7 @@ class PSClient { ...@@ -150,7 +161,7 @@ class PSClient {
virtual std::future<int32_t> send_client2client_msg(int msg_type, virtual std::future<int32_t> send_client2client_msg(int msg_type,
int to_client_id, int to_client_id,
const std::string &msg) { const std::string &msg) {
LOG(FATAL) << "Did not implement"; VLOG(0) << "Did not implement";
std::promise<int32_t> promise; std::promise<int32_t> promise;
std::future<int> fut = promise.get_future(); std::future<int> fut = promise.get_future();
promise.set_value(-1); promise.set_value(-1);
......
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/distributed/service/ps_local_client.h"
#include "paddle/fluid/distributed/table/table.h"
//#define pslib_debug_dense_compress
namespace paddle {
namespace distributed {
int32_t PsLocalClient::initialize() {
const auto& downpour_param = _config.server_param().downpour_server_param();
TableManager::instance().initialize();
for (size_t i = 0; i < downpour_param.downpour_table_param_size(); ++i) {
auto* table = CREATE_PSCORE_CLASS(
Table, downpour_param.downpour_table_param(i).table_class());
table->initialize(downpour_param.downpour_table_param(i),
_config.fs_client_param());
table->set_shard(0, 1);
_table_map[downpour_param.downpour_table_param(i).table_id()].reset(table);
}
return 0;
}
::std::future<int32_t> PsLocalClient::shrink(uint32_t table_id,
const std::string threshold) {
// TODO
return done();
}
::std::future<int32_t> PsLocalClient::load(const std::string& epoch,
const std::string& mode) {
// TODO
// for (auto& it : _table_map) {
// load(it.first, epoch, mode);
//}
return done();
}
::std::future<int32_t> PsLocalClient::load(uint32_t table_id,
const std::string& epoch,
const std::string& mode) {
// TODO
// auto* table_ptr = table(table_id);
// table_ptr->load(epoch, mode);
return done();
}
::std::future<int32_t> PsLocalClient::save(const std::string& epoch,
const std::string& mode) {
// TODO
for (auto& it : _table_map) {
save(it.first, epoch, mode);
}
return done();
}
::std::future<int32_t> PsLocalClient::save(uint32_t table_id,
const std::string& epoch,
const std::string& mode) {
// TODO
auto* table_ptr = table(table_id);
table_ptr->flush();
table_ptr->save(epoch, mode);
return done();
}
::std::future<int32_t> PsLocalClient::clear() {
// TODO
return done();
}
::std::future<int32_t> PsLocalClient::clear(uint32_t table_id) {
// TODO
return done();
}
::std::future<int32_t> PsLocalClient::flush() {
// no need
return done();
}
::std::future<int32_t> PsLocalClient::stop_server() {
// no need
return done();
}
::std::future<int32_t> PsLocalClient::pull_dense(Region* regions,
size_t region_num,
size_t table_id) {
auto* accessor = table_accessor(table_id);
auto* table_ptr = table(table_id);
uint32_t num_per_shard = dense_dim_per_shard(accessor->fea_dim(), 1);
std::vector<float> region_buffer;
region_buffer.resize(num_per_shard);
table_ptr->pull_dense(region_buffer.data(), region_buffer.size());
size_t region_idx = 0;
size_t region_data_idx = 0;
size_t shard_data_size = num_per_shard;
size_t shard_buffer_remain = shard_data_size * sizeof(float);
PADDLE_ENFORCE_EQ(
shard_buffer_remain, region_buffer.size() * sizeof(float),
platform::errors::PreconditionNotMet("pull dense size error."));
size_t index = 0;
while (shard_buffer_remain > 0 && region_idx < region_num) {
auto& region = regions[region_idx];
if (region.size - region_data_idx >= shard_buffer_remain) {
memcpy((void*)(region.data + region_data_idx),
(uint8_t*)(void*)(region_buffer.data()) + index,
shard_buffer_remain);
region_data_idx += shard_buffer_remain;
shard_buffer_remain = 0;
} else if (region.size - region_data_idx == 0) {
++region_idx;
region_data_idx = 0;
} else {
memcpy((void*)(region.data + region_data_idx),
(uint8_t*)(void*)(region_buffer.data()) + index,
region.size - region_data_idx);
shard_buffer_remain -= (region.size - region_data_idx);
index += (region.size - region_data_idx);
++region_idx;
region_data_idx = 0;
}
}
return done();
}
::std::future<int32_t> PsLocalClient::push_dense_param(const Region* regions,
size_t region_num,
size_t table_id) {
auto* accessor = table_accessor(table_id);
auto* table_ptr = table(table_id);
std::vector<float> region_buffer;
region_buffer.resize(dense_dim_per_shard(accessor->fea_dim(), 1), 0);
for (size_t i = 0, offset = 0; i < region_num; ++i) {
uint32_t data_num = regions[i].size / sizeof(float);
memcpy(region_buffer.data() + offset, regions[i].data, regions[i].size);
offset += data_num;
}
// table_ptr->push_dense_param(region_buffer.data(), region_buffer.size());
return done();
}
::std::future<int32_t> PsLocalClient::push_dense_raw_gradient(
int table_id, float* total_send_data, size_t total_send_data_size,
void* callback) {
VLOG(1) << "wxx push_dense_raw_gradient";
PSClientClosure* closure = reinterpret_cast<PSClientClosure*>(callback);
auto* table_ptr = table(table_id);
table_ptr->push_dense(total_send_data, total_send_data_size);
delete closure;
return done();
}
::std::future<int32_t> PsLocalClient::push_dense(const Region* regions,
size_t region_num,
size_t table_id) {
auto* accessor = table_accessor(table_id);
auto* table_ptr = table(table_id);
std::vector<float> region_buffer;
region_buffer.resize(dense_dim_per_shard(accessor->fea_dim(), 1));
size_t data_size = region_buffer.size();
for (size_t i = 0, offset = 0; i < region_num; ++i) {
uint32_t data_num = regions[i].size / sizeof(float);
PADDLE_ENFORCE_LE(
offset + data_num, data_size,
platform::errors::PreconditionNotMet(
"invalid dense size, cur pos[%d] data_num[%d] size[%d]", offset,
data_num, data_size));
memcpy(region_buffer.data() + offset, regions[i].data, regions[i].size);
offset += data_num;
}
table_ptr->push_dense(region_buffer.data(), region_buffer.size());
return done();
}
//::std::future<int32_t> PsLocalClient::pull_sparse(float** select_values,
// size_t table_id,
// const uint64_t* keys,
// size_t num) {
// // FIXME
// // auto timer =
// // std::make_shared<CostTimer>("pslib_downpour_client_pull_sparse");
// // auto local_timer =
// // std::make_shared<CostTimer>("pslib_downpour_client_pull_sparse_local");
// //将key拆分到各shard请求,并记录原始对应value指针
// auto* accessor = table_accessor(table_id);
// auto* table_ptr = table(table_id);
// size_t value_size = accessor->select_size();
//
// // table_ptr->pull_sparse(keys, num);
// std::vector<float> res_data;
// res_data.resize(num * value_size / sizeof(float));
// table_ptr->pull_sparse(res_data.data(), keys, num);
// // memcpy(select_values[0], res_data->data(), res_data->size() *
// // sizeof(float));
// size_t offset = 0;
// for (int i = 0; i < num; ++i) {
// memcpy(select_values[i], (char*)res_data.data() + offset, value_size);
// offset += value_size;
// }
//
// // return fut;
// return done();
//}
::std::future<int32_t> PsLocalClient::pull_sparse_ptr(char** select_values,
size_t table_id,
const uint64_t* keys,
size_t num) {
// FIXME
// auto timer =
// std::make_shared<CostTimer>("pslib_downpour_client_pull_sparse");
// auto local_timer =
// std::make_shared<CostTimer>("pslib_downpour_client_pull_sparse_local");
//将key拆分到各shard请求,并记录原始对应value指针
auto* table_ptr = table(table_id);
table_ptr->pull_sparse_ptr(select_values, keys, num);
return done();
}
::std::future<int32_t> PsLocalClient::push_sparse_raw_gradient(
size_t table_id, const uint64_t* keys, const float** update_values,
size_t num, void* callback) {
VLOG(1) << "wxx push_sparse_raw_gradient";
PSClientClosure* closure = reinterpret_cast<PSClientClosure*>(callback);
auto* accessor = table_accessor(table_id);
auto* table_ptr = table(table_id);
table_ptr->push_sparse(keys, update_values, num);
delete closure;
return done();
}
::std::future<int32_t> PsLocalClient::push_sparse(size_t table_id,
const uint64_t* keys,
const float** update_values,
size_t num) {
auto* accessor = table_accessor(table_id);
auto* table_ptr = table(table_id);
table_ptr->push_sparse(keys, update_values, num);
return done();
}
}
}
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License 0//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "brpc/channel.h"
#include "brpc/controller.h"
#include "brpc/server.h"
#include "paddle/fluid/distributed/service/ps_client.h"
namespace paddle {
namespace distributed {
class Table;
class PsLocalClient : public PSClient {
public:
PsLocalClient() {}
virtual ~PsLocalClient() { _running = false; }
virtual int32_t create_client2client_connection(int pslib_timeout_ms,
int pslib_connect_timeout_ms,
int max_retry) {
return 0;
}
virtual ::std::future<int32_t> shrink(uint32_t table_id,
const std::string threshold) override;
virtual ::std::future<int32_t> load(const std::string& epoch,
const std::string& mode) override;
virtual ::std::future<int32_t> load(uint32_t table_id,
const std::string& epoch,
const std::string& mode) override;
virtual ::std::future<int32_t> save(const std::string& epoch,
const std::string& mode) override;
virtual ::std::future<int32_t> save(uint32_t table_id,
const std::string& epoch,
const std::string& mode) override;
virtual ::std::future<int32_t> clear() override;
virtual ::std::future<int32_t> clear(uint32_t table_id) override;
virtual ::std::future<int32_t> stop_server() override;
virtual void finalize_worker() override {}
virtual ::std::future<int32_t> pull_dense(Region* regions, size_t region_num,
size_t table_id);
virtual ::std::future<int32_t> push_dense(const Region* regions,
size_t region_num, size_t table_id);
virtual ::std::future<int32_t> push_dense_param(const Region* regions,
size_t region_num,
size_t table_id);
virtual ::std::future<int32_t> pull_sparse(float** select_values,
size_t table_id,
const uint64_t* keys, size_t num,
bool is_training) {
std::promise<int32_t> prom;
std::future<int32_t> fut = prom.get_future();
prom.set_value(0);
return fut;
}
virtual ::std::future<int32_t> pull_sparse_ptr(char** select_values,
size_t table_id,
const uint64_t* keys,
size_t num);
virtual ::std::future<int32_t> print_table_stat(uint32_t table_id) {
std::promise<int32_t> prom;
std::future<int32_t> fut = prom.get_future();
prom.set_value(0);
return fut;
}
virtual ::std::future<int32_t> push_sparse(size_t table_id,
const uint64_t* keys,
const float** update_values,
size_t num);
virtual ::std::future<int32_t> flush();
// server profilera
virtual std::future<int32_t> start_profiler() {
std::promise<int32_t> prom;
std::future<int32_t> fut = prom.get_future();
prom.set_value(0);
return fut;
};
virtual std::future<int32_t> stop_profiler() {
std::promise<int32_t> prom;
std::future<int32_t> fut = prom.get_future();
prom.set_value(0);
return fut;
}
virtual std::future<int32_t> barrier(size_t table_id, uint32_t barrier_type) {
std::promise<int32_t> prom;
std::future<int32_t> fut = prom.get_future();
prom.set_value(0);
return fut;
}
virtual std::future<int32_t> pull_geo_param(size_t table_id,
std::vector<float>* values,
std::vector<uint64_t>* keys,
int pserver_idx) {
std::promise<int32_t> prom;
std::future<int32_t> fut = prom.get_future();
prom.set_value(0);
return fut;
}
virtual std::future<int32_t> push_global_step(int table_id,
int64_t* total_send_data,
void* done) {
std::promise<int32_t> prom;
std::future<int32_t> fut = prom.get_future();
prom.set_value(0);
return fut;
}
// recv table from server and save it in LodTensor
virtual int32_t recv_and_save_table(const uint64_t table_id,
const std::string& path) {
return 0;
}
virtual ::std::future<int32_t> send_client2client_msg(
int msg_type, int to_client_id, const std::string& msg) override {
std::promise<int32_t> prom;
std::future<int32_t> fut = prom.get_future();
prom.set_value(0);
return fut;
}
virtual size_t get_server_nums() { return 1; }
virtual std::future<int32_t> push_dense_raw_gradient(
int table_id, float* total_send_data, size_t total_send_data_size,
void* callback) override;
virtual std::future<int32_t> push_sparse_raw_gradient(
size_t table_id, const uint64_t* keys, const float** update_values,
size_t num, void* callback) override;
virtual std::future<int32_t> push_sparse_raw_gradient_partial(
size_t table_id, const uint64_t* keys, const float** update_values,
uint32_t num, void* done, int pserver_idx) override {
std::promise<int32_t> prom;
std::future<int32_t> fut = prom.get_future();
prom.set_value(0);
return fut;
}
virtual std::future<int32_t> push_sparse_param(size_t table_id,
const uint64_t* keys,
const float** update_values,
size_t num,
void* done) override {
std::promise<int32_t> prom;
std::future<int32_t> fut = prom.get_future();
prom.set_value(0);
return fut;
}
private:
virtual int32_t initialize() override;
std::future<int32_t> done() {
std::shared_ptr<std::promise<int32_t>> prom =
std::make_shared<std::promise<int32_t>>();
std::future<int32_t> fut = prom->get_future();
prom->set_value(0);
return fut;
}
inline uint32_t dense_dim_per_shard(uint32_t dense_dim_total,
uint32_t shard_num) {
return dense_dim_total / shard_num + 1;
}
inline std::unordered_map<uint32_t, std::shared_ptr<Table>>* table() {
return &_table_map;
}
inline Table* table(size_t table_id) {
auto itr = _table_map.find(table_id);
if (itr != _table_map.end()) {
return itr->second.get();
}
LOG(ERROR) << "table not found " << table_id;
return NULL;
}
std::unordered_map<uint32_t, std::shared_ptr<Table>> _table_map;
bool _running = false;
bool _flushing = false;
private:
float _mae = 0;
float _mse = 0;
uint16_t _push_times = 0;
};
}
}
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <memory>
#include <vector>
#include "paddle/fluid/distributed/service/server.h"
namespace paddle {
namespace distributed {
class PsLocalServer : public PSServer {
public:
PsLocalServer() {}
virtual ~PsLocalServer() {}
virtual uint64_t start() { return 0; }
virtual uint64_t start(const std::string& ip, uint32_t port) { return 0; }
virtual int32_t stop() { return 0; }
virtual int32_t port() { return 0; }
private:
virtual int32_t initialize() { return 0; }
};
}
}
...@@ -17,12 +17,14 @@ ...@@ -17,12 +17,14 @@
#include "glog/logging.h" #include "glog/logging.h"
#include "paddle/fluid/distributed/service/brpc_ps_server.h" #include "paddle/fluid/distributed/service/brpc_ps_server.h"
#include "paddle/fluid/distributed/service/graph_brpc_server.h" #include "paddle/fluid/distributed/service/graph_brpc_server.h"
#include "paddle/fluid/distributed/service/ps_local_server.h"
#include "paddle/fluid/distributed/table/table.h" #include "paddle/fluid/distributed/table/table.h"
namespace paddle { namespace paddle {
namespace distributed { namespace distributed {
REGISTER_PSCORE_CLASS(PSServer, BrpcPsServer); REGISTER_PSCORE_CLASS(PSServer, BrpcPsServer);
REGISTER_PSCORE_CLASS(PSServer, PsLocalServer);
REGISTER_PSCORE_CLASS(PsBaseService, BrpcPsService); REGISTER_PSCORE_CLASS(PsBaseService, BrpcPsService);
REGISTER_PSCORE_CLASS(PSServer, GraphBrpcServer); REGISTER_PSCORE_CLASS(PSServer, GraphBrpcServer);
REGISTER_PSCORE_CLASS(PsBaseService, GraphBrpcService); REGISTER_PSCORE_CLASS(PsBaseService, GraphBrpcService);
......
