提交 9f32c8d8 编写于 作者: L Liu Yiqun

Merge branch 'develop' into core_add_sequence_softmax_op

......@@ -106,22 +106,22 @@ function(merge_static_libs TARGET_NAME)
endforeach()
list(REMOVE_DUPLICATES libs_deps)
if(APPLE) # Use OSX's libtool to merge archives
# To produce a library we need at least one source file.
# It is created by add_custom_command below and will helps
# also help to track dependencies.
set(dummyfile ${CMAKE_CURRENT_BINARY_DIR}/${TARGET_NAME}_dummy.c)
# To produce a library we need at least one source file.
# It is created by add_custom_command below and will helps
# also help to track dependencies.
set(target_SRCS ${CMAKE_CURRENT_BINARY_DIR}/${TARGET_NAME}_dummy.c)
if(APPLE) # Use OSX's libtool to merge archives
# Make the generated dummy source file depended on all static input
# libs. If input lib changes,the source file is touched
# which causes the desired effect (relink).
add_custom_command(OUTPUT ${dummyfile}
COMMAND ${CMAKE_COMMAND} -E touch ${dummyfile}
add_custom_command(OUTPUT ${target_SRCS}
COMMAND ${CMAKE_COMMAND} -E touch ${target_SRCS}
DEPENDS ${libs})
# Generate dummy staic lib
file(WRITE ${dummyfile} "const char * dummy = \"${dummyfile}\";")
add_library(${TARGET_NAME} STATIC ${dummyfile})
file(WRITE ${target_SRCS} "const char *dummy = \"${target_SRCS}\";")
add_library(${TARGET_NAME} STATIC ${target_SRCS})
target_link_libraries(${TARGET_NAME} ${libs_deps})
foreach(lib ${libs})
......@@ -130,11 +130,14 @@ function(merge_static_libs TARGET_NAME)
endforeach()
add_custom_command(TARGET ${TARGET_NAME} POST_BUILD
COMMAND rm "${CMAKE_CURRENT_BINARY_DIR}/lib${TARGET_NAME}.a"
COMMAND /usr/bin/libtool -static -o "${CMAKE_CURRENT_BINARY_DIR}/lib${TARGET_NAME}.a" ${libfiles})
COMMAND /usr/bin/libtool -static -o "${CMAKE_CURRENT_BINARY_DIR}/lib${TARGET_NAME}.a" ${libfiles}
)
else() # general UNIX: use "ar" to extract objects and re-add to a common lib
set(target_DIR ${CMAKE_CURRENT_BINARY_DIR}/${TARGET_NAME}.dir)
foreach(lib ${libs})
set(objlistfile ${lib}.objlist) # list of objects in the input library
set(objdir ${lib}.objdir)
set(objlistfile ${target_DIR}/${lib}.objlist) # list of objects in the input library
set(objdir ${target_DIR}/${lib}.objdir)
add_custom_command(OUTPUT ${objdir}
COMMAND ${CMAKE_COMMAND} -E make_directory ${objdir}
......@@ -142,31 +145,32 @@ function(merge_static_libs TARGET_NAME)
add_custom_command(OUTPUT ${objlistfile}
COMMAND ${CMAKE_AR} -x "$<TARGET_FILE:${lib}>"
COMMAND ${CMAKE_AR} -t "$<TARGET_FILE:${lib}>" > ../${objlistfile}
COMMAND ${CMAKE_AR} -t "$<TARGET_FILE:${lib}>" > ${objlistfile}
DEPENDS ${lib} ${objdir}
WORKING_DIRECTORY ${objdir})
# Empty dummy source file that goes into merged library
set(mergebase ${lib}.mergebase.c)
add_custom_command(OUTPUT ${mergebase}
COMMAND ${CMAKE_COMMAND} -E touch ${mergebase}
DEPENDS ${objlistfile})
list(APPEND mergebases "${mergebase}")
list(APPEND target_OBJS "${objlistfile}")
endforeach()
add_library(${TARGET_NAME} STATIC ${mergebases})
# Make the generated dummy source file depended on all static input
# libs. If input lib changes,the source file is touched
# which causes the desired effect (relink).
add_custom_command(OUTPUT ${target_SRCS}
COMMAND ${CMAKE_COMMAND} -E touch ${target_SRCS}
DEPENDS ${libs} ${target_OBJS})
# Generate dummy staic lib
file(WRITE ${target_SRCS} "const char *dummy = \"${target_SRCS}\";")
add_library(${TARGET_NAME} STATIC ${target_SRCS})
target_link_libraries(${TARGET_NAME} ${libs_deps})
# Get the file name of the generated library
set(outlibfile "$<TARGET_FILE:${TARGET_NAME}>")
set(target_LIBNAME "$<TARGET_FILE:${TARGET_NAME}>")
foreach(lib ${libs})
add_custom_command(TARGET ${TARGET_NAME} POST_BUILD
COMMAND ${CMAKE_AR} cr ${outlibfile} *.o
COMMAND ${CMAKE_RANLIB} ${outlibfile}
WORKING_DIRECTORY ${lib}.objdir)
endforeach()
add_custom_command(TARGET ${TARGET_NAME} POST_BUILD
COMMAND ${CMAKE_AR} crs ${target_LIBNAME} `find ${target_DIR} -name '*.o'`
COMMAND ${CMAKE_RANLIB} ${target_LIBNAME}
WORKING_DIRECTORY ${target_DIR})
endif()
endfunction(merge_static_libs)
......@@ -196,7 +200,7 @@ function(cc_library TARGET_NAME)
add_style_check_target(${TARGET_NAME} ${cc_library_SRCS} ${cc_library_HEADERS})
else(cc_library_SRCS)
if (cc_library_DEPS)
if(cc_library_DEPS)
merge_static_libs(${TARGET_NAME} ${cc_library_DEPS})
else()
message(FATAL "Please specify source file or library in cc_library.")
......
......@@ -25,7 +25,7 @@ function(target_circle_link_libraries TARGET_NAME)
endif()
endforeach()
if("${CMAKE_CXX_COMPILER_ID}" STREQUAL "Clang" OR "${CMAKE_CXX_COMPILER_ID}" STREQUAL "AppleClang")
if(IOS AND NOT IOS_ENABLE_BITCODE)
if(NOT IOS_ENABLE_BITCODE)
list(APPEND LIBS "-undefined dynamic_lookup")
endif()
endif()
......
......@@ -158,17 +158,23 @@ PaddlePaddle的参数使用名字 :code:`name` 作为参数的ID,相同名字
这里 :code:`hidden_a` 和 :code:`hidden_b` 使用了同样的parameter和bias。并且softmax层的两个输入也使用了同样的参数 :code:`softmax_param`。
7. \*-cp27mu-linux_x86_64.whl is not a supported wheel on this platform.
7. paddlepaddle\*.whl is not a supported wheel on this platform.
------------------------------------------------------------------------
出现这个问题的主要原因是,系统编译wheel包的时候,使用的 :code:`wheel` 包是最新的,
而系统中的 :code:`pip` 包比较老。具体的解决方法是,更新 :code:`pip` 包并重新编译PaddlePaddle。
出现这个问题的主要原因是,没有找到和当前系统匹配的paddlepaddle安装包。最新的paddlepaddle python安装包支持Linux x86_64和MacOS 10.12操作系统,并安装了python 2.7和pip 9.0.1。
更新 :code:`pip` 包的方法是\:
.. code-block:: bash
pip install --upgrade pip
如果还不行,可以执行 :code:`python -c "import pip; print(pip.pep425tags.get_supported())"` 获取当前系统支持的python包的后缀,
并对比是否和正在安装的后缀一致。
如果系统支持的是 :code:`linux_x86_64` 而安装包是 :code:`manylinux1_x86_64` ,需要升级pip版本到最新;
如果系统支持 :code:`manylinux1_x86_64` 而安装包(本地)是 :code:`linux_x86_64` ,可以重命名这个whl包为 :code:`manylinux1_x86_64` 再安装。
8. python相关的单元测试都过不了
--------------------------------
......@@ -310,7 +316,7 @@ Paddle二进制在运行时捕获了浮点数异常,只要出现浮点数异
* 模型一直不收敛,发散到了一个数值特别大的地方。
* 训练数据有问题,导致参数收敛到了一些奇异的情况。或者输入数据尺度过大,有些特征的取值达到数百万,这时进行矩阵乘法运算就可能导致浮点数溢出。
主要的解决办法是减小学习或者对数据进行归一化处理。
主要的解决办法是减小学习或者对数据进行归一化处理。
15. 编译安装后执行 import paddle.v2 as paddle 报ImportError: No module named v2
------------------------------------------------------------------------
......@@ -373,3 +379,15 @@ PaddlePaddle保存的模型参数文件内容由16字节头信息和网络参数
parameters = paddle.parameters.create(my_cost)
parameters.set('emb', load_parameter(emb_param_file, 30000, 256))
18. 集群多节点训练,日志中保存均为网络通信类错误
------------------------------
集群多节点训练,日志报错为网络通信类错误,比如 :code:`Connection reset by peer` 等。
此类报错通常是由于某一个节点的错误导致这个节点的训练进程退出,从而引发其他节点无法连接导致,可以参考下面的步骤排查:
* 从 :code:`train.log` , :code:`server.log` 找到最早报错的地方,查看是否是其他错误引发的报错(比如FPE,内存不足,磁盘空间不足等)。
* 如果发现最早的报错就是网络通信的问题,很有可能是非独占方式执行导致的端口冲突,可以联系OP,看当前MPI集群是否支持resource=full参数提交,如果支持增加此参数提交,并更换job 端口。
* 如果当前MPI集群并不支持任务独占模式,可以联系OP是否可以更换集群或升级当前集群。
\ No newline at end of file
# Cluster bootstrapping tool survey
## Abstract
In order to bring up a cluster from bare metal machine to a fully functional kubernetes cluster for Paddlepaddle to run, we need to utilize some tools. Here we are going to compare [Sextant](https://github.com/k8sp/sextant) and [Tectonic installer](https://github.com/coreos/tectonic-installer)
## Basic assumptions
Here are some basic assumptions before we move on to details
1. You are an administrator of a bare metal machine cluster, which means:
* you have full control to each of the machines.