...@@ -446,6 +446,43 @@ int32_t CommonSparseTable::pull_sparse(float* pull_values, ...@@ -446,6 +446,43 @@ int32_t CommonSparseTable::pull_sparse(float* pull_values,
return 0; return 0;
} }
int32_t CommonSparseTable::pull_sparse_ptr(char** pull_values,
const uint64_t* keys, size_t num) {
std::vector<std::vector<uint64_t>> offset_bucket;
offset_bucket.resize(task_pool_size_);
for (int x = 0; x < num; ++x) {
auto y = keys[x] % task_pool_size_;
offset_bucket[y].push_back(x);
}
std::vector<std::future<int>> tasks(task_pool_size_);
for (int shard_id = 0; shard_id < task_pool_size_; ++shard_id) {
tasks[shard_id] = _shards_task_pool[shard_id]->enqueue(
[this, shard_id, &keys, &offset_bucket, &pull_values]() -> int {
auto& block = shard_values_[shard_id];
auto& offsets = offset_bucket[shard_id];
for (int i = 0; i < offsets.size(); ++i) {
auto offset = offsets[i];
auto id = keys[offset];
auto* value = block->InitGet(id);
// std::copy_n(value + param_offset_, param_dim_,
// pull_values + param_dim_ * offset);
pull_values[offset] = (char*)value;
}
return 0;
});
}
for (size_t shard_id = 0; shard_id < tasks.size(); ++shard_id) {
tasks[shard_id].wait();
}
return 0;
}
int32_t CommonSparseTable::_push_sparse(const uint64_t* keys, int32_t CommonSparseTable::_push_sparse(const uint64_t* keys,
const float* values, size_t num) { const float* values, size_t num) {
rwlock_->RDLock(); rwlock_->RDLock();
...@@ -502,6 +539,45 @@ int32_t CommonSparseTable::push_sparse(const uint64_t* keys, ...@@ -502,6 +539,45 @@ int32_t CommonSparseTable::push_sparse(const uint64_t* keys,
return 0; return 0;
} }
int32_t CommonSparseTable::push_sparse(const uint64_t* keys,
const float** values, size_t num) {
_push_sparse(keys, values, num);
return 0;
}
int32_t CommonSparseTable::_push_sparse(const uint64_t* keys,
const float** values, size_t num) {
rwlock_->RDLock();
std::vector<std::vector<uint64_t>> offset_bucket;
offset_bucket.resize(task_pool_size_);
for (int x = 0; x < num; ++x) {
auto y = keys[x] % task_pool_size_;
offset_bucket[y].push_back(x);
}
std::vector<std::future<int>> tasks(task_pool_size_);
for (int shard_id = 0; shard_id < task_pool_size_; ++shard_id) {
tasks[shard_id] = _shards_task_pool[shard_id]->enqueue(
[this, shard_id, &keys, &values, num, &offset_bucket]() -> int {
auto& offsets = offset_bucket[shard_id];
for (size_t i = 0; i < offsets.size(); ++i) {
std::vector<uint64_t> tmp_off = {0};
optimizer_->update(keys + offsets[i], values[offsets[i]], num,
tmp_off, shard_values_[shard_id].get());
}
return 0;
});
}
for (size_t shard_id = 0; shard_id < tasks.size(); ++shard_id) {
tasks[shard_id].wait();
}
rwlock_->UNLock();
return 0;
}
int32_t CommonSparseTable::push_sparse_param(const uint64_t* keys, int32_t CommonSparseTable::push_sparse_param(const uint64_t* keys,
const float* values, size_t num) { const float* values, size_t num) {
rwlock_->RDLock(); rwlock_->RDLock();
......
...@@ -63,9 +63,15 @@ class CommonSparseTable : public SparseTable { ...@@ -63,9 +63,15 @@ class CommonSparseTable : public SparseTable {
virtual std::pair<int64_t, int64_t> print_table_stat(); virtual std::pair<int64_t, int64_t> print_table_stat();
virtual int32_t pull_sparse(float* values, const PullSparseValue& pull_value); virtual int32_t pull_sparse(float* values, const PullSparseValue& pull_value);
virtual int32_t pull_sparse_ptr(char** pull_values, const uint64_t* keys,
size_t num);
virtual int32_t push_sparse(const uint64_t* keys, const float* values, virtual int32_t push_sparse(const uint64_t* keys, const float* values,
size_t num); size_t num);
virtual int32_t push_sparse(const uint64_t* keys, const float** values,
size_t num);
// only for sparse geo table // only for sparse geo table
virtual int32_t push_sparse_param(const uint64_t* keys, const float* values, virtual int32_t push_sparse_param(const uint64_t* keys, const float* values,
size_t num); size_t num);
...@@ -80,6 +86,8 @@ class CommonSparseTable : public SparseTable { ...@@ -80,6 +86,8 @@ class CommonSparseTable : public SparseTable {
protected: protected:
virtual int32_t _push_sparse(const uint64_t* keys, const float* values, virtual int32_t _push_sparse(const uint64_t* keys, const float* values,
size_t num); size_t num);
virtual int32_t _push_sparse(const uint64_t* keys, const float** values,
size_t num);
private: private:
const int task_pool_size_ = 11; const int task_pool_size_ = 11;
......
...@@ -87,7 +87,7 @@ class ValueBlock { ...@@ -87,7 +87,7 @@ class ValueBlock {
value_dims_(value_dims), value_dims_(value_dims),
value_offsets_(value_offsets), value_offsets_(value_offsets),
value_idx_(value_idx) { value_idx_(value_idx) {
for (int x = 0; x < value_dims.size(); ++x) { for (size_t x = 0; x < value_dims.size(); ++x) {
value_length_ += value_dims[x]; value_length_ += value_dims[x];
} }
...@@ -96,13 +96,15 @@ class ValueBlock { ...@@ -96,13 +96,15 @@ class ValueBlock {
auto slices = string::split_string<std::string>(entry_attr, ":"); auto slices = string::split_string<std::string>(entry_attr, ":");
if (slices[0] == "none") { if (slices[0] == "none") {
entry_func_ = std::bind(&count_entry, std::placeholders::_1, 0); entry_func_ = std::bind(&count_entry, std::placeholders::_1, 0);
threshold_ = 0;
} else if (slices[0] == "count_filter_entry") { } else if (slices[0] == "count_filter_entry") {
int threshold = std::stoi(slices[1]); threshold_ = std::stoi(slices[1]);
entry_func_ = std::bind(&count_entry, std::placeholders::_1, threshold); entry_func_ =
std::bind(&count_entry, std::placeholders::_1, threshold_);
} else if (slices[0] == "probability_entry") { } else if (slices[0] == "probability_entry") {
float threshold = std::stof(slices[1]); threshold_ = std::stof(slices[1]);
entry_func_ = entry_func_ =
std::bind(&probility_entry, std::placeholders::_1, threshold); std::bind(&probility_entry, std::placeholders::_1, threshold_);
} else { } else {
PADDLE_THROW(platform::errors::InvalidArgument( PADDLE_THROW(platform::errors::InvalidArgument(
"Not supported Entry Type : %s, Only support [CountFilterEntry, " "Not supported Entry Type : %s, Only support [CountFilterEntry, "
...@@ -170,6 +172,21 @@ class ValueBlock { ...@@ -170,6 +172,21 @@ class ValueBlock {
return value->data_.data(); return value->data_.data();
} }
VALUE *InitGet(const uint64_t &id, const bool with_update = true,
const int counter = 1) {
if (!Has(id)) {
values_[id] = std::make_shared<VALUE>(value_length_);
}
auto &value = values_.at(id);
if (with_update) {
AttrUpdate(value, counter);
}
return value.get();
}
void AttrUpdate(std::shared_ptr<VALUE> value, const int counter) { void AttrUpdate(std::shared_ptr<VALUE> value, const int counter) {
// update state // update state
value->unseen_days_ = 0; value->unseen_days_ = 0;
...@@ -179,7 +196,7 @@ class ValueBlock { ...@@ -179,7 +196,7 @@ class ValueBlock {
value->is_entry_ = entry_func_(value); value->is_entry_ = entry_func_(value);
if (value->is_entry_) { if (value->is_entry_) {
// initialize // initialize
for (int x = 0; x < value_names_.size(); ++x) { for (size_t x = 0; x < value_names_.size(); ++x) {
initializers_[x]->GetValue(value->data_.data() + value_offsets_[x], initializers_[x]->GetValue(value->data_.data() + value_offsets_[x],
value_dims_[x]); value_dims_[x]);
} }
...@@ -224,6 +241,8 @@ class ValueBlock { ...@@ -224,6 +241,8 @@ class ValueBlock {
return; return;
} }
float GetThreshold() { return threshold_; }
private: private:
bool Has(const uint64_t id) { bool Has(const uint64_t id) {
auto got = values_.find(id); auto got = values_.find(id);
...@@ -246,6 +265,7 @@ class ValueBlock { ...@@ -246,6 +265,7 @@ class ValueBlock {
std::function<bool(std::shared_ptr<VALUE>)> entry_func_; std::function<bool(std::shared_ptr<VALUE>)> entry_func_;
std::vector<std::shared_ptr<Initializer>> initializers_; std::vector<std::shared_ptr<Initializer>> initializers_;
float threshold_;
}; };
} // namespace distributed } // namespace distributed
......
...@@ -48,10 +48,17 @@ class Table { ...@@ -48,10 +48,17 @@ class Table {
return 0; return 0;
} }
virtual int32_t pull_sparse_ptr(char **pull_values, const uint64_t *keys,
size_t num) {
VLOG(0) << "NOT IMPLEMENT";
return 0;
}
virtual int32_t pull_sparse(float *values, virtual int32_t pull_sparse(float *values,
const PullSparseValue &pull_value) = 0; const PullSparseValue &pull_value) = 0;
virtual int32_t push_sparse(const uint64_t *keys, const float *values, virtual int32_t push_sparse(const uint64_t *keys, const float *values,
size_t num) = 0; size_t num) = 0;
virtual int32_t push_sparse(const uint64_t *keys, const float **values,
size_t num){};
virtual int32_t push_sparse_param(const uint64_t *keys, const float *values, virtual int32_t push_sparse_param(const uint64_t *keys, const float *values,
size_t num) { size_t num) {
return 0; return 0;
......
...@@ -562,7 +562,6 @@ class PSGPUWorker : public HogwildWorker { ...@@ -562,7 +562,6 @@ class PSGPUWorker : public HogwildWorker {
void ResetStat(); void ResetStat();
protected: protected:
std::shared_ptr<paddle::framework::FleetWrapper> fleet_ptr_;
void PushGradients(); void PushGradients();
void DumpParam(); void DumpParam();
void CopySparseTable(); void CopySparseTable();
......
...@@ -124,6 +124,7 @@ message AsyncConfig { ...@@ -124,6 +124,7 @@ message AsyncConfig {
optional bool launch_barrier = 9 [ default = true ]; optional bool launch_barrier = 9 [ default = true ];
optional string heter_worker_device_guard = 10 [ default = 'cpu' ]; optional string heter_worker_device_guard = 10 [ default = 'cpu' ];
optional int32 lr_decay_steps = 11 [ default = 10 ]; optional int32 lr_decay_steps = 11 [ default = 10 ];
optional int32 use_ps_gpu = 12 [ default = 0 ];
} }
message PipelineConfig { message PipelineConfig {
......
if(WITH_PSLIB) if(WITH_PSLIB)
cc_library(fleet_wrapper SRCS fleet_wrapper.cc DEPS framework_proto variable_helper scope pslib_brpc pslib) cc_library(fleet_wrapper SRCS fleet_wrapper.cc DEPS framework_proto variable_helper scope pslib_brpc pslib)
else()
cc_library(fleet_wrapper SRCS fleet_wrapper.cc DEPS framework_proto variable_helper scope)
endif(WITH_PSLIB)
if(WITH_HETERPS)
if(WITH_NCCL) if(WITH_NCCL)
nv_library(ps_gpu_wrapper SRCS ps_gpu_wrapper.cu ps_gpu_wrapper.cc nv_library(ps_gpu_wrapper SRCS ps_gpu_wrapper.cu ps_gpu_wrapper.cc
DEPS heter_ps) DEPS heter_ps)
...@@ -8,13 +13,10 @@ if(WITH_PSLIB) ...@@ -8,13 +13,10 @@ if(WITH_PSLIB)
hip_library(ps_gpu_wrapper SRCS ps_gpu_wrapper.cu ps_gpu_wrapper.cc hip_library(ps_gpu_wrapper SRCS ps_gpu_wrapper.cu ps_gpu_wrapper.cc
DEPS heter_ps) DEPS heter_ps)
add_subdirectory(heter_ps) add_subdirectory(heter_ps)
else()
cc_library(ps_gpu_wrapper SRCS ps_gpu_wrapper.cc)
endif(WITH_NCCL) endif(WITH_NCCL)
else() else()
cc_library(fleet_wrapper SRCS fleet_wrapper.cc DEPS framework_proto variable_helper scope)
cc_library(ps_gpu_wrapper SRCS ps_gpu_wrapper.cc) cc_library(ps_gpu_wrapper SRCS ps_gpu_wrapper.cc)
endif(WITH_PSLIB) endif(WITH_HETERPS)
if(WITH_NCCL OR WITH_RCCL) if(WITH_NCCL OR WITH_RCCL)
cc_library(nccl_wrapper SRCS nccl_wrapper.cc DEPS framework_proto variable_helper scope) cc_library(nccl_wrapper SRCS nccl_wrapper.cc DEPS framework_proto variable_helper scope)
......
...@@ -34,6 +34,9 @@ limitations under the License. */ ...@@ -34,6 +34,9 @@ limitations under the License. */
#include "paddle/fluid/framework/tensor.h" #include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/framework/variable_helper.h" #include "paddle/fluid/framework/variable_helper.h"
#include "paddle/fluid/platform/macros.h" // for DISABLE_COPY_AND_ASSIGN #include "paddle/fluid/platform/macros.h" // for DISABLE_COPY_AND_ASSIGN
#ifdef PADDLE_WITH_HETERPS
#include "paddle/fluid/platform/type_defs.h"
#endif
namespace paddle { namespace paddle {
namespace framework { namespace framework {
......
...@@ -14,15 +14,21 @@ limitations under the License. */ ...@@ -14,15 +14,21 @@ limitations under the License. */
#pragma once #pragma once
#if (defined PADDLE_WITH_NCCL || defined PADDLE_WITH_RCCL) && \ #ifdef PADDLE_WITH_HETERPS
(defined PADDLE_WITH_PSLIB)
#include <algorithm> #include <algorithm>
#include <map> #include <map>
#include <unordered_map> #include <unordered_map>
#include <vector> #include <vector>
#ifdef PADDLE_WITH_PSLIB
#include "common_value.h" // NOLINT #include "common_value.h" // NOLINT
#endif
#ifdef PADDLE_WITH_PSCORE
#include "paddle/fluid/distributed/table/depends/large_scale_kv.h"
#endif
#include "paddle/fluid/framework/fleet/heter_ps/feature_value.h" #include "paddle/fluid/framework/fleet/heter_ps/feature_value.h"
#include "paddle/fluid/framework/scope.h" #include "paddle/fluid/framework/scope.h"
...@@ -39,7 +45,12 @@ class HeterContext { ...@@ -39,7 +45,12 @@ class HeterContext {
} }
Scope* scope_{nullptr}; Scope* scope_{nullptr};
std::vector<std::vector<FeatureKey>> feature_keys_; std::vector<std::vector<FeatureKey>> feature_keys_;
#ifdef PADDLE_WITH_PSLIB
std::vector<std::vector<paddle::ps::DownpourFixedFeatureValue*>> value_ptr_; std::vector<std::vector<paddle::ps::DownpourFixedFeatureValue*>> value_ptr_;
#endif
#ifdef PADDLE_WITH_PSCORE
std::vector<std::vector<paddle::distributed::VALUE*>> value_ptr_;
#endif
std::vector<std::vector<FeatureValue>> device_values_; std::vector<std::vector<FeatureValue>> device_values_;
std::vector<std::vector<FeatureKey>> device_keys_; std::vector<std::vector<FeatureKey>> device_keys_;
std::vector<std::mutex*> mutex_; std::vector<std::mutex*> mutex_;
......
...@@ -14,7 +14,7 @@ limitations under the License. */ ...@@ -14,7 +14,7 @@ limitations under the License. */
#pragma once #pragma once
#ifdef PADDLE_WITH_PSLIB #ifdef PADDLE_WITH_HETERPS
#include <iostream> #include <iostream>
......
...@@ -17,11 +17,17 @@ limitations under the License. */ ...@@ -17,11 +17,17 @@ limitations under the License. */
#include <limits> #include <limits>
#include <memory> #include <memory>
#include <vector> #include <vector>
#ifdef PADDLE_WTIH_PSLIB
#include "common_value.h" // NOLINT #include "common_value.h" // NOLINT
#endif
#ifdef PADDLE_WITH_PSCORE
#endif
#include "thrust/pair.h" #include "thrust/pair.h"
//#include "cudf/concurrent_unordered_map.cuh.h" //#include "cudf/concurrent_unordered_map.cuh.h"
#include "paddle/fluid/framework/fleet/heter_ps/cudf/concurrent_unordered_map.cuh.h" #include "paddle/fluid/framework/fleet/heter_ps/cudf/concurrent_unordered_map.cuh.h"
#ifdef PADDLE_WITH_PSLIB #ifdef PADDLE_WITH_HETERPS
#include "paddle/fluid/distributed/table/depends/large_scale_kv.h"
#include "paddle/fluid/platform/type_defs.h"
namespace paddle { namespace paddle {
namespace framework { namespace framework {
......
...@@ -12,7 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ...@@ -12,7 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#ifdef PADDLE_WITH_PSLIB #ifdef PADDLE_WITH_HETERPS
namespace paddle { namespace paddle {
namespace framework { namespace framework {
...@@ -119,6 +119,7 @@ void HashTable<KeyType, ValType>::dump_to_cpu(int devid, cudaStream_t stream) { ...@@ -119,6 +119,7 @@ void HashTable<KeyType, ValType>::dump_to_cpu(int devid, cudaStream_t stream) {
continue; continue;
} }
ValType& gpu_val = kv[i].second; ValType& gpu_val = kv[i].second;
#ifdef PADDLE_WITH_PSLIB
auto* downpour_value = auto* downpour_value =
(paddle::ps::DownpourFixedFeatureValue*)(gpu_val.cpu_ptr); (paddle::ps::DownpourFixedFeatureValue*)(gpu_val.cpu_ptr);
int downpour_value_size = downpour_value->size(); int downpour_value_size = downpour_value->size();
...@@ -138,6 +139,14 @@ void HashTable<KeyType, ValType>::dump_to_cpu(int devid, cudaStream_t stream) { ...@@ -138,6 +139,14 @@ void HashTable<KeyType, ValType>::dump_to_cpu(int devid, cudaStream_t stream) {
cpu_val[x + 7] = gpu_val.mf[x]; cpu_val[x + 7] = gpu_val.mf[x];
} }
} }
#endif
#ifdef PADDLE_WITH_PSCORE
auto* downpour_value = (paddle::distributed::VALUE*)(gpu_val.cpu_ptr);
downpour_value->count_ = gpu_val.show;
for (int x = 0; x < gpu_val.mf_size; x++) {
downpour_value->data_[x] = gpu_val.mf[x];
}
#endif
} }
container_->prefetch(devid, stream); container_->prefetch(devid, stream);
......
...@@ -25,7 +25,7 @@ limitations under the License. */ ...@@ -25,7 +25,7 @@ limitations under the License. */
#include "paddle/fluid/platform/place.h" #include "paddle/fluid/platform/place.h"
#include "thrust/pair.h" #include "thrust/pair.h"
#ifdef PADDLE_WITH_PSLIB #ifdef PADDLE_WITH_HETERPS
namespace paddle { namespace paddle {
namespace framework { namespace framework {
...@@ -182,7 +182,7 @@ class HeterComm { ...@@ -182,7 +182,7 @@ class HeterComm {
std::vector<std::vector<Path>> path_; std::vector<std::vector<Path>> path_;
std::vector<LocalStorage> storage_; std::vector<LocalStorage> storage_;
int feanum_{1800 * 2048}; int feanum_{1800 * 2048};
int multi_node_{1}; int multi_node_{0};
std::vector<ncclComm_t> nccl_inner_comms_; std::vector<ncclComm_t> nccl_inner_comms_;
std::vector<ncclComm_t> nccl_inter_comms_; std::vector<ncclComm_t> nccl_inter_comms_;
int node_size_; int node_size_;
......
...@@ -12,9 +12,9 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ...@@ -12,9 +12,9 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#pragma once #pragma once
#ifdef PADDLE_WITH_HETERPS
#include <queue> #include <queue>
#ifdef PADDLE_WITH_PSLIB
namespace paddle { namespace paddle {
namespace framework { namespace framework {
......
...@@ -15,7 +15,7 @@ limitations under the License. */ ...@@ -15,7 +15,7 @@ limitations under the License. */
#include <vector> #include <vector>
#include "paddle/fluid/framework/fleet/heter_ps/heter_ps.h" #include "paddle/fluid/framework/fleet/heter_ps/heter_ps.h"
#ifdef PADDLE_WITH_PSLIB #ifdef PADDLE_WITH_HETERPS
namespace paddle { namespace paddle {
namespace framework { namespace framework {
...@@ -54,8 +54,8 @@ void HeterPs::show_one_table(int gpu_num) { comm_->show_one_table(gpu_num); } ...@@ -54,8 +54,8 @@ void HeterPs::show_one_table(int gpu_num) { comm_->show_one_table(gpu_num); }
void HeterPs::push_sparse(int num, FeatureKey* d_keys, void HeterPs::push_sparse(int num, FeatureKey* d_keys,
FeaturePushValue* d_grads, size_t len) { FeaturePushValue* d_grads, size_t len) {
// comm_->push_sparse(num, d_keys, d_grads, len, opt_); comm_->push_sparse(num, d_keys, d_grads, len, opt_);
comm_->push_sparse_multi_node(num, d_keys, d_grads, len, opt_); // comm_->push_sparse_multi_node(num, d_keys, d_grads, len, opt_);
} }
void HeterPs::set_nccl_comm_and_size(const std::vector<ncclComm_t>& inner_comms, void HeterPs::set_nccl_comm_and_size(const std::vector<ncclComm_t>& inner_comms,
......
...@@ -18,7 +18,7 @@ limitations under the License. */ ...@@ -18,7 +18,7 @@ limitations under the License. */
#include "paddle/fluid/framework/fleet/heter_ps/heter_ps_base.h" #include "paddle/fluid/framework/fleet/heter_ps/heter_ps_base.h"
#include "paddle/fluid/framework/fleet/heter_ps/optimizer.cuh.h" #include "paddle/fluid/framework/fleet/heter_ps/optimizer.cuh.h"
#ifdef PADDLE_WITH_PSLIB #ifdef PADDLE_WITH_HETERPS
namespace paddle { namespace paddle {
namespace framework { namespace framework {
......