* you have full control to the network which machines are connected to.
2. Machines can be booted from network with PEX or iPXE
3. You understand the [general procedure to bring up a cluster](#appendix-general-procedure-to-bring-up-a-cluster)
if your cluster is able to mark above items with checkmarks, then keep reading.
## Comparing Sextant and Tectonic installer
### Sextant
Sextant is an end2end solution to bring up a bare metal cluster to a fully functional k8s cluster, it integrates DHCP, name service, PEX, cloud-config-service, docker registry services altogether.
#### Pros
1. End2End: basically all admin need to do is to config the cluster.yaml and power on the cluster.
2. Offline cluster configuration: Sextant has 2 phases during working with it, config time and deploy time. when admin is configuring, it requires admin's machine has internet connectivity, which will download some images, etc. But in deploy time, it's completely OK to go offline since all dependencies are ready during config time.
3. docker registry integrated.
4. GPU machine took care of.
### Cons
1. k8s API server is not deployed with high availability in considering by default.
2. No grouping support.
3. No API interface, a one-off service.
### Tectonic installer
First of all, Tectonic is not free, it requires coreos.com account as a step of installation, and free user can only create less than 10 nodes.
Tectonic is a suite of software which wraps around k8s and providing more utility regarding dev ops, ie,
Tectonic installer as it's named, it installs Tectonic to a bare metal cluster which means it's not totally an equivalent of Sextant. At the "booting a cluster" part, it mostly utilizes [Matchbox](https://github.com/coreos/matchbox), which is a general cluster bootstrapper.
Matchbox's Approach is similar to Sexstant.
### Pros
1. supports grouping machines.
2. supports running provisioning service in rtk. (not a big deal though).
3. supports http/gRPC API interface.
4. supports multi-template.
### Cons
1. Not an e2e solution to bring up a cluster, need a lot of extra work and other software.
2. [Not fully supporting](https://github.com/coreos/matchbox/issues/550) centOS deployment yet.
## Conclusion
Sextant is a better solution overall for paddle cloud deploying to a bare metal cluster. It would be great if Sextant can also 1) deploy k8s api server with high availability by default; 2) not designed as a one-off service.
## Appendix: General procedure to bring up a cluster
It's physically impossible for a cluster admin to manually install OS and applications into cluster nodes one by one, here is what an admin would do in cloud industry:
1. setup a bootstrap machine with static IP in the cluster, which has following services:
* DHCP: assigns ip address for rest of the nodes.
* name service: to map node name to a IP
* PXE related services: the booting related info will be delivered to newly booted machines as their IP is assigned via DHCP service, PXE service will provide further booting and installing info and image with TFTP and http protocol.
* cluster config service: this is for providing cluster node with OS config via http
* optional docker registry: a built-in docker registry makes the whole cluster independent from connecting internet, and speeds up software distribution.
2. New node powers on, it will
* broadcast the request for an IP address
* DHCP server assigns the IP address, and deliver the PXE booting related info to the node.
* cluster node will request config files with booting info delivered with DHCP via the TFTP service, and in most of the cases, the config file will point to a http service for the booting image.
* Since PXE is configured with initrd, it will utilize the cloud config service and do further installations like coreOS or K8s installations.
* then restart the node.
For further understanding, following 2 links from Matchbox are some good readings:
* [Machine lifecycle](https://github.com/coreos/matchbox/blob/master/Documentation/machine-lifecycle.md)
* [PXE booting](https://github.com/coreos/matchbox/blob/master/Documentation/network-booting.md)
......@@ -62,6 +62,7 @@ if(ANDROID)
LIBRARY DESTINATION lib/${ANDROID_ABI})
execute_process(
COMMAND ${GIT_EXECUTABLE} log --pretty=oneline -1
WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}
OUTPUT_VARIABLE GIT_COMMITS_LIST
RESULT_VARIABLE GIT_COMMITS_LIST_RESULT
ERROR_QUIET OUTPUT_STRIP_TRAILING_WHITESPACE)
......@@ -81,8 +82,7 @@ if(ANDROID)
)"
)
else(ANDROID)
install(TARGETS paddle_capi_whole
ARCHIVE DESTINATION lib)
install(TARGETS paddle_capi_whole ARCHIVE DESTINATION lib)
if(NOT IOS)
install(TARGETS paddle_capi_shared DESTINATION lib)
endif()
......
......@@ -19,6 +19,19 @@ limitations under the License. */
namespace paddle {
namespace framework {
static ProgramDesc* g_program_desc = nullptr;
ProgramDesc& GetProgramDesc() {
if (g_program_desc == nullptr) {
g_program_desc = new ProgramDesc();
}
return *g_program_desc;
}
template <>
AttrType AttrTypeID<bool>() {
return BOOLEAN;
}
template <>
AttrType AttrTypeID<int>() {
return INT;
......@@ -32,6 +45,10 @@ AttrType AttrTypeID<std::string>() {
return STRING;
}
template <>
AttrType AttrTypeID<std::vector<bool>>() {
return BOOLEANS;
}
template <>
AttrType AttrTypeID<std::vector<int>>() {
return INTS;
}
......@@ -47,40 +64,54 @@ template <>
AttrType AttrTypeID<std::vector<std::pair<int, int>>>() {
return INT_PAIRS;
}
template <>
AttrType AttrTypeID<BlockDesc>() {
return BLOCK;
}
Attribute GetAttrValue(const OpDesc::Attr& attr_desc) {
switch (attr_desc.type()) {
case paddle::framework::AttrType::INT: {
case framework::AttrType::BOOLEAN: {
return attr_desc.b();
}
case framework::AttrType::INT: {
return attr_desc.i();
}
case paddle::framework::AttrType::FLOAT: {
case framework::AttrType::FLOAT: {
return attr_desc.f();
}
case paddle::framework::AttrType::STRING: {
case framework::AttrType::STRING: {
return attr_desc.s();
}
case paddle::framework::AttrType::INTS: {
case framework::AttrType::BOOLEANS: {
std::vector<bool> val(attr_desc.bools_size());
for (int i = 0; i < attr_desc.bools_size(); ++i) {
val[i] = attr_desc.bools(i);
}
return val;
}
case framework::AttrType::INTS: {
std::vector<int> val(attr_desc.ints_size());
for (int i = 0; i < attr_desc.ints_size(); ++i) {
val[i] = attr_desc.ints(i);
}
return val;
}
case paddle::framework::AttrType::FLOATS: {
case framework::AttrType::FLOATS: {
std::vector<float> val(attr_desc.floats_size());
for (int i = 0; i < attr_desc.floats_size(); ++i) {
val[i] = attr_desc.floats(i);
}
return val;
}
case paddle::framework::AttrType::STRINGS: {
case framework::AttrType::STRINGS: {
std::vector<std::string> val(attr_desc.strings_size());
for (int i = 0; i < attr_desc.strings_size(); ++i) {
val[i] = attr_desc.strings(i);
}
return val;
}
case paddle::framework::AttrType::INT_PAIRS: {
case framework::AttrType::INT_PAIRS: {
std::vector<std::pair<int, int>> val(attr_desc.int_pairs_size());
for (int i = 0; i < attr_desc.int_pairs_size(); ++i) {
val[i].first = attr_desc.int_pairs(i).first();
......@@ -88,6 +119,9 @@ Attribute GetAttrValue(const OpDesc::Attr& attr_desc) {
}
return val;
}
case framework::AttrType::BLOCK: {
return GetProgramDesc().mutable_blocks(attr_desc.block_idx());
}
}
PADDLE_ENFORCE(false, "Unknown OpDesc::AttrDesc::type !");
return boost::blank();
......
......@@ -27,13 +27,16 @@ limitations under the License. */
namespace paddle {
namespace framework {
typedef boost::variant<boost::blank, int, float, std::string, std::vector<int>,
std::vector<float>, std::vector<std::string>,
std::vector<std::pair<int, int>>>
typedef boost::variant<boost::blank, bool, int, float, std::string,
std::vector<bool>, std::vector<int>, std::vector<float>,
std::vector<std::string>,
std::vector<std::pair<int, int>>, BlockDesc*>
Attribute;
typedef std::unordered_map<std::string, Attribute> AttributeMap;
ProgramDesc& GetProgramDesc();
template <typename T>
AttrType AttrTypeID();
......
......@@ -166,9 +166,8 @@ static std::unique_ptr<OperatorBase> BackwardRecursive(
// If part of input gradient of that operator is not calculated, fill
// zero variables to that input gradient.
net->AppendOp(OpRegistry::CreateOp("fill_zeros_like",
{{"Src", {prefix}}},
{{"Dst", {grad_input}}}, {}));
net->AppendOp(OpRegistry::CreateOp("fill_zeros_like", {{"X", {prefix}}},
{{"Y", {grad_input}}}, {}));
}
return false;
});
......
......@@ -127,8 +127,8 @@ class FillZeroOpMaker : public OpProtoAndCheckerMaker {
public:
FillZeroOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("Src", "x");
AddOutput("Dst", "out");
AddInput("X", "x");
AddOutput("Y", "out");
AddComment("");
}
};
......@@ -325,10 +325,10 @@ TEST(Backward, op_part_of_output_are_not_need) {
auto &fill_zero = *net->ops_[0];
ASSERT_EQ("fill_zeros_like", fill_zero.Type());
ASSERT_EQ(1UL, fill_zero.Inputs("Src").size());
ASSERT_EQ("Z", fill_zero.Input("Src"));
ASSERT_EQ(1UL, fill_zero.Outputs("Dst").size());
ASSERT_EQ(std::string("Z") + f::kZeroVarSuffix, fill_zero.Output("Dst"));
ASSERT_EQ(1UL, fill_zero.Inputs("X").size());
ASSERT_EQ("Z", fill_zero.Input("X"));
ASSERT_EQ(1UL, fill_zero.Outputs("Y").size());
ASSERT_EQ(std::string("Z") + f::kZeroVarSuffix, fill_zero.Output("Y"));
auto &d_many_out = *net->ops_[1];
ASSERT_EQ("many_output_op_grad", d_many_out.Type());
......
......@@ -23,6 +23,9 @@ enum AttrType {
FLOATS = 4;
STRINGS = 5;
INT_PAIRS = 6;
BOOLEAN = 7;
BOOLEANS = 8;
BLOCK = 9;
}
message IntPair {
......@@ -44,6 +47,9 @@ message OpDesc {
repeated float floats = 7;
repeated string strings = 8;
repeated IntPair int_pairs = 9;
optional bool b = 10;
repeated bool bools = 11;
optional int32 block_idx = 12;
};
message Var {
......@@ -100,7 +106,7 @@ enum DataType {
message LoDTensorDesc {
required DataType data_type = 1;
repeated int32 dims = 2; // [UNK, 640, 480] is saved as [-1, 640, 480]
repeated int64 dims = 2; // [UNK, 640, 480] is saved as [-1, 640, 480]
optional int32 lod_level = 3 [ default = 0 ];
}
......@@ -108,3 +114,12 @@ message VarDesc {
required string name = 1;
optional LoDTensorDesc lod_tensor = 2;
}
message BlockDesc {
required int32 idx = 1;
required int32 parent_idx = 2;
repeated VarDesc vars = 3;
repeated OpDesc ops = 4;
}
message ProgramDesc { repeated BlockDesc blocks = 1; }
......@@ -72,20 +72,16 @@ bool operator==(const LoD& a, const LoD& b) {
return true;
}
void LoDTensor::SliceLevels(size_t level_begin, size_t level_end) {
void LoDTensor::ShrinkLevels(size_t level_begin, size_t level_end) {
auto new_lod = framework::SliceLevels(lod_, level_begin, level_end);
lod_ = new_lod;
}
void LoDTensor::SliceInLevel(size_t level, size_t elem_begin, size_t elem_end) {
PADDLE_ENFORCE(level < NumLevels(), "level [%d] out of range [%d]", level,
NumLevels());
PADDLE_ENFORCE(elem_begin < NumElements(level),
"element begin [%d] out of range [%d]", elem_begin,
NumElements(level));
PADDLE_ENFORCE(elem_end < NumElements(level) + 1,
"element end [%d] out of range [%d]", elem_end,
NumElements(level));
void LoDTensor::ShrinkInLevel(size_t level, size_t elem_begin,
size_t elem_end) {
PADDLE_ENFORCE_LT(level, NumLevels());
PADDLE_ENFORCE_LT(elem_begin, NumElements(level));
PADDLE_ENFORCE_LT(elem_end, NumElements(level) + 1);
auto new_lod = framework::SliceInLevel(lod_, level, elem_begin, elem_end);
lod_ = new_lod;
......
......@@ -89,15 +89,15 @@ class LoDTensor : public Tensor {
}
/*
* Slice of levels[level_begin:level_end]
* Shrink levels[level_begin:level_end]
*/
void SliceLevels(size_t level_begin, size_t level_end);
void ShrinkLevels(size_t level_begin, size_t level_end);
/*
* Slice of elements of a level, [elem_begin: elem_end]
* Shrink elements of a level, [elem_begin: elem_end]
* @note: low performance in slice lod_.
*/
void SliceInLevel(size_t level, size_t elem_begin, size_t elem_end);
void ShrinkInLevel(size_t level, size_t elem_begin, size_t elem_end);
private:
LoD lod_;
......
......@@ -56,11 +56,11 @@ TEST_F(LoDTensorTester, NumElements) {
ASSERT_EQ(lod_tensor_.NumElements(2), 8UL);
}
TEST_F(LoDTensorTester, SliceLevels) {
TEST_F(LoDTensorTester, ShrinkLevels) {
// slice 1 level
for (size_t level = 0; level < 3UL; ++level) {
LoDTensor new_lod_tensor = lod_tensor_;
new_lod_tensor.SliceLevels(level, level + 1);
new_lod_tensor.ShrinkLevels(level, level + 1);
ASSERT_EQ(new_lod_tensor.NumLevels(), 1UL);
ASSERT_EQ(new_lod_tensor.NumElements(0), lod_tensor_.NumElements(level));
ASSERT_EQ(new_lod_tensor.data<float>(), lod_tensor_.data<float>());
......@@ -68,7 +68,7 @@ TEST_F(LoDTensorTester, SliceLevels) {
// slice 2 level
for (size_t level = 0; level < 2UL; ++level) {
LoDTensor new_lod_tensor = lod_tensor_;
new_lod_tensor.SliceLevels(level, level + 2);
new_lod_tensor.ShrinkLevels(level, level + 2);
ASSERT_EQ(new_lod_tensor.NumLevels(), 2UL);
ASSERT_EQ(new_lod_tensor.NumElements(0), lod_tensor_.NumElements(level));
ASSERT_EQ(new_lod_tensor.NumElements(1),
......@@ -77,10 +77,10 @@ TEST_F(LoDTensorTester, SliceLevels) {
}
}
TEST_F(LoDTensorTester, SliceInLevel) {
TEST_F(LoDTensorTester, ShrinkInLevel) {
size_t level = 0;
LoDTensor new_lod_tensor = lod_tensor_;
new_lod_tensor.SliceInLevel(level, 0, 2);
new_lod_tensor.ShrinkInLevel(level, 0, 2);
EXPECT_EQ(new_lod_tensor.NumLevels(), 3UL);
EXPECT_EQ(new_lod_tensor.NumElements(0), 2UL);
EXPECT_EQ(new_lod_tensor.NumElements(1), 4UL);
......@@ -89,7 +89,7 @@ TEST_F(LoDTensorTester, SliceInLevel) {
level = 1;
new_lod_tensor = lod_tensor_;
new_lod_tensor.SliceInLevel(level, 0, 2);
new_lod_tensor.ShrinkInLevel(level, 0, 2);
ASSERT_EQ(new_lod_tensor.NumLevels(), 2UL);
ASSERT_EQ(new_lod_tensor.NumElements(0), 2UL);
ASSERT_EQ(new_lod_tensor.NumElements(1), 4UL);
......
......@@ -60,8 +60,8 @@ std::string OperatorBase::Output(const std::string& name) const {
const std::vector<std::string>& OperatorBase::Outputs(
const std::string& name) const {
auto it = outputs_.find(name);
PADDLE_ENFORCE(it != outputs_.end(), "Op %s does not have output %s", type_,
name);
PADDLE_ENFORCE(it != outputs_.end(), "Op %s does not have output called %s",
type_, name);
return it->second;
}
......@@ -207,23 +207,22 @@ const std::vector<const Tensor*> InferShapeContext::MultiInput<Tensor>(
}
template <>
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const {
auto* var = OutputVar(name);
return var == nullptr ? nullptr : const_cast<Tensor*>(GetTensorFromVar(var));
Tensor* InferShapeContext::Output<Tensor>(const std::string& name) const {
auto var = OutputVar(name);
return var == nullptr ? nullptr : var->GetMutable<LoDTensor>();
}
template <>
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
std::vector<Tensor*> InferShapeContext::MultiOutput<Tensor>(
const std::string& name) const {
auto names = op().Outputs(name);
std::vector<Tensor*> res;
res.reserve(names.size());
std::transform(names.begin(), names.end(), std::back_inserter(res),
[&](const std::string& sub_name) {
auto var = scope().FindVar(sub_name);
return var == nullptr
? nullptr
: const_cast<Tensor*>(GetTensorFromVar(var));
auto var = scope_.FindVar(sub_name);
return var == nullptr ? nullptr
: var->GetMutable<LoDTensor>();
});
return res;
}
......
......@@ -212,9 +212,9 @@ class InferShapeContext {
return res;
}
std::vector<const Variable*> MultiOutputVar(const std::string& name) const {
std::vector<Variable*> MultiOutputVar(const std::string& name) const {
auto names = op_.Outputs(name);
std::vector<const Variable*> res;
std::vector<Variable*> res;
res.reserve(names.size());
std::transform(names.begin(), names.end(), std::back_inserter(res),
[this](const std::string& name) {
......@@ -271,6 +271,20 @@ class InferShapeContext {
return &var->Get<Tensor>();
}
void ShareLoD(const std::string& in, const std::string& out, size_t i = 0,
size_t j = 0) const {
PADDLE_ENFORCE_LT(i, InputSize(in));
PADDLE_ENFORCE_LT(j, OutputSize(out));
auto* in_var = MultiInputVar(in)[i];
auto* out_var = MultiOutputVar(out)[j];
if (!in_var->IsType<LoDTensor>()) return;
PADDLE_ENFORCE(out_var->IsType<LoDTensor>(),
"The %d-th output of Output(%s) must be LoDTensor.", j, out);
auto in_tensor = in_var->Get<LoDTensor>();
auto* out_tensor = out_var->GetMutable<LoDTensor>();
out_tensor->set_lod(in_tensor.lod());
}
private:
const OperatorBase& op_;
const Scope& scope_;
......@@ -283,6 +297,13 @@ template <>
const std::vector<const Tensor*> InferShapeContext::MultiInput<Tensor>(
const std::string& name) const;
template <>
Tensor* InferShapeContext::Output<Tensor>(const std::string& name) const;
template <>
std::vector<Tensor*> InferShapeContext::MultiOutput<Tensor>(
const std::string& name) const;
template <typename T>
struct EigenDeviceConverter;
......@@ -315,38 +336,10 @@ class ExecutionContext : public InferShapeContext {
return device_context_;
}
// redefine Output function,
// use Variable::Get instead of Variable::GetMutable
template <typename T>
T* Output(const std::string& name) const {
auto var = OutputVar(name);
return var == nullptr ? nullptr : const_cast<T*>(&var->Get<T>());
}
// redefine MultiOutput function.