...@@ -17,7 +17,7 @@ limitations under the License. */ ...@@ -17,7 +17,7 @@ limitations under the License. */
#include "paddle/fluid/framework/fleet/heter_ps/feature_value.h" #include "paddle/fluid/framework/fleet/heter_ps/feature_value.h"
#include "paddle/fluid/framework/fleet/heter_ps/heter_resource.h" #include "paddle/fluid/framework/fleet/heter_ps/heter_resource.h"
#ifdef PADDLE_WITH_PSLIB #ifdef PADDLE_WITH_HETERPS
namespace paddle { namespace paddle {
namespace framework { namespace framework {
......
...@@ -12,7 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ...@@ -12,7 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#ifdef PADDLE_WITH_PSLIB #ifdef PADDLE_WITH_HETERPS
#include "heter_resource.h" #include "heter_resource.h"
#include "paddle/fluid/platform/cuda_device_guard.h" #include "paddle/fluid/platform/cuda_device_guard.h"
......
...@@ -20,7 +20,7 @@ limitations under the License. */ ...@@ -20,7 +20,7 @@ limitations under the License. */
#include "paddle/fluid/platform/cuda_device_guard.h" #include "paddle/fluid/platform/cuda_device_guard.h"
#include "paddle/fluid/platform/enforce.h" #include "paddle/fluid/platform/enforce.h"
#ifdef PADDLE_WITH_PSLIB #ifdef PADDLE_WITH_HETERPS
namespace paddle { namespace paddle {
namespace framework { namespace framework {
......
...@@ -18,7 +18,7 @@ limitations under the License. */ ...@@ -18,7 +18,7 @@ limitations under the License. */
#include "optimizer_conf.h" #include "optimizer_conf.h"
#include "paddle/fluid/framework/fleet/heter_ps/feature_value.h" #include "paddle/fluid/framework/fleet/heter_ps/feature_value.h"
#ifdef PADDLE_WITH_PSLIB #ifdef PADDLE_WITH_HETERPS
namespace paddle { namespace paddle {
namespace framework { namespace framework {
......
...@@ -26,8 +26,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ...@@ -26,8 +26,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#if (defined PADDLE_WITH_NCCL || defined PADDLE_WITH_RCCL) && \ #ifdef PADDLE_WITH_HETERPS
(defined PADDLE_WITH_PSLIB)
#include <algorithm> #include <algorithm>
#include <deque> #include <deque>
...@@ -58,7 +57,12 @@ void PSGPUWrapper::BuildTask(std::shared_ptr<HeterContext> gpu_task, ...@@ -58,7 +57,12 @@ void PSGPUWrapper::BuildTask(std::shared_ptr<HeterContext> gpu_task,
auto& device_mutex = gpu_task->mutex_; auto& device_mutex = gpu_task->mutex_;
std::vector<std::thread> threads; std::vector<std::thread> threads;
#ifdef PADDLE_WITH_PSLIB
auto fleet_ptr = FleetWrapper::GetInstance(); auto fleet_ptr = FleetWrapper::GetInstance();
#endif
#ifdef PADDLE_WITH_PSCORE
auto fleet_ptr = paddle::distributed::Communicator::GetInstance();
#endif
// data should be in input channel // data should be in input channel
thread_keys_.resize(thread_keys_thread_num_); thread_keys_.resize(thread_keys_thread_num_);
...@@ -124,9 +128,16 @@ void PSGPUWrapper::BuildTask(std::shared_ptr<HeterContext> gpu_task, ...@@ -124,9 +128,16 @@ void PSGPUWrapper::BuildTask(std::shared_ptr<HeterContext> gpu_task,
auto ptl_func = [this, &local_keys, &local_ptr, &table_id, auto ptl_func = [this, &local_keys, &local_ptr, &table_id,
&fleet_ptr](int i) { &fleet_ptr](int i) {
size_t key_size = local_keys[i].size(); size_t key_size = local_keys[i].size();
#ifdef PADDLE_WITH_PSLIB
auto tt = fleet_ptr->pslib_ptr_->_worker_ptr->pull_sparse_ptr( auto tt = fleet_ptr->pslib_ptr_->_worker_ptr->pull_sparse_ptr(
reinterpret_cast<char**>(local_ptr[i].data()), table_id, reinterpret_cast<char**>(local_ptr[i].data()), table_id,
local_keys[i].data(), key_size); local_keys[i].data(), key_size);
#endif
#ifdef PADDLE_WITH_PSCORE
auto tt = fleet_ptr->_worker_ptr->pull_sparse_ptr(
reinterpret_cast<char**>(local_ptr[i].data()), table_id,
local_keys[i].data(), key_size);
#endif
tt.wait(); tt.wait();
auto status = tt.get(); auto status = tt.get();
// auto status = 0; // auto status = 0;
...@@ -153,8 +164,14 @@ void PSGPUWrapper::BuildTask(std::shared_ptr<HeterContext> gpu_task, ...@@ -153,8 +164,14 @@ void PSGPUWrapper::BuildTask(std::shared_ptr<HeterContext> gpu_task,
auto build_func = [device_num, &local_keys, &local_ptr, &device_keys, auto build_func = [device_num, &local_keys, &local_ptr, &device_keys,
&device_vals, &device_mutex](int i) { &device_vals, &device_mutex](int i) {
std::vector<std::vector<FeatureKey>> task_keys(device_num); std::vector<std::vector<FeatureKey>> task_keys(device_num);
#ifdef PADDLE_WITH_PSLIB
std::vector<std::vector<paddle::ps::DownpourFixedFeatureValue*>> task_ptrs( std::vector<std::vector<paddle::ps::DownpourFixedFeatureValue*>> task_ptrs(
device_num); device_num);
#endif
#ifdef PADDLE_WITH_PSCORE
std::vector<std::vector<paddle::distributed::VALUE*>> task_ptrs(device_num);
#endif
for (size_t j = 0; j < local_keys[i].size(); j++) { for (size_t j = 0; j < local_keys[i].size(); j++) {
int shard = local_keys[i][j] % device_num; int shard = local_keys[i][j] % device_num;
...@@ -169,7 +186,7 @@ void PSGPUWrapper::BuildTask(std::shared_ptr<HeterContext> gpu_task, ...@@ -169,7 +186,7 @@ void PSGPUWrapper::BuildTask(std::shared_ptr<HeterContext> gpu_task,
int cur = device_keys[dev].size(); int cur = device_keys[dev].size();
device_keys[dev].resize(device_keys[dev].size() + len); device_keys[dev].resize(device_keys[dev].size() + len);
device_vals[dev].resize(device_vals[dev].size() + len); device_vals[dev].resize(device_vals[dev].size() + len);
#ifdef PADDLE_WITH_PSLIB
for (int j = 0; j < len; ++j) { for (int j = 0; j < len; ++j) {
device_keys[dev][cur + j] = task_keys[dev][j]; device_keys[dev][cur + j] = task_keys[dev][j];
float* ptr_val = task_ptrs[dev][j]->data(); float* ptr_val = task_ptrs[dev][j]->data();
...@@ -196,6 +213,35 @@ void PSGPUWrapper::BuildTask(std::shared_ptr<HeterContext> gpu_task, ...@@ -196,6 +213,35 @@ void PSGPUWrapper::BuildTask(std::shared_ptr<HeterContext> gpu_task,
} }
} }
} }
#endif
#ifdef PADDLE_WITH_PSCORE
for (int j = 0; j < len; ++j) {
device_keys[dev][cur + j] = task_keys[dev][j];
distributed::VALUE* ptr_val = task_ptrs[dev][j];
FeatureValue& val = device_vals[dev][cur + j];
bool has_mf = 1;
val.delta_score = 0;
val.show = ptr_val->count_;
val.clk = 0;
val.slot = 0;
val.lr = 0;
val.lr_g2sum = 0;
val.cpu_ptr = (uint64_t)(task_ptrs[dev][j]);
if (has_mf) {
val.mf_size = MF_DIM + 1;
for (int x = 0; x < val.mf_size; x++) {
val.mf[x] = ptr_val->data_[x];
}
} else {
val.mf_size = 0;
for (int x = 0; x < MF_DIM + 1; x++) {
val.mf[x] = 0;
}
}
}
#endif
VLOG(1) << "GpuPs build hbmps done";
device_mutex[dev]->unlock(); device_mutex[dev]->unlock();
} }
......
...@@ -12,7 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ...@@ -12,7 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#ifdef PADDLE_WITH_PSLIB #ifdef PADDLE_WITH_HETERPS
#include <algorithm> #include <algorithm>
#include <ctime> #include <ctime>
#include <memory> #include <memory>
......
...@@ -14,8 +14,7 @@ limitations under the License. */ ...@@ -14,8 +14,7 @@ limitations under the License. */
#pragma once #pragma once
#if (defined PADDLE_WITH_NCCL || defined PADDLE_WITH_RCCL) && \ #ifdef PADDLE_WITH_HETERPS
(defined PADDLE_WITH_PSLIB)
#include <atomic> #include <atomic>
#include <ctime> #include <ctime>
...@@ -26,7 +25,6 @@ limitations under the License. */ ...@@ -26,7 +25,6 @@ limitations under the License. */
#include <unordered_map> #include <unordered_map>
#include <unordered_set> #include <unordered_set>
#include <vector> #include <vector>
#ifdef PADDLE_WITH_GLOO #ifdef PADDLE_WITH_GLOO
#include <gloo/broadcast.h> #include <gloo/broadcast.h>
#include "paddle/fluid/framework/fleet/gloo_wrapper.h" #include "paddle/fluid/framework/fleet/gloo_wrapper.h"
...@@ -42,6 +40,9 @@ limitations under the License. */ ...@@ -42,6 +40,9 @@ limitations under the License. */
#include "paddle/fluid/platform/gpu_info.h" #include "paddle/fluid/platform/gpu_info.h"
#include "paddle/fluid/platform/macros.h" // for DISABLE_COPY_AND_ASSIGN #include "paddle/fluid/platform/macros.h" // for DISABLE_COPY_AND_ASSIGN
#include "paddle/fluid/platform/place.h" #include "paddle/fluid/platform/place.h"
#ifdef PADDLE_WITH_PSCORE
#include "paddle/fluid/distributed/service/communicator.h"
#endif
namespace paddle { namespace paddle {
namespace framework { namespace framework {
...@@ -219,7 +220,7 @@ class PSGPUWrapper { ...@@ -219,7 +220,7 @@ class PSGPUWrapper {
std::shared_ptr<HeterPsResource> resource_; std::shared_ptr<HeterPsResource> resource_;
int32_t sleep_seconds_before_fail_exit_; int32_t sleep_seconds_before_fail_exit_;
std::vector<int> slot_vector_; std::vector<int> slot_vector_;
int multi_node_{1}; int multi_node_{0};
int node_size_; int node_size_;
std::vector<ncclComm_t> inner_comms_; std::vector<ncclComm_t> inner_comms_;
std::vector<ncclComm_t> inter_comms_; std::vector<ncclComm_t> inter_comms_;
......