// use Variable::Get instead of Variable::GetMutable
template <typename T>
std::vector<T*> MultiOutput(const std::string& name) const {
auto names = op().Outputs(name);
std::vector<T*> res;
res.reserve(names.size());
std::transform(
names.begin(), names.end(), std::back_inserter(res),
[&](const std::string& sub_name) { return Output<T>(sub_name); });
return res;
}
private:
const platform::DeviceContext& device_context_;
};
template <>
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const;
template <>
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
const std::string& name) const;
class OpKernel {
public:
/**
......
......@@ -29,16 +29,19 @@ limitations under the License. */
namespace paddle {
namespace framework {
namespace pybind {
namespace details {
template <bool less, size_t i, typename... args>
struct CastToPyBufferImpl;
}
} // namespace pybind
namespace framework {
class Tensor {
public:
template <bool less, size_t i, typename... args>
friend struct details::CastToPyBufferImpl;
friend struct pybind::details::CastToPyBufferImpl;
template <typename T, size_t D, int MajorType, typename IndexType>
friend struct EigenTensor;
......@@ -165,12 +168,6 @@ class Tensor {
/*! points to dimensions of memory block. */
DDim dims_;
/**
* A cache of the number of elements in a tensor.
* Would be 0 for an uninitialized tensor.
*/
int64_t numel_;
/**
* @brief A PlaceHolder may be shared by more than one tensor.
*
......
......@@ -147,13 +147,12 @@ inline Tensor Tensor::Slice(const int& begin_idx, const int& end_idx) const {
inline Tensor& Tensor::Resize(const DDim& dims) {
dims_ = dims;
numel_ = product(dims_);
return *this;
}
inline const DDim& Tensor::dims() const { return dims_; }
inline int64_t Tensor::numel() const { return numel_; }
inline int64_t Tensor::numel() const { return product(dims_); }
template <typename T>
inline Tensor ReshapeToMatrix(const Tensor& src, int num_col_dims) {
......
......@@ -39,7 +39,8 @@ class AccuracyOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE_EQ(inference->dims()[0], label->dims()[0],
"inference size must be the same as label size");
ctx.Output<framework::LoDTensor>("Accuracy")->Resize({1});
ctx.Output<framework::Tensor>("Accuracy")->Resize({1});
ctx.ShareLoD("Inference", /*->*/ "Accuracy");
}
};
......@@ -54,11 +55,15 @@ class AccuracyOpMaker : public framework::OpProtoAndCheckerMaker {
// TODO(typhoonzero): AddInput("Weight", ...
AddOutput("Accuracy", "The accuracy of current batch");
AddComment(
R"DOC(Accuracy. It will print accuracy rate for classification.
AddComment(R"DOC(
Accuracy. It will print accuracy rate for classification.
The accuracy is:
.. math::
accuracy = \\frac{NumOfCorrectPredicts}{NumOfAllSamples})DOC");
accuracy = \\frac{NumOfCorrectPredicts}{NumOfAllSamples})
Both the input `Inference` and `Label` can carry the LoD (Level of Details)
information, or not. But the output only shares the LoD with input `Inference`.
)DOC");
}
};
......
......@@ -23,8 +23,9 @@ class ActivationOp : public framework::OperatorWithKernel {
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
ctx.Output<framework::LoDTensor>("Y")->Resize(
ctx.Output<framework::Tensor>("Y")->Resize(
ctx.Input<framework::Tensor>("X")->dims());
ctx.ShareLoD("X", /*->*/ "Y");
}
};
......@@ -34,7 +35,7 @@ class ActivationOpGrad : public framework::OperatorWithKernel {
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
ctx.Output<framework::LoDTensor>(framework::GradVarName("X"))
ctx.Output<framework::Tensor>(framework::GradVarName("X"))
->Resize(ctx.Input<framework::Tensor>("Y")->dims());
}
};
......
......@@ -33,7 +33,7 @@ class AddOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE_EQ(ctx.Input<Tensor>("X")->dims(),
ctx.Input<Tensor>("Y")->dims(),
"Two input of Add Op's dimension must be same.");
ctx.Output<framework::LoDTensor>("Out")->Resize(
ctx.Output<framework::Tensor>("Out")->Resize(
ctx.Input<Tensor>("X")->dims());
}
};
......
......@@ -17,8 +17,6 @@
namespace paddle {
namespace operators {
using framework::LoDTensor;
class ClipOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
......@@ -29,11 +27,12 @@ class ClipOp : public framework::OperatorWithKernel {
"Input(X) of ClipOp should not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar("Out"),
"Output(Out) of ClipOp should not be null.");
auto x_dims = ctx.Input<LoDTensor>("X")->dims();
auto x_dims = ctx.Input<Tensor>("X")->dims();
auto max = Attr<float>("max");
auto min = Attr<float>("min");
PADDLE_ENFORCE_LT(min, max, "max should be greater than min.");
ctx.Output<LoDTensor>("Out")->Resize(x_dims);
ctx.Output<Tensor>("Out")->Resize(x_dims);
ctx.ShareLoD("X", /*->*/ "Out");
}
};
......@@ -66,8 +65,8 @@ class ClipOpGrad : public framework::OperatorWithKernel {
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) should not be null");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Out")),
"Input(Out@GRAD) should not be null");
auto x_dims = ctx.Input<LoDTensor>("X")->dims();
auto *x_grad = ctx.Output<LoDTensor>(framework::GradVarName("X"));
auto x_dims = ctx.Input<Tensor>("X")->dims();
auto *x_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
if (x_grad != nullptr) {
x_grad->Resize(x_dims);
}
......
......@@ -29,7 +29,7 @@ class ConcatOp : public framework::OperatorWithKernel {
"Output(Out) of ConcatOp should not be null.");
auto ins = ctx.MultiInput<framework::Tensor>("X");
auto *out = ctx.Output<framework::LoDTensor>("Out");
auto *out = ctx.Output<framework::Tensor>("Out");
size_t axis = static_cast<size_t>(ctx.Attr<int>("axis"));
size_t n = ins.size();
......
......@@ -37,7 +37,7 @@ class Conv2DOp : public framework::OperatorWithKernel {
auto in = ctx.Input<Tensor>("Input");
auto filter = ctx.Input<Tensor>("Filter");
auto out = ctx.Output<framework::LoDTensor>("Output");
auto out = ctx.Output<framework::Tensor>("Output");
std::vector<int> strides = Attr<std::vector<int>>("strides");
std::vector<int> paddings = Attr<std::vector<int>>("paddings");
int groups = Attr<int>("groups");
......@@ -111,10 +111,9 @@ class Conv2DOpGrad : public framework::OperatorWithKernel {
void InferShape(const framework::InferShapeContext &ctx) const override {
auto in = ctx.Input<Tensor>("Input");
auto filter = ctx.Input<Tensor>("Filter");
auto d_in =
ctx.Output<framework::LoDTensor>(framework::GradVarName("Input"));
auto d_in = ctx.Output<framework::Tensor>(framework::GradVarName("Input"));
auto d_filter =
ctx.Output<framework::LoDTensor>(framework::GradVarName("Filter"));
ctx.Output<framework::Tensor>(framework::GradVarName("Filter"));
if (d_in) d_in->Resize(in->dims());
if (d_filter) d_filter->Resize(filter->dims());
}
......
......@@ -54,9 +54,10 @@ class CosSimOp : public framework::OperatorWithKernel {
" just 1 (which will be broadcasted to match Input(X)).");
// resize tensor
ctx.Output<framework::LoDTensor>("Out")->Resize({x_dims[0], 1});
ctx.Output<framework::LoDTensor>("XNorm")->Resize({x_dims[0], 1});
ctx.Output<framework::LoDTensor>("YNorm")->Resize({y_dims[0], 1});
ctx.Output<framework::Tensor>("Out")->Resize({x_dims[0], 1});
ctx.Output<framework::Tensor>("XNorm")->Resize({x_dims[0], 1});
ctx.Output<framework::Tensor>("YNorm")->Resize({y_dims[0], 1});
ctx.ShareLoD("X", /*->*/ "Out");
}
};
......@@ -81,10 +82,13 @@ Cosine Similarity Operator.
The equation is: Out = X^T * Y / (sqrt(X^T * X) * sqrt(Y^T * Y)).
Input(X) and Input(Y) must have the same shape, except that the 1st dimension
of Input(Y) could be just 1 (different from Input(X)), which will be
broadcasted to match the shape of Input(X) before computing their cosine
The input `X` and `Y` must have the same shape, except that the 1st dimension
of input `Y` could be just 1 (different from input `X`), which will be
broadcasted to match the shape of input `X` before computing their cosine
similarity.
Both the input `X` and `Y` can carry the LoD (Level of Details) information,
or not. But the output only shares the LoD with input `X`.
)DOC");
}
};
......@@ -139,10 +143,8 @@ class CosSimOpGrad : public framework::OperatorWithKernel {
"Shape of Input(Out@Grad) must be [X.Dim(0), 1].");
// resize tensor
auto *x_grad =
ctx.Output<framework::LoDTensor>(framework::GradVarName("X"));
auto *y_grad =
ctx.Output<framework::LoDTensor>(framework::GradVarName("Y"));
auto *x_grad = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
auto *y_grad = ctx.Output<framework::Tensor>(framework::GradVarName("Y"));
if (x_grad) x_grad->Resize(x_dims);
if (y_grad) y_grad->Resize(y_dims);
}
......