...@@ -30,10 +30,12 @@ limitations under the License. */ ...@@ -30,10 +30,12 @@ limitations under the License. */
#include "brpc/controller.h" #include "brpc/controller.h"
#include "brpc/server.h" #include "brpc/server.h"
#include "paddle/fluid/platform/timer.h" #include "paddle/fluid/platform/timer.h"
#endif
namespace paddle { namespace paddle {
namespace framework { namespace framework {
#ifdef PADDLE_WITH_PSLIB
typedef std::function<int(const HeterRequest*, HeterResponse*)> typedef std::function<int(const HeterRequest*, HeterResponse*)>
HeterServiceHandler; HeterServiceHandler;
class DataFeed; class DataFeed;
...@@ -142,7 +144,7 @@ class HeterTask { ...@@ -142,7 +144,7 @@ class HeterTask {
double cpu_2_gpu_time{0}; double cpu_2_gpu_time{0};
platform::Timer timeline; platform::Timer timeline;
}; };
#endif
template <class T> template <class T>
class HeterObjectPool { class HeterObjectPool {
public: public:
...@@ -153,7 +155,7 @@ class HeterObjectPool { ...@@ -153,7 +155,7 @@ class HeterObjectPool {
if (pool_.empty()) { if (pool_.empty()) {
num_ += 1; num_ += 1;
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
VLOG(0) << "pool construct size: " << num_; VLOG(3) << "pool construct size: " << num_;
#endif #endif
return std::make_shared<T>(); return std::make_shared<T>();
} else { } else {
...@@ -178,6 +180,7 @@ class HeterObjectPool { ...@@ -178,6 +180,7 @@ class HeterObjectPool {
int num_{0}; int num_{0};
}; };
#ifdef PADDLE_WITH_PSLIB
struct BthreadMutextGuard { struct BthreadMutextGuard {
BthreadMutextGuard(bthread_mutex_t* rho) { BthreadMutextGuard(bthread_mutex_t* rho) {
mutex_ = rho; mutex_ = rho;
...@@ -258,7 +261,6 @@ class HeterList { ...@@ -258,7 +261,6 @@ class HeterList {
std::unique_lock<std::mutex> lock(mutex_); std::unique_lock<std::mutex> lock(mutex_);
cond_.wait(lock, [this] { return size < cap_; }); cond_.wait(lock, [this] { return size < cap_; });
if (task_map_.find(key) != task_map_.end()) { if (task_map_.find(key) != task_map_.end()) {
// std::cout << "try put key=" << key << " false" << std::endl;
task_map_.erase(key); task_map_.erase(key);
return false; return false;
} else { } else {
...@@ -267,7 +269,6 @@ class HeterList { ...@@ -267,7 +269,6 @@ class HeterList {
node->value = value; node->value = value;
map_[node->key] = node; map_[node->key] = node;
attach(node); attach(node);
// std::cout << "try put key=" << key << " true" << std::endl;
return true; return true;
} }
} }
...@@ -276,7 +277,6 @@ class HeterList { ...@@ -276,7 +277,6 @@ class HeterList {
std::unique_lock<std::mutex> lock(mutex_); std::unique_lock<std::mutex> lock(mutex_);
cond_.wait(lock, [this] { return size < cap_; }); cond_.wait(lock, [this] { return size < cap_; });
HeterNode<K, T>* node = new HeterNode<K, T>; HeterNode<K, T>* node = new HeterNode<K, T>;
// std::cout << "put key=" << key << " true" << std::endl;
node->key = key; node->key = key;
node->value = value; node->value = value;
map_[node->key] = node; map_[node->key] = node;
...@@ -288,7 +288,6 @@ class HeterList { ...@@ -288,7 +288,6 @@ class HeterList {
std::lock_guard<std::mutex> lock(mutex_); std::lock_guard<std::mutex> lock(mutex_);
auto iter = map_.find(key); auto iter = map_.find(key);
if (iter != map_.end()) { if (iter != map_.end()) {
// std::cout << "try get key=" << key << " true" << std::endl;
HeterNode<K, T>* node = iter->second; HeterNode<K, T>* node = iter->second;
detach(node); detach(node);
cond_.notify_one(); cond_.notify_one();
...@@ -298,7 +297,6 @@ class HeterList { ...@@ -298,7 +297,6 @@ class HeterList {
return ret; return ret;
} }
task_map_.insert(key); task_map_.insert(key);
// std::cout << "try get key=" << key << " false" << std::endl;
return nullptr; return nullptr;
} }
...@@ -306,7 +304,6 @@ class HeterList { ...@@ -306,7 +304,6 @@ class HeterList {
std::lock_guard<std::mutex> lock(mutex_); std::lock_guard<std::mutex> lock(mutex_);
auto iter = map_.find(key); auto iter = map_.find(key);
if (iter != map_.end()) { if (iter != map_.end()) {
// std::cout << "get key=" << key << " true" << std::endl;
HeterNode<K, T>* node = iter->second; HeterNode<K, T>* node = iter->second;
detach(node); detach(node);
cond_.notify_one(); cond_.notify_one();
...@@ -315,7 +312,6 @@ class HeterList { ...@@ -315,7 +312,6 @@ class HeterList {
delete node; delete node;
return ret; return ret;
} }
// std::cout << "get key=" << key << " false" << std::endl;
return nullptr; return nullptr;
} }
...@@ -323,14 +319,12 @@ class HeterList { ...@@ -323,14 +319,12 @@ class HeterList {
std::lock_guard<std::mutex> lock(mutex_); std::lock_guard<std::mutex> lock(mutex_);
HeterNode<K, T>* node = head_->next; HeterNode<K, T>* node = head_->next;
if (node == tail_) { if (node == tail_) {
// std::cout << "get2 false" << std::endl;
return nullptr; return nullptr;
} else { } else {
detach(node); detach(node);
cond_.notify_one(); cond_.notify_one();
T ret = std::move(node->value); T ret = std::move(node->value);
map_.erase(node->key); map_.erase(node->key);
// std::cout << "get2 key=" << node->key << " true" << std::endl;
delete node; delete node;
return ret; return ret;
} }
...@@ -371,7 +365,7 @@ class HeterList { ...@@ -371,7 +365,7 @@ class HeterList {
int cap_; int cap_;
int size; int size;
}; };
#endif
} // namespace framework } // namespace framework
} // namespace paddle } // namespace paddle
#endif
...@@ -38,6 +38,13 @@ void MultiTrainer::Initialize(const TrainerDesc& trainer_desc, ...@@ -38,6 +38,13 @@ void MultiTrainer::Initialize(const TrainerDesc& trainer_desc,
need_merge_var_names_.push_back( need_merge_var_names_.push_back(
trainer_desc.downpour_param().stat_var_names(i)); trainer_desc.downpour_param().stat_var_names(i));
} }
#ifdef PADDLE_WITH_HETERPS
for (int i = 0; i < thread_num_; ++i) {
int num = trainer_desc.worker_places(i);
platform::CUDAPlace place = platform::CUDAPlace(num);
places_.push_back(place);
}
#endif
// get filelist from trainer_desc here // get filelist from trainer_desc here
const std::vector<paddle::framework::DataFeed*> readers = const std::vector<paddle::framework::DataFeed*> readers =
dataset->GetReaders(); dataset->GetReaders();
...@@ -102,13 +109,42 @@ void MultiTrainer::InitDumpEnv() { ...@@ -102,13 +109,42 @@ void MultiTrainer::InitDumpEnv() {
void MultiTrainer::InitTrainerEnv(const ProgramDesc& main_program, void MultiTrainer::InitTrainerEnv(const ProgramDesc& main_program,
const platform::Place& place) { const platform::Place& place) {
for (int i = 0; i < thread_num_; ++i) { for (int i = 0; i < thread_num_; ++i) {
#ifdef PADDLE_WITH_HETERPS
workers_[i]->SetPlace(places_[i]);
workers_[i]->SetReaderPlace(places_[i]);
#else
workers_[i]->SetPlace(place); workers_[i]->SetPlace(place);
workers_[i]->SetReaderPlace(place); workers_[i]->SetReaderPlace(place);
#endif
workers_[i]->SetRootScope(root_scope_); workers_[i]->SetRootScope(root_scope_);
workers_[i]->CreateDeviceResource(main_program); // Program workers_[i]->CreateDeviceResource(main_program); // Program
workers_[i]->BindingDataFeedMemory(); workers_[i]->BindingDataFeedMemory();
workers_[i]->CacheProgram(main_program); workers_[i]->CacheProgram(main_program);
} }
#ifdef PADDLE_WITH_HETERPS
for (int num = 0; num < thread_num_; ++num) {
auto place = places_[num];
Scope* scope = workers_[num]->GetThreadScope();
auto& block = main_program.Block(0);
for (auto& var : block.AllVars()) {
if (var->Persistable()) {
auto name = var->Name();
Variable* root_var = root_scope_->FindVar(name);
if (!root_var) {
continue;
}
if (root_var->IsType<SelectedRows>()) {
continue;
}
LoDTensor* root_tensor = root_var->GetMutable<LoDTensor>();
auto* ptr = scope->Var(name);
InitializeVariable(ptr, proto::VarType::LOD_TENSOR);
LoDTensor* thread_tensor = ptr->GetMutable<LoDTensor>();
TensorCopy(*root_tensor, place, thread_tensor);
}
}
}
#endif
} }
void MultiTrainer::InitOtherEnv(const ProgramDesc& main_program) { void MultiTrainer::InitOtherEnv(const ProgramDesc& main_program) {
...@@ -138,10 +174,77 @@ void MultiTrainer::Run() { ...@@ -138,10 +174,77 @@ void MultiTrainer::Run() {
} }
} }
#ifdef PADDLE_WITH_HETERPS
void MultiTrainer::MergeDenseParam() {
auto communicator = paddle::distributed::Communicator::GetInstance();
auto& recv_ctx = communicator->GetRecvCtxMap();
Scope* thread_scope = workers_[0]->GetThreadScope();
for (auto& iter : recv_ctx) {
auto& varnames = iter.second;
for (auto& name : varnames) {
Variable* root_var = root_scope_->FindVar(name);
LoDTensor* root_tensor = root_var->GetMutable<LoDTensor>();
Variable* var = thread_scope->FindVar(name);
LoDTensor* tensor = var->GetMutable<LoDTensor>();
TensorCopy((*tensor), root_tensor->place(), root_tensor);
}
}
}
#endif
template <typename T>
void MultiTrainer::MergeToRootScope(LoDTensor* root_tensor, LoDTensor* tensor) {
LoDTensor tmp_root;
TensorCopy(*root_tensor, platform::CPUPlace(), &tmp_root);
T* tmp_root_data = tmp_root.data<T>();
LoDTensor tmp_tensor;
TensorCopy(*tensor, platform::CPUPlace(), &tmp_tensor);
T* data = tmp_tensor.data<T>();
for (int i = 0; i < tmp_tensor.numel(); i++) {
tmp_root_data[i] += data[i];
}
TensorCopy(tmp_root, platform::CPUPlace(), root_tensor);
}
void MultiTrainer::Finalize() { void MultiTrainer::Finalize() {
if (need_dump_field_ || need_dump_param_) { if (need_dump_field_ || need_dump_param_) {
FinalizeDumpEnv(); FinalizeDumpEnv();
} }
#ifdef PADDLE_WITH_HETERPS
for (size_t i = 0; i < need_merge_var_names_.size(); i++) {
Variable* root_var = root_scope_->FindVar(need_merge_var_names_[i]);
if (root_var == nullptr) {
continue;
}
LoDTensor* root_tensor = root_var->GetMutable<LoDTensor>();
for (size_t j = 0; j < places_.size(); j++) {
Scope* cur_thread_scope = workers_[j]->GetThreadScope();
Variable* thread_var =
cur_thread_scope->FindVar(need_merge_var_names_[i]);
if (thread_var == nullptr) {
continue;
}
LoDTensor* thread_tensor = thread_var->GetMutable<LoDTensor>();
#define MergeCallback(cpp_type, proto_type) \
do { \
if (root_tensor->type() == proto_type) { \
if (thread_tensor->type() != proto_type) { \
VLOG(0) << "Error: thread id=" << j << ", need_merge_var_names_[" << i \
<< "] " << need_merge_var_names_[i] \
<< ", root tensor type=" << root_tensor->type() \
<< ", thread tensor type=" << thread_tensor->type(); \
exit(-1); \
} \
MergeToRootScope<cpp_type>(root_tensor, thread_tensor); \
} \
} while (0)
_ForEachDataType_(MergeCallback);
}
}
MergeDenseParam();
#endif
root_scope_->DropKids(); root_scope_->DropKids();
} }
......
...@@ -19,10 +19,6 @@ limitations under the License. */ ...@@ -19,10 +19,6 @@ limitations under the License. */
#include "paddle/fluid/framework/data_feed_factory.h" #include "paddle/fluid/framework/data_feed_factory.h"
#include "paddle/fluid/framework/data_set.h" #include "paddle/fluid/framework/data_set.h"
#include "paddle/fluid/framework/device_worker_factory.h" #include "paddle/fluid/framework/device_worker_factory.h"
#include "paddle/fluid/framework/fleet/fleet_wrapper.h"
#include "paddle/fluid/framework/fleet/heter_context.h"
#include "paddle/fluid/framework/fleet/heter_ps/feature_value.h"
#include "paddle/fluid/framework/fleet/ps_gpu_wrapper.h"
#include "paddle/fluid/framework/trainer.h" #include "paddle/fluid/framework/trainer.h"
#if (defined PADDLE_WITH_NCCL || defined PADDLE_WITH_RCCL) && \ #if (defined PADDLE_WITH_NCCL || defined PADDLE_WITH_RCCL) && \
(defined PADDLE_WITH_PSLIB) (defined PADDLE_WITH_PSLIB)
...@@ -64,7 +60,6 @@ void PSGPUTrainer::Initialize(const TrainerDesc& trainer_desc, ...@@ -64,7 +60,6 @@ void PSGPUTrainer::Initialize(const TrainerDesc& trainer_desc,
pull_dense_worker_ = PullDenseWorker::GetInstance(); pull_dense_worker_ = PullDenseWorker::GetInstance();
pull_dense_worker_->Initialize(trainer_desc); pull_dense_worker_->Initialize(trainer_desc);
SetDebug(trainer_desc.debug()); SetDebug(trainer_desc.debug());
fleet_ptr_ = FleetWrapper::GetInstance();
trainer_desc_ = trainer_desc; trainer_desc_ = trainer_desc;
workers_.resize(place_num); workers_.resize(place_num);
for (int i = 0; i < place_num; ++i) { for (int i = 0; i < place_num; ++i) {
......
...@@ -14,7 +14,6 @@ limitations under the License. */ ...@@ -14,7 +14,6 @@ limitations under the License. */
#include "paddle/fluid/framework/device_worker.h" #include "paddle/fluid/framework/device_worker.h"
#include "paddle/fluid/framework/device_worker_factory.h" #include "paddle/fluid/framework/device_worker_factory.h"
#include "paddle/fluid/framework/fleet/fleet_wrapper.h"
#include "paddle/fluid/framework/fleet/heter_wrapper.h" #include "paddle/fluid/framework/fleet/heter_wrapper.h"
#include "paddle/fluid/platform/cpu_helper.h" #include "paddle/fluid/platform/cpu_helper.h"
#include "paddle/fluid/string/string_helper.h" #include "paddle/fluid/string/string_helper.h"
......
...@@ -109,13 +109,22 @@ class MultiTrainer : public TrainerBase { ...@@ -109,13 +109,22 @@ class MultiTrainer : public TrainerBase {
virtual Scope* GetWorkerScope(int thread_id); virtual Scope* GetWorkerScope(int thread_id);
virtual std::string GetDumpPath(int tid); virtual std::string GetDumpPath(int tid);
template <typename T>
void MergeToRootScope(LoDTensor* root_tensor, LoDTensor* thread_tensor);
#ifdef PADDLE_WITH_HETERPS
void MergeDenseParam();
#endif
protected: protected:
int thread_num_; int thread_num_;
std::vector<std::thread> threads_; std::vector<std::thread> threads_;
std::vector<DataFeed*> readers_; std::vector<DataFeed*> readers_;
std::vector<std::shared_ptr<DeviceWorker>> workers_; std::vector<std::shared_ptr<DeviceWorker>> workers_;
std::vector<std::string> need_merge_var_names_; std::vector<std::string> need_merge_var_names_;
#ifdef PADDLE_WITH_HETERPS
std::vector<platform::Place> places_;
#endif
int mpi_rank_; int mpi_rank_;
int mpi_size_; int mpi_size_;
int dump_file_num_; int dump_file_num_;
...@@ -313,7 +322,6 @@ class PSGPUTrainer : public TrainerBase { ...@@ -313,7 +322,6 @@ class PSGPUTrainer : public TrainerBase {
float scale_datanorm_; float scale_datanorm_;
paddle::platform::Place place_; paddle::platform::Place place_;
ProgramDesc program_; ProgramDesc program_;
std::shared_ptr<paddle::framework::FleetWrapper> fleet_ptr_;
std::shared_ptr<paddle::framework::PullDenseWorker> pull_dense_worker_; std::shared_ptr<paddle::framework::PullDenseWorker> pull_dense_worker_;
std::vector<std::shared_ptr<DeviceWorker>> workers_; std::vector<std::shared_ptr<DeviceWorker>> workers_;
std::vector<platform::Place> places_; std::vector<platform::Place> places_;
......
...@@ -47,8 +47,7 @@ static void PullBoxSparseFunctor(const framework::ExecutionContext &ctx) { ...@@ -47,8 +47,7 @@ static void PullBoxSparseFunctor(const framework::ExecutionContext &ctx) {
box_ptr->PullSparse(ctx.GetPlace(), all_keys, all_values, slot_lengths, box_ptr->PullSparse(ctx.GetPlace(), all_keys, all_values, slot_lengths,
hidden_size, 0); hidden_size, 0);
#endif #endif
#if (defined PADDLE_WITH_NCCL || defined PADDLE_WITH_RCCL) && \ #ifdef PADDLE_WITH_HETERPS
(defined PADDLE_WITH_PSLIB)
auto hidden_size = ctx.Attr<int>("size"); auto hidden_size = ctx.Attr<int>("size");
auto gpu_ps_ptr = paddle::framework::PSGPUWrapper::GetInstance(); auto gpu_ps_ptr = paddle::framework::PSGPUWrapper::GetInstance();
gpu_ps_ptr->PullSparse(ctx.GetPlace(), 0, all_keys, all_values, slot_lengths, gpu_ps_ptr->PullSparse(ctx.GetPlace(), 0, all_keys, all_values, slot_lengths,
...@@ -91,8 +90,7 @@ static void PushBoxSparseFunctor(const framework::ExecutionContext &ctx) { ...@@ -91,8 +90,7 @@ static void PushBoxSparseFunctor(const framework::ExecutionContext &ctx) {
box_ptr->PushSparseGrad(ctx.GetPlace(), all_keys, all_grad_values, box_ptr->PushSparseGrad(ctx.GetPlace(), all_keys, all_grad_values,
slot_lengths, hidden_size, 0, batch_size); slot_lengths, hidden_size, 0, batch_size);
#endif #endif
#if (defined PADDLE_WITH_NCCL || defined PADDLE_WITH_RCCL) && \ #ifdef PADDLE_WITH_HETERPS
(defined PADDLE_WITH_PSLIB)
auto hidden_size = ctx.Attr<int>("size"); auto hidden_size = ctx.Attr<int>("size");
auto gpu_ps_ptr = paddle::framework::PSGPUWrapper::GetInstance(); auto gpu_ps_ptr = paddle::framework::PSGPUWrapper::GetInstance();
gpu_ps_ptr->PushSparseGrad(ctx.GetPlace(), 0, all_keys, all_grad_values, gpu_ps_ptr->PushSparseGrad(ctx.GetPlace(), 0, all_keys, all_grad_values,
......
...@@ -32,8 +32,7 @@ namespace py = pybind11; ...@@ -32,8 +32,7 @@ namespace py = pybind11;
namespace paddle { namespace paddle {
namespace pybind { namespace pybind {
#if (defined PADDLE_WITH_NCCL || defined PADDLE_WITH_RCCL) && \ #ifdef PADDLE_WITH_HETERPS
(defined PADDLE_WITH_PSLIB)
void BindPSGPUWrapper(py::module* m) { void BindPSGPUWrapper(py::module* m) {
py::class_<framework::PSGPUWrapper, std::shared_ptr<framework::PSGPUWrapper>>( py::class_<framework::PSGPUWrapper, std::shared_ptr<framework::PSGPUWrapper>>(
*m, "PSGPU") *m, "PSGPU")
......
...@@ -22,8 +22,7 @@ namespace py = pybind11; ...@@ -22,8 +22,7 @@ namespace py = pybind11;
namespace paddle { namespace paddle {
namespace pybind { namespace pybind {
#if (defined PADDLE_WITH_NCCL || defined PADDLE_WITH_RCCL) && \ #ifdef PADDLE_WITH_HETERPS
(defined PADDLE_WITH_PSLIB)
void BindPSGPUWrapper(py::module* m); void BindPSGPUWrapper(py::module* m);
#endif #endif
} // namespace pybind } // namespace pybind
......
...@@ -3052,8 +3052,7 @@ All parameter, weight, gradient are variables in Paddle. ...@@ -3052,8 +3052,7 @@ All parameter, weight, gradient are variables in Paddle.
#ifdef PADDLE_WITH_PSLIB #ifdef PADDLE_WITH_PSLIB
BindHeterWrapper(&m); BindHeterWrapper(&m);
#endif #endif
#if (defined PADDLE_WITH_NCCL || defined PADDLE_WITH_RCCL) && \ #ifdef PADDLE_WITH_HETERPS
(defined PADDLE_WITH_PSLIB)
BindPSGPUWrapper(&m); BindPSGPUWrapper(&m);
#endif #endif
BindGlooWrapper(&m); BindGlooWrapper(&m);
......
...@@ -38,6 +38,23 @@ class ParameterServerOptimizer(MetaOptimizerBase): ...@@ -38,6 +38,23 @@ class ParameterServerOptimizer(MetaOptimizerBase):
k_steps = self.user_defined_strategy.a_sync_configs["k_steps"] k_steps = self.user_defined_strategy.a_sync_configs["k_steps"]
return True if k_steps >= 0 else False return True if k_steps >= 0 else False
def get_dist_env(self):
trainer_id = int(os.getenv('PADDLE_TRAINER_ID', '0'))
trainer_endpoints = ''
current_endpoint = ''
num_trainers = 0
if os.getenv('PADDLE_TRAINER_ENDPOINTS'):
trainer_endpoints = os.getenv('PADDLE_TRAINER_ENDPOINTS')
current_endpoint = trainer_endpoints.split(',')[trainer_id]
num_trainers = len(trainer_endpoints.split(','))
return {
'trainer_id': trainer_id,
'num_trainers': num_trainers,
'current_endpoint': current_endpoint,
'trainer_endpoints': trainer_endpoints
}
def _get_distributed_strategy(self): def _get_distributed_strategy(self):
from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler.distributed_strategy import StrategyFactory from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler.distributed_strategy import StrategyFactory
...@@ -64,6 +81,8 @@ class ParameterServerOptimizer(MetaOptimizerBase): ...@@ -64,6 +81,8 @@ class ParameterServerOptimizer(MetaOptimizerBase):
_main = compiled_config.origin_main_program.clone() _main = compiled_config.origin_main_program.clone()
_startup = compiled_config.origin_startup_program.clone() _startup = compiled_config.origin_startup_program.clone()
use_ps_gpu = self.user_defined_strategy.a_sync_configs["use_ps_gpu"]
if not compiled_config.is_geo_mode(): if not compiled_config.is_geo_mode():
from paddle.fluid.incubate.fleet.parameter_server.ir.public import _add_lr_decay_table_pass from paddle.fluid.incubate.fleet.parameter_server.ir.public import _add_lr_decay_table_pass
_add_lr_decay_table_pass( _add_lr_decay_table_pass(
...@@ -71,14 +90,28 @@ class ParameterServerOptimizer(MetaOptimizerBase): ...@@ -71,14 +90,28 @@ class ParameterServerOptimizer(MetaOptimizerBase):
self.user_defined_strategy.a_sync_configs["lr_decay_steps"]) self.user_defined_strategy.a_sync_configs["lr_decay_steps"])
# for main program # for main program
_main = worker.delete_optimizer_pass(_main, compiled_config) _main = worker.distributed_ops_pass(_main, compiled_config,
_main = worker.distributed_ops_pass(_main, compiled_config) use_ps_gpu)
_main = worker.append_send_ops_pass(_main, compiled_config) if not use_ps_gpu:
_main = worker.delete_optimizer_pass(_main, compiled_config)
# for startup program _main = worker.append_send_ops_pass(_main, compiled_config)
_startup = worker.delet_extra_optimizes_pass(_startup,
compiled_config)
# for startup program
_startup = worker.fake_init_ops_pass(_startup, compiled_config) _startup = worker.fake_init_ops_pass(_startup, compiled_config)
_startup = worker.delet_extra_optimizes_pass(_startup, if use_ps_gpu:
compiled_config) _main = worker.ps_gpu_pass(_main)
from paddle.fluid.transpiler.collective import SingleProcessMultiThread
t = SingleProcessMultiThread()
env = self.get_dist_env()
t.transpile(
startup_program=_startup,
main_program=_main,
rank=env["trainer_id"],
endpoints=env["trainer_endpoints"],
current_endpoint=env['current_endpoint'],
wait_port=False)
compiled_config.set_origin_ps_main_program(_main) compiled_config.set_origin_ps_main_program(_main)
compiled_config.set_origin_ps_startup_program(_startup) compiled_config.set_origin_ps_startup_program(_startup)
......
...@@ -453,6 +453,17 @@ class TheOnePSRuntime(RuntimeBase): ...@@ -453,6 +453,17 @@ class TheOnePSRuntime(RuntimeBase):
worker = self._get_fleet_proto(is_server=False, is_sync=is_sync) worker = self._get_fleet_proto(is_server=False, is_sync=is_sync)
server = self._get_fleet_proto(is_server=True, is_sync=is_sync) server = self._get_fleet_proto(is_server=True, is_sync=is_sync)
dist_strategy = self.context["valid_strategy"]
use_ps_gpu = dist_strategy.a_sync_configs["use_ps_gpu"]
if use_ps_gpu:
main_program = self.context['loss'].block.program
if not main_program._fleet_opt:
main_program._fleet_opt = {}
main_program._fleet_opt["use_ps_gpu"] = True
gpus_env = os.getenv("FLAGS_selected_gpus")
main_program._fleet_opt[
"worker_places"] = [int(s) for s in gpus_env.split(",")]
def sync_strategy_envs(): def sync_strategy_envs():
kwargs = {} kwargs = {}
kwargs[ kwargs[
...@@ -741,6 +752,11 @@ class TheOnePSRuntime(RuntimeBase): ...@@ -741,6 +752,11 @@ class TheOnePSRuntime(RuntimeBase):
downpour_server = DownpourServer() downpour_server = DownpourServer()
service = Service() service = Service()
dist_strategy = self.context["valid_strategy"]
use_ps_gpu = dist_strategy.a_sync_configs["use_ps_gpu"]
if use_ps_gpu:
service.server_class = "PsLocalServer"
service.client_class = "PsLocalClient"
downpour_server.set_service_param(service) downpour_server.set_service_param(service)
tables = _get_tables() tables = _get_tables()
......
...@@ -102,6 +102,12 @@ class Hogwild(DeviceWorker): ...@@ -102,6 +102,12 @@ class Hogwild(DeviceWorker):
# when opt_info is None or empty dict, it should return # when opt_info is None or empty dict, it should return
if not opt_info: if not opt_info:
return return
downpour = trainer_desc.downpour_param
hogwild = trainer_desc.hogwild_param
if opt_info["stat_var_names"]:
for i in opt_info["stat_var_names"]:
hogwild.stat_var_names.extend([i])
downpour.stat_var_names.extend([i])
from paddle.fluid.incubate.fleet.parameter_server import version from paddle.fluid.incubate.fleet.parameter_server import version
...@@ -109,8 +115,6 @@ class Hogwild(DeviceWorker): ...@@ -109,8 +115,6 @@ class Hogwild(DeviceWorker):
return return
program_configs = opt_info["program_configs"] program_configs = opt_info["program_configs"]
downpour = trainer_desc.downpour_param
hogwild = trainer_desc.hogwild_param
for pid in program_configs: for pid in program_configs:
if pid == program_id: if pid == program_id:
...@@ -161,10 +165,6 @@ class Hogwild(DeviceWorker): ...@@ -161,10 +165,6 @@ class Hogwild(DeviceWorker):
sparse_table.emb_dim = -1 sparse_table.emb_dim = -1
# not use hard code click # not use hard code click
sparse_table.label_var_name = "" sparse_table.label_var_name = ""
if opt_info["stat_var_names"]:
for i in opt_info["stat_var_names"]:
hogwild.stat_var_names.extend([i])
downpour.stat_var_names.extend([i])
for i in worker.get_desc().dense_table: for i in worker.get_desc().dense_table:
if i.table_id in dense_table_set: if i.table_id in dense_table_set:
......