......@@ -19,7 +19,6 @@ namespace paddle {
namespace operators {
using framework::Tensor;
using framework::LoDTensor;
class CropOp : public framework::OperatorWithKernel {
public:
......@@ -31,9 +30,9 @@ class CropOp : public framework::OperatorWithKernel {
"Input(X) of CropOp should not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar("Out"),
"Output(Out) of CropOp should not be null.");
auto x_dim = ctx.Input<LoDTensor>("X")->dims();
auto *y = ctx.Input<LoDTensor>("Y");
auto *out = ctx.Output<LoDTensor>("Out");
auto x_dim = ctx.Input<Tensor>("X")->dims();
auto *y = ctx.Input<Tensor>("Y");
auto *out = ctx.Output<Tensor>("Out");
if (y == nullptr) {
auto shape = Attr<std::vector<int>>("shape");
PADDLE_ENFORCE_EQ(
......@@ -121,8 +120,8 @@ class CropOpGrad : public framework::OperatorWithKernel {
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) should not be null");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Out")),
"Input(Out@GRAD) should not be null");
auto x_dims = ctx.Input<LoDTensor>("X")->dims();
auto *x_grad = ctx.Output<LoDTensor>(framework::GradVarName("X"));
auto x_dims = ctx.Input<Tensor>("X")->dims();
auto *x_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
if (x_grad != nullptr) {
x_grad->Resize(x_dims);
}
......
......@@ -17,8 +17,6 @@ limitations under the License. */
namespace paddle {
namespace operators {
using framework::LoDTensor;
class CrossEntropyOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
......@@ -35,23 +33,21 @@ class CrossEntropyOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE_EQ(x->dims().size(), 2, "Input(X)'s rank must be 2.");
PADDLE_ENFORCE_EQ(label->dims().size(), 2,
"Input(Label)'s rank must be 2.");
// TODO(xinghai-sun): remove this check after swtiching to bool
PADDLE_ENFORCE(ctx.Attr<int>("soft_label") == 0 ||
ctx.Attr<int>("soft_label") == 1);
PADDLE_ENFORCE_EQ(x->dims()[0], label->dims()[0],
"The 1st dimension of Input(X) and Input(Label) must "
"be equal.");
if (ctx.Attr<int>("soft_label") == 1) {
if (ctx.Attr<bool>("soft_label")) {
PADDLE_ENFORCE_EQ(x->dims()[1], label->dims()[1],
"If Attr(soft_label) == 1, The 2nd dimension of "
"If Attr(soft_label) == true, The 2nd dimension of "
"Input(X) and Input(Label) must be equal.");
} else {
PADDLE_ENFORCE_EQ(label->dims()[1], 1,
"If Attr(soft_label) == 0, The 2nd dimension of "
"If Attr(soft_label) == false, The 2nd dimension of "
"Input(Label) must be 1.");
}
ctx.Output<LoDTensor>("Y")->Resize({x->dims()[0], 1});
ctx.Output<Tensor>("Y")->Resize({x->dims()[0], 1});
ctx.ShareLoD("X", /*->*/ "Y");
}
};
......@@ -74,9 +70,6 @@ class CrossEntropyGradientOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE_EQ(dy->dims().size(), 2, "Input(Y@Grad)'s rank must be 2.");
PADDLE_ENFORCE_EQ(label->dims().size(), 2,
"Input(Label)'s rank must be 2.");
// TODO(xinghai-sun): remove this check after swtiching to bool
PADDLE_ENFORCE(ctx.Attr<int>("soft_label") == 0 ||
ctx.Attr<int>("soft_label") == 1);
PADDLE_ENFORCE_EQ(x->dims()[0], label->dims()[0],
"The 1st dimension of Input(X) and Input(Label) must "
"be equal.");
......@@ -85,17 +78,17 @@ class CrossEntropyGradientOp : public framework::OperatorWithKernel {
"be equal.");
PADDLE_ENFORCE_EQ(dy->dims()[1], 1,
"The 2nd dimension of Input(Y@Grad) must be 1.");
if (ctx.Attr<int>("soft_label") == 1) {
if (ctx.Attr<bool>("soft_label")) {
PADDLE_ENFORCE_EQ(x->dims()[1], label->dims()[1],
"If Attr(soft_label) == 1, The 2nd dimension of "
"If Attr(soft_label) == true, The 2nd dimension of "
"Input(X) and Input(Label) must be equal.");
} else {
PADDLE_ENFORCE_EQ(label->dims()[1], 1,
"If Attr(soft_label) == 0, The 2nd dimension of "
"If Attr(soft_label) == false, The 2nd dimension of "
"Input(Label) must be 1.");
}
auto dx = ctx.Output<LoDTensor>(framework::GradVarName("X"));
auto dx = ctx.Output<Tensor>(framework::GradVarName("X"));
dx->Resize(x->dims());
}
};
......@@ -108,7 +101,8 @@ class CrossEntropyOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput("X", "The first input of CrossEntropyOp");
AddInput("Label", "The second input of CrossEntropyOp");
AddOutput("Y", "The output of CrossEntropyOp");
AddAttr<int>("soft_label", "Is soft label. Default zero.").SetDefault(0);
AddAttr<bool>("soft_label", "Is soft label. Default zero.")
.SetDefault(false);
AddComment(R"DOC(
CrossEntropy Operator.
......@@ -116,12 +110,12 @@ CrossEntropy Operator.
It supports both standard cross-entropy and soft-label cross-entropy loss
computation.
1) One-hot cross-entropy:
soft_label = 0, Label[i, 0] indicates the class index for sample i:
soft_label = False, Label[i, 0] indicates the class index for sample i:
Y[i] = -log(X[i, Label[i]])
2) Soft-label cross-entropy:
soft_label = 1, Label[i, j] indicates the soft label of class j
soft_label = True, Label[i, j] indicates the soft label of class j
for sample i:
Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}
......@@ -133,6 +127,9 @@ computation.
As a special case of 2), when each row of Input(Label) has only one
non-zero element (equals 1), soft-label cross-entropy degenerates to a
one-hot cross-entropy with one-hot label representation.
Both the input `X` and `Label` can carry the LoD (Level of Details) information,
or not. But the output only shares the LoD with input `X`.
)DOC");
}
};
......
......@@ -102,7 +102,7 @@ class CrossEntropyOpCUDAKernel : public framework::OpKernel {
int grid = (n + block - 1) / block;
// TODO(qingqing) launch kernel on specified stream
// base on ExecutionContext.
if (ctx.Attr<int>("soft_label") == 1) {
if (ctx.Attr<bool>("soft_label")) {
auto* label_data = ctx.Input<Tensor>("Label")->data<T>();
SoftCrossEntropyKernel<T><<<grid, block>>>(y_data, x_data, label_data, n,
d);
......@@ -137,7 +137,7 @@ class CrossEntropyGradientOpCUDAKernel : public framework::OpKernel {
grid = (n + block - 1) / block;
// TODO(qingqing): launch kernel on specified stream
// base on ExecutionContext.
if (ctx.Attr<int>("soft_label") == 1) {
if (ctx.Attr<bool>("soft_label")) {
auto* label_data = label->data<T>();
SoftCrossEntropyGradientKernel<T><<<grid, block>>>(
dx_data, dy_data, x_data, label_data, n, d);
......
......@@ -51,7 +51,7 @@ class CrossEntropyOpKernel : public framework::OpKernel {
int batch_size = x->dims()[0];
int class_num = x->dims()[1];
if (ctx.Attr<int>("soft_label") == 1) {
if (ctx.Attr<bool>("soft_label")) {
auto* label_data = ctx.Input<Tensor>("Label")->data<T>();
int index = 0;
for (int i = 0; i < batch_size; ++i) {
......@@ -92,7 +92,7 @@ class CrossEntropyGradientOpKernel : public framework::OpKernel {
int class_num = x->dims()[1];
// TODO(qingqing): make zero setting an common function.
if (ctx.Attr<int>("soft_label") == 1) {
if (ctx.Attr<bool>("soft_label")) {
auto* label_data = ctx.Input<Tensor>("Label")->data<T>();
int index = 0;
for (int i = 0; i < batch_size; ++i) {
......
......@@ -18,7 +18,6 @@ namespace paddle {
namespace operators {
using framework::Tensor;
using framework::LoDTensor;
class DropoutOp : public framework::OperatorWithKernel {
public:
......@@ -29,15 +28,13 @@ class DropoutOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) must not be null.");
PADDLE_ENFORCE_GE(ctx.Attr<float>("dropout_prob"), 0);
PADDLE_ENFORCE_LE(ctx.Attr<float>("dropout_prob"), 1);
// TODO(xinghai-sun): remove this check after swtiching to bool
PADDLE_ENFORCE(ctx.Attr<int>("is_training") == 0 ||
ctx.Attr<int>("is_training") == 1);
auto dims = ctx.Input<Tensor>("X")->dims();
ctx.Output<LoDTensor>("Out")->Resize(dims);
if (ctx.Attr<int>("is_training") == 1) {
ctx.Output<LoDTensor>("Mask")->Resize(dims);
ctx.Output<Tensor>("Out")->Resize(dims);
if (ctx.Attr<bool>("is_training")) {
ctx.Output<Tensor>("Mask")->Resize(dims);
}
ctx.ShareLoD("X", /*->*/ "Out");
}
};
......@@ -49,8 +46,7 @@ class DropoutOpMaker : public framework::OpProtoAndCheckerMaker {
: OpProtoAndCheckerMaker(proto, op_checker) {
AddAttr<AttrType>("dropout_prob", "Probability of setting units to zero.")
.SetDefault(.5f);
// TODO(xinghai-sun): use bool for is_training after bool is supported.
AddAttr<int>("is_training", "Whether in training phase.").SetDefault(1);
AddAttr<bool>("is_training", "Whether in training phase.").SetDefault(true);
AddAttr<int>("seed", "Dropout random seed.").SetDefault(0);
AddInput("X", "The input of dropout op.");
AddOutput("Out", "The output of dropout op.");
......@@ -59,7 +55,7 @@ class DropoutOpMaker : public framework::OpProtoAndCheckerMaker {
AddComment(R"DOC(
Dropout Operator.