...@@ -1373,11 +1373,14 @@ class Executor(object): ...@@ -1373,11 +1373,14 @@ class Executor(object):
fetch_info=None, fetch_info=None,
print_period=100): print_period=100):
is_heter = 0 is_heter = 0
use_ps_gpu = 0
if not program._fleet_opt is None: if not program._fleet_opt is None:
if program._fleet_opt.get("worker_class", "") == "HeterCpuWorker": if program._fleet_opt.get("worker_class", "") == "HeterCpuWorker":
is_heter = 1 is_heter = 1
if program._fleet_opt.get("trainer", "") == "HeterXpuTrainer": if program._fleet_opt.get("trainer", "") == "HeterXpuTrainer":
is_heter = 1 is_heter = 1
if program._fleet_opt.get("use_ps_gpu", False):
use_ps_gpu = True
if scope is None: if scope is None:
scope = global_scope() scope = global_scope()
if fetch_list is None: if fetch_list is None:
...@@ -1412,7 +1415,9 @@ class Executor(object): ...@@ -1412,7 +1415,9 @@ class Executor(object):
trainer._set_program(program.program) trainer._set_program(program.program)
if thread <= 0: if thread <= 0:
if dataset.thread_num <= 0: if use_ps_gpu:
trainer._set_thread(len(program._fleet_opt["worker_places"]))
elif dataset.thread_num <= 0:
raise RuntimeError( raise RuntimeError(
"You should set thread num first, either in Dataset" "You should set thread num first, either in Dataset"
"or in Executor.train_from_dataset") "or in Executor.train_from_dataset")
......
...@@ -24,6 +24,7 @@ from functools import reduce ...@@ -24,6 +24,7 @@ from functools import reduce
import paddle.fluid as fluid import paddle.fluid as fluid
import paddle.fluid.core as core import paddle.fluid.core as core
import paddle.fluid.framework as framework import paddle.fluid.framework as framework
import paddle.compat as cpt
from paddle.fluid.transpiler.details.program_utils import delete_ops from paddle.fluid.transpiler.details.program_utils import delete_ops
from paddle.fluid.incubate.fleet.parameter_server.ir.public import _get_optimize_ops from paddle.fluid.incubate.fleet.parameter_server.ir.public import _get_optimize_ops
...@@ -93,7 +94,7 @@ def delete_optimizer_pass(program, config): ...@@ -93,7 +94,7 @@ def delete_optimizer_pass(program, config):
return program return program
def distributed_ops_pass(program, config): def distributed_ops_pass(program, config, use_ps_gpu=False):
trainer_id = config.get_role_id() trainer_id = config.get_role_id()
send_ctx = config.get_the_one_send_context( send_ctx = config.get_the_one_send_context(
split_dense_table=config.is_heter_ps_mode) split_dense_table=config.is_heter_ps_mode)
...@@ -109,7 +110,7 @@ def distributed_ops_pass(program, config): ...@@ -109,7 +110,7 @@ def distributed_ops_pass(program, config):
pull_sparse_ops[param_name] = ops pull_sparse_ops[param_name] = ops
return pull_sparse_ops return pull_sparse_ops
def _pull_sparse_fuse(_program, pull_sparse_ops): def _pull_sparse_fuse(_program, pull_sparse_ops, use_ps_gpu):
for param, ops in pull_sparse_ops.items(): for param, ops in pull_sparse_ops.items():
all_ops = program.global_block().ops all_ops = program.global_block().ops
op_idxs = [all_ops.index(op) for op in ops] op_idxs = [all_ops.index(op) for op in ops]
...@@ -159,18 +160,31 @@ def distributed_ops_pass(program, config): ...@@ -159,18 +160,31 @@ def distributed_ops_pass(program, config):
if min(outputs_idxs) - max(inputs_idxs) >= 1: if min(outputs_idxs) - max(inputs_idxs) >= 1:
distributed_idx = max(inputs_idxs) + 1 distributed_idx = max(inputs_idxs) + 1
program.global_block()._insert_op( if use_ps_gpu:
index=distributed_idx, program.global_block()._insert_op(
type="distributed_lookup_table", index=distributed_idx,
inputs={"Ids": inputs, type="pull_box_sparse",
'W': w}, inputs={"Ids": inputs,
outputs={"Outputs": outputs}, 'W': w},
attrs={ outputs={"Out": outputs},
"is_distributed": is_distributed, attrs={
"padding_idx": padding_idx, "size": w.shape[1],
"table_id": table_id, "is_distributed": True,
"lookup_table_version": op_type "is_sparse": True
}) })
else:
program.global_block()._insert_op(
index=distributed_idx,
type="distributed_lookup_table",
inputs={"Ids": inputs,
'W': w},
outputs={"Outputs": outputs},
attrs={
"is_distributed": is_distributed,
"padding_idx": padding_idx,
"table_id": table_id,
"lookup_table_version": op_type
})
else: else:
for i in range(len(inputs_idxs)): for i in range(len(inputs_idxs)):
distributed_idx = op_idxs[i] + 1 distributed_idx = op_idxs[i] + 1
...@@ -189,7 +203,7 @@ def distributed_ops_pass(program, config): ...@@ -189,7 +203,7 @@ def distributed_ops_pass(program, config):
}) })
pull_sparse_ops = _get_pull_sparse_ops(program) pull_sparse_ops = _get_pull_sparse_ops(program)
_pull_sparse_fuse(program, pull_sparse_ops) _pull_sparse_fuse(program, pull_sparse_ops, use_ps_gpu)
return program return program
...@@ -308,6 +322,54 @@ def fake_init_ops_pass(program, config): ...@@ -308,6 +322,54 @@ def fake_init_ops_pass(program, config):
return program return program
def ps_gpu_pass(program):
def _add_push_box_sparse_op(program):
op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
backward = core.op_proto_and_checker_maker.OpRole.Backward
for op in program.global_block().ops:
if op.type != "pull_box_sparse":
continue
grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
op.desc, cpt.to_text(set()), [])
for op_desc in grad_op_desc:
new_op_desc = program.global_block().desc.append_op()
new_op_desc.copy_from(op_desc)
new_op_desc._set_attr(op_role_attr_name, backward)
def _remove_lookup_table_grad_op_and_var(program):
lookup_table_grad_var = {}
remove_op_index = []
remove_var = []
for idx, op in list(enumerate(program.global_block().ops)):
if op.type == "lookup_table_grad":
for name in op.output("W@GRAD"):
lookup_table_grad_var[name] = 1
remove_op_index.append(idx)
remove_var.append(name)
for name in op.input("W"):
lookup_table_grad_var[name] = 1
for idx, op in list(enumerate(program.global_block().ops)):
if op.type == "pull_box_sparse":
continue
for key_name in op.input_names:
for var in op.input(key_name):
if var in lookup_table_grad_var:
remove_op_index.append(idx)
break
remove_op_index = list(set(remove_op_index))
remove_op_index.sort(reverse=True)
for idx in remove_op_index:
program.global_block()._remove_op(idx)
for name in remove_var:
program.global_block()._remove_var(name)
_add_push_box_sparse_op(program)
_remove_lookup_table_grad_op_and_var(program)
return program
def delet_extra_optimizes_pass(program, config): def delet_extra_optimizes_pass(program, config):
optimize_vars = [] optimize_vars = []
optimize_op_role_vars = [] optimize_op_role_vars = []
......
...@@ -30,6 +30,7 @@ list(APPEND MIXED_DIST_TEST_OPS test_simple_dist_transpiler) ...@@ -30,6 +30,7 @@ list(APPEND MIXED_DIST_TEST_OPS test_simple_dist_transpiler)
list(APPEND MIXED_DIST_TEST_OPS test_recv_save_op) list(APPEND MIXED_DIST_TEST_OPS test_recv_save_op)
list(APPEND MIXED_DIST_TEST_OPS test_c_comm_init_op) list(APPEND MIXED_DIST_TEST_OPS test_c_comm_init_op)
list(APPEND MIXED_DIST_TEST_OPS test_communicator_async) list(APPEND MIXED_DIST_TEST_OPS test_communicator_async)
list(APPEND MIXED_DIST_TEST_OPS test_communicator_ps_gpu)
list(APPEND MIXED_DIST_TEST_OPS test_communicator_geo) list(APPEND MIXED_DIST_TEST_OPS test_communicator_geo)
list(APPEND MIXED_DIST_TEST_OPS test_communicator_half_async) list(APPEND MIXED_DIST_TEST_OPS test_communicator_half_async)
list(APPEND MIXED_DIST_TEST_OPS test_communicator_sync) list(APPEND MIXED_DIST_TEST_OPS test_communicator_sync)
...@@ -483,6 +484,7 @@ if(WITH_DISTRIBUTE) ...@@ -483,6 +484,7 @@ if(WITH_DISTRIBUTE)
py_test_modules(test_recv_save_op MODULES test_recv_save_op ENVS ${dist_ENVS}) py_test_modules(test_recv_save_op MODULES test_recv_save_op ENVS ${dist_ENVS})
py_test_modules(test_communicator_async MODULES test_communicator_async ENVS ${dist_ENVS}) py_test_modules(test_communicator_async MODULES test_communicator_async ENVS ${dist_ENVS})
py_test_modules(test_communicator_ps_gpu MODULES test_communicator_ps_gpu ENVS ${dist_ENVS})
py_test_modules(test_communicator_geo MODULES test_communicator_geo ENVS ${dist_ENVS}) py_test_modules(test_communicator_geo MODULES test_communicator_geo ENVS ${dist_ENVS})
py_test_modules(test_communicator_half_async MODULES test_communicator_half_async ENVS ${dist_ENVS} FLAGS_communicator_send_queue_size=1 FLAGS_communicator_max_merge_var_num=1) py_test_modules(test_communicator_half_async MODULES test_communicator_half_async ENVS ${dist_ENVS} FLAGS_communicator_send_queue_size=1 FLAGS_communicator_max_merge_var_num=1)
py_test_modules(test_communicator_sync MODULES test_communicator_sync ENVS ${dist_ENVS} FLAGS_communicator_send_queue_size=1 FLAGS_communicator_max_merge_var_num=1) py_test_modules(test_communicator_sync MODULES test_communicator_sync ENVS ${dist_ENVS} FLAGS_communicator_send_queue_size=1 FLAGS_communicator_max_merge_var_num=1)
......