"Dropout" refers to randomly dropping out units in a nerual network. It is a
'Dropout' refers to randomly dropping out units in a nerual network. It is a
regularization technique for reducing overfitting by preventing neuron
co-adaption during training. The dropout operator randomly set (according to
the given dropout probability) the outputs of some units to zero, while others
......@@ -75,8 +71,8 @@ class DropoutOpGrad : public framework::OperatorWithKernel {
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE_EQ(ctx.Attr<int>("is_training"), 1,
"GradOp is only callable when is_training is true");
PADDLE_ENFORCE(ctx.Attr<bool>("is_training"),
"GradOp is only callable when is_training is true");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) must not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Mask"), "Mask must not be null.");
......@@ -85,9 +81,6 @@ class DropoutOpGrad : public framework::OperatorWithKernel {
PADDLE_ENFORCE_GE(ctx.Attr<AttrType>("dropout_prob"), 0);
PADDLE_ENFORCE_LE(ctx.Attr<AttrType>("dropout_prob"), 1);
// TODO(xinghai-sun): remove this check after swtiching to bool
PADDLE_ENFORCE(ctx.Attr<int>("is_training") == 0 ||
ctx.Attr<int>("is_training") == 1);
auto x_dims = ctx.Input<Tensor>("X")->dims();
auto out_dims = ctx.Input<Tensor>(framework::GradVarName("Out"))->dims();
PADDLE_ENFORCE_EQ(x_dims, out_dims,
......@@ -96,7 +89,7 @@ class DropoutOpGrad : public framework::OperatorWithKernel {
PADDLE_ENFORCE_EQ(x_dims, mask_dims,
"Dimensions of Input(X) and Mask must be the same.");
auto *x_grad = ctx.Output<LoDTensor>(framework::GradVarName("X"));
auto *x_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
x_grad->Resize(x_dims);
}
};
......
......@@ -59,7 +59,7 @@ class GPUDropoutKernel : public framework::OpKernel {
auto Y = EigenMatrix<T>::Reshape(*y, 1);
auto place = context.GetEigenDevice<Place>();
if (context.Attr<int>("is_training") == 1) {
if (context.Attr<bool>("is_training")) {
auto* mask = context.Output<Tensor>("Mask");
auto* mask_data = mask->mutable_data<T>(context.GetPlace());
int size = framework::product(mask->dims());
......
......@@ -35,7 +35,7 @@ class CPUDropoutKernel : public framework::OpKernel {
auto* y_data = y->mutable_data<T>(context.GetPlace());
AttrType dropout_prob = context.Attr<AttrType>("dropout_prob");
if (context.Attr<int>("is_training") == 1) {
if (context.Attr<bool>("is_training")) {
auto* mask = context.Output<Tensor>("Mask");
auto* mask_data = mask->mutable_data<T>(context.GetPlace());
int seed = context.Attr<int>("seed");
......@@ -65,8 +65,8 @@ template <typename Place, typename T>
class DropoutGradKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& context) const override {
PADDLE_ENFORCE_EQ(context.Attr<int>("is_training"), 1,
"GradOp is only callable when is_training is true");
PADDLE_ENFORCE(context.Attr<bool>("is_training"),
"GradOp is only callable when is_training is true");
auto* grad_x = context.Output<Tensor>(framework::GradVarName("X"));
auto* grad_y = context.Input<Tensor>(framework::GradVarName("Out"));
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/elementwise_add_op.h"
namespace paddle {
namespace operators {
class ElementwiseAddOpMaker : public ElementwiseOpMaker {
public:
ElementwiseAddOpMaker(framework::OpProto* proto,
framework::OpAttrChecker* op_checker)
: ElementwiseOpMaker(proto, op_checker) {
SetComment("add", "Out = X + Y");
AddComment(comment_);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP(elementwise_add, ops::ElementwiseOp, ops::ElementwiseAddOpMaker,
elementwise_add_grad, ops::ElementwiseOpGrad);
REGISTER_OP_CPU_KERNEL(
elementwise_add,
ops::ElementwiseAddKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
elementwise_add_grad,
ops::ElementwiseAddGradKernel<paddle::platform::CPUPlace, float>);
......@@ -13,13 +13,13 @@
limitations under the License. */
#define EIGEN_USE_GPU
#include "paddle/operators/sequence_avg_pool_op.h"
#include "paddle/operators/elementwise_add_op.h"
namespace ops = paddle::operators;
REGISTER_OP_GPU_KERNEL(
sequence_avg_pool,
ops::SequenceAvgPoolKernel<paddle::platform::GPUPlace, float>);
elementwise_add,
ops::ElementwiseAddKernel<paddle::platform::GPUPlace, float>);
REGISTER_OP_GPU_KERNEL(
sequence_avg_pool_grad,
ops::SequenceAvgPoolGradKernel<paddle::platform::GPUPlace, float>);
elementwise_add_grad,
ops::ElementwiseAddGradKernel<paddle::platform::GPUPlace, float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/operators/elementwise_op.h"
namespace paddle {
namespace operators {
template <typename Place, typename T>
class ElementwiseAddKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
ElementwiseCompute<EigenAddFunctor, Place, T>(ctx);
}
};
template <typename T>
struct ElementwiseAddGradFunctor {
template <typename Device, typename X, typename Y, typename Z, typename dX,
typename dY, typename dZ>
void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz) {
auto dz_e = framework::EigenVector<T>::Flatten(*dz);
if (dx) {
auto dx_e = framework::EigenVector<T>::Flatten(*dx);
dx_e.device(d) = dz_e;
}
if (dy) {
auto dy_e = framework::EigenVector<T>::Flatten(*dy);
dy_e.device(d) = dz_e;
}
}
};
template <typename T>
struct ElementwiseAddOneGradFunctor {
template <typename Device, typename X, typename Y, typename Z, typename dX,
typename dY, typename dZ>
void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz) {
auto dz_e = framework::EigenVector<T>::Flatten(*dz);
if (dx) {
auto dx_e = framework::EigenVector<T>::Flatten(*dx);
dx_e.device(d) = dz_e;
}
if (dy) {
auto dy_e = framework::EigenVector<T>::Flatten(*dy);
dy_e.device(d) = dz_e.sum();
}
}
};
template <typename T>
struct ElementwiseAddBroadCastGradFunctor {
template <typename Device, typename X, typename Y, typename Z, typename dX,
typename dY, typename dZ, typename Pre, typename N>
void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz, Pre pre, N n) {
auto dz_e = framework::EigenVector<T>::Flatten(*dz);
if (dx) {
auto dx_e = framework::EigenVector<T>::Flatten(*dx);
dx_e.device(d) = dz_e;
}
if (dy) {
auto dy_e = framework::EigenVector<T>::Flatten(*dy);
dy_e.device(d) = dz_e.reshape(Eigen::DSizes<int, 2>(pre, n))
.sum(Eigen::array<int, 1>{{0}});
}
}
};
template <typename T>
struct ElementwiseAddBroadCast2GradFunctor {
template <typename Device, typename X, typename Y, typename Z, typename dX,
typename dY, typename dZ, typename Pre, typename N, typename Post>
void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz, Pre pre, N n,
Post post) {
auto dz_e = framework::EigenVector<T>::Flatten(*dz);
if (dx) {
auto dx_e = framework::EigenVector<T>::Flatten(*dx);
dx_e.device(d) = dz_e;
}
if (dy) {
auto dy_e = framework::EigenVector<T>::Flatten(*dy);
dy_e.device(d) = dz_e.reshape(Eigen::DSizes<int, 3>(pre, n, post))
.sum(Eigen::array<int, 2>{{0, 2}});
}
}
};
template <typename Place, typename T>
class ElementwiseAddGradKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
ElementwiseGradCompute<Place, T, ElementwiseAddGradFunctor<T>,
ElementwiseAddOneGradFunctor<T>,
ElementwiseAddBroadCastGradFunctor<T>,
ElementwiseAddBroadCast2GradFunctor<T>>(ctx);
}
};
} // namespace operators
} // namespace paddle
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/elementwise_div_op.h"
namespace paddle {
namespace operators {
class ElementwiseDivOpMaker : public ElementwiseOpMaker {
public:
ElementwiseDivOpMaker(framework::OpProto* proto,
framework::OpAttrChecker* op_checker)
: ElementwiseOpMaker(proto, op_checker) {
SetComment("Div", "Out = X / Y");
AddComment(comment_);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP(elementwise_div, ops::ElementwiseOp, ops::ElementwiseDivOpMaker,
elementwise_div_grad, ops::ElementwiseOpGrad);
REGISTER_OP_CPU_KERNEL(
elementwise_div,
ops::ElementwiseDivKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
elementwise_div_grad,
ops::ElementwiseDivGradKernel<paddle::platform::CPUPlace, float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#define EIGEN_USE_GPU
#include "paddle/operators/elementwise_div_op.h"
namespace ops = paddle::operators;
REGISTER_OP_GPU_KERNEL(
elementwise_div,
ops::ElementwiseDivKernel<paddle::platform::GPUPlace, float>);
REGISTER_OP_GPU_KERNEL(
elementwise_div_grad,
ops::ElementwiseDivGradKernel<paddle::platform::GPUPlace, float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/operators/elementwise_op.h"
namespace paddle {
namespace operators {
template <typename Place, typename T>
class ElementwiseDivKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
ElementwiseCompute<EigenDivFunctor, Place, T>(ctx);
}
};
template <typename T>
struct ElementwiseDivGradFunctor {
template <typename Device, typename X, typename Y, typename Z, typename dX,
typename dY, typename dZ>
void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz) {
auto y_e = framework::EigenVector<T>::Flatten(*y);
auto z_e = framework::EigenVector<T>::Flatten(*z);
auto dz_e = framework::EigenVector<T>::Flatten(*dz);
if (dx) {
auto dx_e = framework::EigenVector<T>::Flatten(*dx);
dx_e.device(d) = dz_e / y_e;
}
if (dy) {
auto dy_e = framework::EigenVector<T>::Flatten(*dy);
dy_e.device(d) = -1.0 * dz_e * z_e / y_e;
}
}
};
template <typename T>
struct ElementwiseDivBroadCastGradFunctor {
template <typename Device, typename X, typename Y, typename Z, typename dX,
typename dY, typename dZ, typename Pre, typename N>
void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz, Pre pre, N n) {
auto x_e = framework::EigenVector<T>::Flatten(*x);
auto y_e = framework::EigenVector<T>::Flatten(*y);
auto dz_e = framework::EigenVector<T>::Flatten(*dz);
auto y_e_bcast = y_e.reshape(Eigen::DSizes<int, 2>(1, n))
.broadcast(Eigen::DSizes<int, 2>(pre, 1))
.reshape(Eigen::DSizes<int, 1>(x_e.size()));
if (dx) {
auto dx_e = framework::EigenVector<T>::Flatten(*dx);
dx_e.device(d) = dz_e / y_e_bcast;
}
if (dy) {
auto dy_e = framework::EigenVector<T>::Flatten(*dy);
dy_e.device(d) = (-1.0 * (x_e * dz_e) / (y_e_bcast * y_e_bcast))
.reshape(Eigen::DSizes<int, 2>(pre, n))
.sum(Eigen::array<int, 1>{{0}});
}
}
};
template <typename T>
struct ElementwiseDivBroadCast2GradFunctor {
template <typename Device, typename X, typename Y, typename Z, typename dX,
typename dY, typename dZ, typename Pre, typename N, typename Post>
void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz, Pre pre, N n,
Post post) {
auto x_e = framework::EigenVector<T>::Flatten(*x);
auto y_e = framework::EigenVector<T>::Flatten(*y);
auto dz_e = framework::EigenVector<T>::Flatten(*dz);
auto y_e_bcast = y_e.reshape(Eigen::DSizes<int, 3>(1, n, 1))
.broadcast(Eigen::DSizes<int, 3>(pre, 1, post))
.reshape(Eigen::DSizes<int, 1>(x_e.size()));
if (dx) {
auto dx_e = framework::EigenVector<T>::Flatten(*dx);
dx_e.device(d) = dz_e / y_e_bcast;
}
if (dy) {
auto dy_e = framework::EigenVector<T>::Flatten(*dy);
dy_e.device(d) = (-1.0 * (x_e * dz_e) / (y_e_bcast * y_e_bcast))
.reshape(Eigen::DSizes<int, 3>(pre, n, post))
.sum(Eigen::array<int, 2>{{0, 2}});
}
}
};
template <typename Place, typename T>
class ElementwiseDivGradKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
ElementwiseGradCompute<Place, T, ElementwiseDivGradFunctor<T>,
ElementwiseDivGradFunctor<T>,
ElementwiseDivBroadCastGradFunctor<T>,
ElementwiseDivBroadCast2GradFunctor<T>>(ctx);
}
};
} // namespace operators
} // namespace paddle
......@@ -17,101 +17,25 @@
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
class ElementWiseMulOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"),
"Input(X) of ElementWiseMulOp should not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Y"),
"Input(Y) of ElementWiseMulOp should not be null.");
PADDLE_ENFORCE_NOT_NULL(
ctx.OutputVar("Out"),
"Output(Out) of ElementWiseMulOp should not be null.");
auto x_dim = ctx.Input<Tensor>("X")->dims();
auto y_dim = ctx.Input<Tensor>("Y")->dims();
PADDLE_ENFORCE_GE(x_dim.size(), y_dim.size(),
"Rank of first input must >= rank of second input.")
ctx.Output<framework::LoDTensor>("Out")->Resize(x_dim);
}
};
class ElementWiseMulOpMaker : public framework::OpProtoAndCheckerMaker {
class ElementwiseMulOpMaker : public ElementwiseOpMaker {
public:
ElementWiseMulOpMaker(framework::OpProto *proto,
framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "The first input of elementwise mul op");
AddInput("Y", "The second input of elementwise mul op");
AddAttr<int>("axis",
R"DOC(
When shape(Y) does not equal shape(X),Y will be broadcasted
to match the shape of X and axis should be dimension index Y in X
)DOC")
.SetDefault(-1)
.EqualGreaterThan(-1);
AddOutput("Out", "The output of elementwise mul op");
AddComment(R"DOC(
Limited elementwise multiple operator.The equation is: Out = X ⊙ Y.
1. The shape of Y should be same with X or
2. Y's shape is a subset of X.
Y will be broadcasted to match the shape of X and axis should be dimension index Y in X.
example:
shape(X) = (2, 3, 4, 5), shape(Y) = (,)
shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5)
shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
)DOC");
ElementwiseMulOpMaker(framework::OpProto* proto,
framework::OpAttrChecker* op_checker)
: ElementwiseOpMaker(proto, op_checker) {
SetComment("Mul", "Out = X ⊙ Y");
AddComment(comment_);
}
};
class ElementWiseMulOpGrad : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) should not be null");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Y"), "Input(Y) should not be null");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Out")),
"Input(Out@GRAD) should not be null");
auto x_dims = ctx.Input<Tensor>("X")->dims();
auto y_dims = ctx.Input<Tensor>("Y")->dims();
auto out_dims = ctx.Input<Tensor>(framework::GradVarName("Out"))->dims();
auto *x_grad =
ctx.Output<framework::LoDTensor>(framework::GradVarName("X"));
auto *y_grad =
ctx.Output<framework::LoDTensor>(framework::GradVarName("Y"));
PADDLE_ENFORCE_GE(x_dims.size(), y_dims.size(),
"Rank of first input must >= rank of second input.")
if (x_grad) {
x_grad->Resize(x_dims);
}
if (y_grad) {
y_grad->Resize(y_dims);
}
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP(elementwise_mul, ops::ElementWiseMulOp, ops::ElementWiseMulOpMaker,
elementwise_mul_grad, ops::ElementWiseMulOpGrad);
REGISTER_OP(elementwise_mul, ops::ElementwiseOp, ops::ElementwiseMulOpMaker,
elementwise_mul_grad, ops::ElementwiseOpGrad);
REGISTER_OP_CPU_KERNEL(
elementwise_mul,
ops::ElementWiseMulKernel<paddle::platform::CPUPlace, float>);
ops::ElementwiseMulKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
elementwise_mul_grad,
ops::ElementWiseMulGradKernel<paddle::platform::CPUPlace, float>);
ops::ElementwiseMulGradKernel<paddle::platform::CPUPlace, float>);
......@@ -19,7 +19,7 @@ namespace ops = paddle::operators;
REGISTER_OP_GPU_KERNEL(
elementwise_mul,
ops::ElementWiseMulKernel<paddle::platform::GPUPlace, float>);
ops::ElementwiseMulKernel<paddle::platform::GPUPlace, float>);
REGISTER_OP_GPU_KERNEL(
elementwise_mul_grad,
ops::ElementWiseMulGradKernel<paddle::platform::GPUPlace, float>);
ops::ElementwiseMulGradKernel<paddle::platform::GPUPlace, float>);
......@@ -13,171 +13,104 @@
limitations under the License. */
#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
#include "paddle/operators/elementwise_op.h"
namespace paddle {
namespace operators {
/*
* Out = X ⊙ Y
* 1. shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
* pre=2, n=3*4, post=5
* 2. shape(X) = (2, 3, 4, 5), shape(Y) = (4,5)
* pre=2*3, n=4*5, post=1
*/
inline void get_mid_dims(const framework::DDim& x_dims,
const framework::DDim& y_dims, const int axis,
int& pre, int& n, int& post) {
pre = 1;
n = 1;
post = 1;
for (int i = 0; i < axis; ++i) {
pre *= x_dims[i];
}
for (int i = 0; i < y_dims.size(); ++i) {
PADDLE_ENFORCE_EQ(x_dims[i + axis], y_dims[i],
"Broadcast dimension mismatch.");
n *= y_dims[i];
}
for (int i = axis + y_dims.size(); i < x_dims.size(); ++i) {
post *= x_dims[i];
}
}
template <typename Place, typename T>
class ElementWiseMulKernel : public framework::OpKernel {
class ElementwiseMulKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
using Tensor = framework::Tensor;
auto* x = ctx.Input<Tensor>("X");
auto* y = ctx.Input<Tensor>("Y");
auto* z = ctx.Output<Tensor>("Out");
z->mutable_data<T>(ctx.GetPlace());
ElementwiseCompute<EigenMulFunctor, Place, T>(ctx);
}
};
template <typename T>
struct ElementwiseMulGradFunctor {
template <typename Device, typename X, typename Y, typename Z, typename dX,
typename dY, typename dZ>
void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz) {
auto x_e = framework::EigenVector<T>::Flatten(*x);
auto y_e = framework::EigenVector<T>::Flatten(*y);
auto z_e = framework::EigenVector<T>::Flatten(*z);
auto dz_e = framework::EigenVector<T>::Flatten(*dz);
auto x_dims = x->dims();
auto y_dims = y->dims();
PADDLE_ENFORCE_GE(x_dims.size(), y_dims.size(),
"Rank of first input must >= rank of second input.")