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import os
import unittest
import time
import threading
import numpy
import paddle
paddle.enable_static()
import paddle.fluid as fluid
import paddle.distributed.fleet.base.role_maker as role_maker
import paddle.distributed.fleet as fleet
class TestCommunicator(unittest.TestCase):
def test_communicator_ps_gpu(self):
with open("test_communicator_ps_gpu.txt", "w") as f:
data = "1 0.6 1 0.7\n"
f.write(data)
os.environ["PADDLE_PSERVER_NUMS"] = "2"
os.environ["PADDLE_TRAINERS_NUM"] = "2"
os.environ["POD_IP"] = "127.0.0.1"
os.environ["PADDLE_PORT"] = "36001"
os.environ["PADDLE_TRAINER_ID"] = "0"
os.environ["PADDLE_TRAINERS_NUM"] = "2"
os.environ[
"PADDLE_TRAINER_ENDPOINTS"] = "127.0.0.1:36001,127.0.0.2:36001"
os.environ[
"PADDLE_PSERVERS_IP_PORT_LIST"] = "127.0.0.1:36002,127.0.0.2:36002"
os.environ["TRAINING_ROLE"] = "TRAINER"
os.environ["FLAGS_selected_gpus"] = "0"
role = role_maker.PaddleCloudRoleMaker()
fleet.init(role)
x = fluid.layers.data(name='x', shape=[1], dtype='float32')
y = fluid.layers.data(name='y', shape=[1], dtype='float32')
slots_vars = [x, y]
cost = fluid.layers.square_error_cost(input=x, label=y)
avg_cost = fluid.layers.mean(cost)
optimizer = fluid.optimizer.Adam(0.01)
strategy = paddle.distributed.fleet.DistributedStrategy()
strategy.a_sync = True
strategy.a_sync_configs = {
"launch_barrier": False,
"use_ps_gpu": 1,
}
startup_program = paddle.static.Program()
main_program = paddle.static.Program()
optimizer = fleet.distributed_optimizer(optimizer, strategy)
optimizer.minimize(avg_cost)
dataset = paddle.distributed.InMemoryDataset()
dataset.init(
batch_size=32, thread_num=1, pipe_command="cat", use_var=slots_vars)
dataset.set_filelist(["test_communicator_ps_gpu.txt"])
dataset.load_into_memory()
os.environ["TEST_MODE"] = "1"
exe = fluid.Executor(fluid.CPUPlace())
exe.run(startup_program)
main_program._fleet_opt = {"stat_var_names": [x.name]}
fleet.init_worker()
try:
exe.train_from_dataset(main_program, dataset)
except ImportError as e:
pass
except Exception as e:
self.assertTrue(False)
time.sleep(10)
fleet.stop_worker()
os.remove("./test_communicator_ps_gpu.txt")
if __name__ == '__main__':
unittest.main()
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import os
import unittest
import tempfile
import shutil
import paddle
import paddle.fluid as fluid
import paddle.distributed.fleet.base.role_maker as role_maker
import paddle.distributed.fleet as fleet
paddle.enable_static()
# For Net
base_lr = 0.2
emb_lr = base_lr * 3
dict_dim = 1500
emb_dim = 128
hid_dim = 128
margin = 0.1
sample_rate = 1
batch_size = 4
class TestPSPassWithBow(unittest.TestCase):
def net(self):
def get_acc(cos_q_nt, cos_q_pt, batch_size):
cond = fluid.layers.less_than(cos_q_nt, cos_q_pt)
cond = fluid.layers.cast(cond, dtype='float64')
cond_3 = fluid.layers.reduce_sum(cond)
acc = fluid.layers.elementwise_div(
cond_3,
fluid.layers.fill_constant(
shape=[1], value=batch_size * 1.0, dtype='float64'),
name="simnet_acc")
return acc
def get_loss(cos_q_pt, cos_q_nt):
loss_op1 = fluid.layers.elementwise_sub(
fluid.layers.fill_constant_batch_size_like(
input=cos_q_pt,
shape=[-1, 1],
value=margin,
dtype='float32'),
cos_q_pt)
loss_op2 = fluid.layers.elementwise_add(loss_op1, cos_q_nt)
loss_op3 = fluid.layers.elementwise_max(
fluid.layers.fill_constant_batch_size_like(
input=loss_op2, shape=[-1, 1], value=0.0, dtype='float32'),
loss_op2)
avg_cost = fluid.layers.mean(loss_op3)
return avg_cost
is_distributed = False
is_sparse = True
# query
q = fluid.layers.data(
name="query_ids", shape=[1], dtype="int64", lod_level=1)
# embedding
q_emb = fluid.contrib.layers.sparse_embedding(
input=q,
size=[dict_dim, emb_dim],
param_attr=fluid.ParamAttr(
initializer=fluid.initializer.Constant(value=0.01),
name="__emb__",
learning_rate=emb_lr))
q_emb = fluid.layers.reshape(q_emb, [-1, emb_dim])
# vsum
q_sum = fluid.layers.sequence_pool(input=q_emb, pool_type='sum')
q_ss = fluid.layers.softsign(q_sum)
# fc layer after conv
q_fc = fluid.layers.fc(
input=q_ss,
size=hid_dim,
param_attr=fluid.ParamAttr(
initializer=fluid.initializer.Constant(value=0.01),
name="__q_fc__",
learning_rate=base_lr))
# label data
label = fluid.layers.data(name="label", shape=[1], dtype="int64")
# pt
pt = fluid.layers.data(
name="pos_title_ids", shape=[1], dtype="int64", lod_level=1)
# embedding
pt_emb = fluid.contrib.layers.sparse_embedding(
input=pt,
size=[dict_dim, emb_dim],
param_attr=fluid.ParamAttr(
initializer=fluid.initializer.Constant(value=0.01),
name="__emb__",
learning_rate=emb_lr))
pt_emb = fluid.layers.reshape(pt_emb, [-1, emb_dim])
# vsum
pt_sum = fluid.layers.sequence_pool(input=pt_emb, pool_type='sum')
pt_ss = fluid.layers.softsign(pt_sum)
# fc layer
pt_fc = fluid.layers.fc(
input=pt_ss,
size=hid_dim,
param_attr=fluid.ParamAttr(
initializer=fluid.initializer.Constant(value=0.01),
name="__fc__",
learning_rate=base_lr),
bias_attr=fluid.ParamAttr(name="__fc_b__"))
# nt
nt = fluid.layers.data(
name="neg_title_ids", shape=[1], dtype="int64", lod_level=1)
# embedding
nt_emb = fluid.contrib.layers.sparse_embedding(
input=nt,
size=[dict_dim, emb_dim],
param_attr=fluid.ParamAttr(
initializer=fluid.initializer.Constant(value=0.01),
name="__emb__",
learning_rate=emb_lr))
nt_emb = fluid.layers.reshape(nt_emb, [-1, emb_dim])
# vsum
nt_sum = fluid.layers.sequence_pool(input=nt_emb, pool_type='sum')
nt_ss = fluid.layers.softsign(nt_sum)
# fc layer
nt_fc = fluid.layers.fc(
input=nt_ss,
size=hid_dim,
param_attr=fluid.ParamAttr(
initializer=fluid.initializer.Constant(value=0.01),
name="__fc__",
learning_rate=base_lr),
bias_attr=fluid.ParamAttr(name="__fc_b__"))
cos_q_pt = fluid.layers.cos_sim(q_fc, pt_fc)
cos_q_nt = fluid.layers.cos_sim(q_fc, nt_fc)
# loss
avg_cost = get_loss(cos_q_pt, cos_q_nt)
# acc
acc = get_acc(cos_q_nt, cos_q_pt, batch_size)
return [avg_cost, acc, cos_q_pt]
def test(self):
os.environ["PADDLE_PSERVER_NUMS"] = "2"
os.environ["PADDLE_TRAINERS_NUM"] = "2"
os.environ["POD_IP"] = "127.0.0.1"
os.environ["PADDLE_PORT"] = "36001"
os.environ["PADDLE_TRAINER_ID"] = "0"
os.environ["PADDLE_TRAINERS_NUM"] = "2"
os.environ[
"PADDLE_TRAINER_ENDPOINTS"] = "127.0.0.1:36001,127.0.0.2:36001"
os.environ[
"PADDLE_PSERVERS_IP_PORT_LIST"] = "127.0.0.1:36002,127.0.0.2:36002"
os.environ["TRAINING_ROLE"] = "TRAINER"
os.environ["FLAGS_selected_gpus"] = "0"
role = role_maker.PaddleCloudRoleMaker()
fleet.init(role)
loss, acc, _ = self.net()
strategy = paddle.distributed.fleet.DistributedStrategy()
configs = {"use_ps_gpu": 1, "launch_barrier": False}
strategy.a_sync_configs = configs
strategy.a_sync = True
optimizer = paddle.fluid.optimizer.Adam(learning_rate=0.01)
optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
optimizer.minimize(loss)
if __name__ == '__main__':
unittest.main()
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import os
import unittest
import tempfile
import shutil
import paddle
import paddle.fluid as fluid
import paddle.distributed.fleet.base.role_maker as role_maker
import paddle.distributed.fleet as fleet
paddle.enable_static()
# For Net
base_lr = 0.2
emb_lr = base_lr * 3
dict_dim = 1500
emb_dim = 128
hid_dim = 128
margin = 0.1
sample_rate = 1
batch_size = 4
class TestPSPassWithBow(unittest.TestCase):
def net(self):
def get_acc(cos_q_nt, cos_q_pt, batch_size):
cond = fluid.layers.less_than(cos_q_nt, cos_q_pt)
cond = fluid.layers.cast(cond, dtype='float64')
cond_3 = fluid.layers.reduce_sum(cond)
acc = fluid.layers.elementwise_div(
cond_3,
fluid.layers.fill_constant(
shape=[1], value=batch_size * 1.0, dtype='float64'),
name="simnet_acc")
return acc
def get_loss(cos_q_pt, cos_q_nt):
loss_op1 = fluid.layers.elementwise_sub(
fluid.layers.fill_constant_batch_size_like(
input=cos_q_pt,
shape=[-1, 1],
value=margin,
dtype='float32'),
cos_q_pt)
loss_op2 = fluid.layers.elementwise_add(loss_op1, cos_q_nt)
loss_op3 = fluid.layers.elementwise_max(
fluid.layers.fill_constant_batch_size_like(
input=loss_op2, shape=[-1, 1], value=0.0, dtype='float32'),
loss_op2)
avg_cost = fluid.layers.mean(loss_op3)
return avg_cost
is_distributed = False
is_sparse = True
# query
q = fluid.layers.data(
name="query_ids", shape=[1], dtype="int64", lod_level=1)
# embedding
q_emb = fluid.contrib.layers.sparse_embedding(
input=q,
size=[dict_dim, emb_dim],
param_attr=fluid.ParamAttr(
initializer=fluid.initializer.Constant(value=0.01),
name="__emb__",
learning_rate=emb_lr))
q_emb = fluid.layers.reshape(q_emb, [-1, emb_dim])
# vsum
q_sum = fluid.layers.sequence_pool(input=q_emb, pool_type='sum')
q_ss = fluid.layers.softsign(q_sum)
# fc layer after conv
q_fc = fluid.layers.fc(
input=q_ss,
size=hid_dim,
param_attr=fluid.ParamAttr(
initializer=fluid.initializer.Constant(value=0.01),
name="__q_fc__",
learning_rate=base_lr))
# label data
label = fluid.layers.data(name="label", shape=[1], dtype="int64")
# pt
pt = fluid.layers.data(
name="pos_title_ids", shape=[1], dtype="int64", lod_level=1)
# embedding
pt_emb = fluid.contrib.layers.sparse_embedding(
input=pt,
size=[dict_dim, emb_dim],
param_attr=fluid.ParamAttr(
initializer=fluid.initializer.Constant(value=0.01),
name="__emb__",
learning_rate=emb_lr))
pt_emb = fluid.layers.reshape(pt_emb, [-1, emb_dim])
# vsum
pt_sum = fluid.layers.sequence_pool(input=pt_emb, pool_type='sum')
pt_ss = fluid.layers.softsign(pt_sum)
# fc layer
pt_fc = fluid.layers.fc(
input=pt_ss,
size=hid_dim,
param_attr=fluid.ParamAttr(
initializer=fluid.initializer.Constant(value=0.01),
name="__fc__",
learning_rate=base_lr),
bias_attr=fluid.ParamAttr(name="__fc_b__"))
# nt
nt = fluid.layers.data(
name="neg_title_ids", shape=[1], dtype="int64", lod_level=1)
# embedding
nt_emb = fluid.contrib.layers.sparse_embedding(
input=nt,
size=[dict_dim, emb_dim],
param_attr=fluid.ParamAttr(
initializer=fluid.initializer.Constant(value=0.01),
name="__emb__",
learning_rate=emb_lr))
nt_emb = fluid.layers.reshape(nt_emb, [-1, emb_dim])
# vsum
nt_sum = fluid.layers.sequence_pool(input=nt_emb, pool_type='sum')
nt_ss = fluid.layers.softsign(nt_sum)
# fc layer
nt_fc = fluid.layers.fc(
input=nt_ss,
size=hid_dim,
param_attr=fluid.ParamAttr(
initializer=fluid.initializer.Constant(value=0.01),
name="__fc__",
learning_rate=base_lr),
bias_attr=fluid.ParamAttr(name="__fc_b__"))
cos_q_pt = fluid.layers.cos_sim(q_fc, pt_fc)
cos_q_nt = fluid.layers.cos_sim(q_fc, nt_fc)
# loss
avg_cost = get_loss(cos_q_pt, cos_q_nt)
# acc
acc = get_acc(cos_q_nt, cos_q_pt, batch_size)
return [avg_cost, acc, cos_q_pt]
def test(self):
os.environ["PADDLE_PSERVER_NUMS"] = "2"
os.environ["PADDLE_TRAINERS_NUM"] = "2"
os.environ["POD_IP"] = "127.0.0.1"
os.environ["PADDLE_PORT"] = "36001"
os.environ["PADDLE_TRAINER_ID"] = "0"
os.environ["PADDLE_TRAINERS_NUM"] = "2"
os.environ[
"PADDLE_PSERVERS_IP_PORT_LIST"] = "127.0.0.1:36001,127.0.0.2:36001"
os.environ["TRAINING_ROLE"] = "PSERVER"
role = role_maker.PaddleCloudRoleMaker()
fleet.init(role)
loss, acc, _ = self.net()
strategy = paddle.distributed.fleet.DistributedStrategy()
configs = {"use_ps_gpu": 1}
strategy.a_sync_configs = configs
strategy.a_sync = True
optimizer = paddle.fluid.optimizer.Adam(learning_rate=0.01)
optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
optimizer.minimize(loss)
fleet.init_server()
if __name__ == '__main__':
unittest.main()
...@@ -49,8 +49,8 @@ class TrainerFactory(object): ...@@ -49,8 +49,8 @@ class TrainerFactory(object):
device_worker = Hogwild() device_worker = Hogwild()
trainer._set_device_worker(device_worker) trainer._set_device_worker(device_worker)
else: else:
trainer_class = opt_info["trainer"] trainer_class = opt_info.get("trainer", "MultiTrainer")
device_worker_class = opt_info["device_worker"] device_worker_class = opt_info.get("device_worker", "Hogwild")
trainer = globals()[trainer_class]() trainer = globals()[trainer_class]()
device_worker = globals()[device_worker_class]() device_worker = globals()[device_worker_class]()
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册