if (x_dims == y_dims || product(y_dims) == 1) {
z_e.device(ctx.GetEigenDevice<Place>()) = x_e * y_e;
return;
if (dx) {
auto dx_e = framework::EigenVector<T>::Flatten(*dx);
dx_e.device(d) = dz_e * y_e;
}
int axis = ctx.Attr<int>("axis");
axis = (axis == -1 ? x_dims.size() - y_dims.size() : axis);
PADDLE_ENFORCE(axis >= 0 && axis < x_dims.size(),
"Axis should be in range [0, x_dims)");
int pre, n, post;
get_mid_dims(x_dims, y_dims, axis, pre, n, post);
if (post == 1) {
auto y_bcast = y_e.reshape(Eigen::DSizes<int, 2>(1, n))
.broadcast(Eigen::DSizes<int, 2>(pre, 1))
.reshape(Eigen::DSizes<int, 1>(x_e.size()));
z_e.device(ctx.GetEigenDevice<Place>()) = x_e * y_bcast;
return;
} else {
auto y_bcast = y_e.reshape(Eigen::DSizes<int, 3>(1, n, 1))
.broadcast(Eigen::DSizes<int, 3>(pre, 1, post))
.reshape(Eigen::DSizes<int, 1>(x_e.size()));
z_e.device(ctx.GetEigenDevice<Place>()) = x_e * y_bcast;
return;
if (dy) {
auto dy_e = framework::EigenVector<T>::Flatten(*dy);
dy_e.device(d) = x_e * dz_e;
}
}
};
template <typename Place, typename T>
class ElementWiseMulGradKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
using Tensor = framework::Tensor;
auto* x = ctx.Input<Tensor>("X");
auto* y = ctx.Input<Tensor>("Y");
auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
template <typename T>
struct ElementwiseMulBroadCastGradFunctor {
template <typename Device, typename X, typename Y, typename Z, typename dX,
typename dY, typename dZ, typename Pre, typename N>
void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz, Pre pre, N n) {
auto x_e = framework::EigenVector<T>::Flatten(*x);
auto y_e = framework::EigenVector<T>::Flatten(*y);
auto dout_e = framework::EigenVector<T>::Flatten(*dout);
auto dz_e = framework::EigenVector<T>::Flatten(*dz);
auto x_dims = x->dims();
auto y_dims = y->dims();
auto y_e_bcast = y_e.reshape(Eigen::DSizes<int, 2>(1, n))
.broadcast(Eigen::DSizes<int, 2>(pre, 1))
.reshape(Eigen::DSizes<int, 1>(x_e.size()));
auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
if (dx) {
dx->mutable_data<T>(ctx.GetPlace());
auto dx_e = framework::EigenVector<T>::Flatten(*dx);
dx_e.device(d) = dz_e * y_e_bcast;
}
if (dy) {
dy->mutable_data<T>(ctx.GetPlace());
auto dy_e = framework::EigenVector<T>::Flatten(*dy);
dy_e.device(d) = (x_e * dz_e)
.reshape(Eigen::DSizes<int, 2>(pre, n))
.sum(Eigen::array<int, 1>{{0}});
}
}
};
if (x_dims == y_dims || product(y_dims) == 1) {
if (dx) {
auto dx_e = framework::EigenVector<T>::Flatten(*dx);
dx_e.device(ctx.GetEigenDevice<Place>()) = dout_e * y_e;
}
if (dy) {
auto dy_e = framework::EigenVector<T>::Flatten(*dy);
dy_e.device(ctx.GetEigenDevice<Place>()) = x_e * dout_e;
}
return;
template <typename T>
struct ElementwiseMulBroadCast2GradFunctor {
template <typename Device, typename X, typename Y, typename Z, typename dX,
typename dY, typename dZ, typename Pre, typename N, typename Post>
void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz, Pre pre, N n,
Post post) {
auto x_e = framework::EigenVector<T>::Flatten(*x);
auto y_e = framework::EigenVector<T>::Flatten(*y);
auto dz_e = framework::EigenVector<T>::Flatten(*dz);
auto y_e_bcast = y_e.reshape(Eigen::DSizes<int, 3>(1, n, 1))
.broadcast(Eigen::DSizes<int, 3>(pre, 1, post))
.reshape(Eigen::DSizes<int, 1>(x_e.size()));
if (dx) {
auto dx_e = framework::EigenVector<T>::Flatten(*dx);
dx_e.device(d) = dz_e * y_e_bcast;
}
int axis = ctx.Attr<int>("axis");
axis = (axis == -1 ? x_dims.size() - y_dims.size() : axis);
int pre, n, post;
get_mid_dims(x_dims, y_dims, axis, pre, n, post);
// TODO(gongweibao): wrap reshape to a function.
if (post == 1) {
auto y_e_bcast = y_e.reshape(Eigen::DSizes<int, 2>(1, n))
.broadcast(Eigen::DSizes<int, 2>(pre, 1))
.reshape(Eigen::DSizes<int, 1>(x_e.size()));
if (dx) {
auto dx_e = framework::EigenVector<T>::Flatten(*dx);
dx_e.device(ctx.GetEigenDevice<Place>()) = dout_e * y_e_bcast;
}
if (dy) {
auto dy_e = framework::EigenVector<T>::Flatten(*dy);
dy_e.device(ctx.GetEigenDevice<Place>()) =
(x_e * dout_e)
.reshape(Eigen::DSizes<int, 2>(pre, n))
.sum(Eigen::array<int, 1>{{0}});
}
return;
} else {
auto y_e_bcast = y_e.reshape(Eigen::DSizes<int, 3>(1, n, 1))
.broadcast(Eigen::DSizes<int, 3>(pre, 1, post))
.reshape(Eigen::DSizes<int, 1>(x_e.size()));
if (dx) {
auto dx_e = framework::EigenVector<T>::Flatten(*dx);
dx_e.device(ctx.GetEigenDevice<Place>()) = dout_e * y_e_bcast;
}
if (dy) {
auto dy_e = framework::EigenVector<T>::Flatten(*dy);
dy_e.device(ctx.GetEigenDevice<Place>()) =
(x_e * dout_e)
.reshape(Eigen::DSizes<int, 3>(pre, n, post))
.sum(Eigen::array<int, 2>{{0, 2}});
}
return;
if (dy) {
auto dy_e = framework::EigenVector<T>::Flatten(*dy);
dy_e.device(d) = (x_e * dz_e)
.reshape(Eigen::DSizes<int, 3>(pre, n, post))
.sum(Eigen::array<int, 2>{{0, 2}});
}
}
};
template <typename Place, typename T>
class ElementwiseMulGradKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
ElementwiseGradCompute<Place, T, ElementwiseMulGradFunctor<T>,
ElementwiseMulGradFunctor<T>,
ElementwiseMulBroadCastGradFunctor<T>,
ElementwiseMulBroadCast2GradFunctor<T>>(ctx);
}
};
} // namespace operators
} // namespace paddle
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <iostream>
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
#include "paddle/operators/math/math_function.h"
namespace paddle {
namespace operators {
/*
* Out = X ⊙ Y
* If Y's shape does not match X' shape, they will be reshaped.
* For example:
* 1. shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
* pre=2, n=3*4, post=5
* x.shape(2, 12, 5) * y.shape(1,12,1).broadcast(2,12,5)
* 2. shape(X) = (2, 3, 4, 5), shape(Y) = (4,5)
* pre=2*3, n=4*5, post=1
* x.shape(2, 3, 20) * y.shape(1,1,20).broadcast(2,3,20)
*/
inline void get_mid_dims(const framework::DDim& x_dims,
const framework::DDim& y_dims, const int axis,
int& pre, int& n, int& post) {
pre = 1;
n = 1;
post = 1;
for (int i = 0; i < axis; ++i) {
pre *= x_dims[i];
}
for (int i = 0; i < y_dims.size(); ++i) {
PADDLE_ENFORCE_EQ(x_dims[i + axis], y_dims[i],
"Broadcast dimension mismatch.");
n *= y_dims[i];
}
for (int i = axis + y_dims.size(); i < x_dims.size(); ++i) {
post *= x_dims[i];
}
}
#define EIGEN_FUNCTOR(name, eigen_op) \
struct Eigen##name##Functor { \
template <typename Place, typename T> \
inline void Run(const framework::Tensor* x, const framework::Tensor* y, \
framework::Tensor* z, \
const framework::ExecutionContext& ctx) { \
auto x_e = framework::EigenVector<T>::Flatten(*x); \
auto y_e = framework::EigenVector<T>::Flatten(*y); \
auto z_e = framework::EigenVector<T>::Flatten(*z); \
z_e.device(ctx.GetEigenDevice<Place>()) = eigen_op(x_e, y_e); \
} \
template <typename Place, typename T> \
inline void RunBroadCast(const framework::Tensor* x, \
const framework::Tensor* y, framework::Tensor* z, \
const framework::ExecutionContext& ctx, int pre, \
int n) { \
auto x_e = framework::EigenVector<T>::Flatten(*x); \
auto y_e = framework::EigenVector<T>::Flatten(*y); \
auto z_e = framework::EigenVector<T>::Flatten(*z); \
auto y_bcast = y_e.reshape(Eigen::DSizes<int, 2>(1, n)) \
.broadcast(Eigen::DSizes<int, 2>(pre, 1)) \
.reshape(Eigen::DSizes<int, 1>(x_e.size())); \
z_e.device(ctx.GetEigenDevice<Place>()) = eigen_op(x_e, y_bcast); \
} \
template <typename Place, typename T> \
inline void RunBroadCast2(const framework::Tensor* x, \
const framework::Tensor* y, \
framework::Tensor* z, \
const framework::ExecutionContext& ctx, int pre, \
int n, int post) { \
auto x_e = framework::EigenVector<T>::Flatten(*x); \
auto y_e = framework::EigenVector<T>::Flatten(*y); \
auto z_e = framework::EigenVector<T>::Flatten(*z); \
auto y_bcast = y_e.reshape(Eigen::DSizes<int, 3>(1, n, 1)) \
.broadcast(Eigen::DSizes<int, 3>(pre, 1, post)) \
.reshape(Eigen::DSizes<int, 1>(x_e.size())); \
z_e.device(ctx.GetEigenDevice<Place>()) = eigen_op(x_e, y_bcast); \
} \
}
template <class functor, typename Place, typename T>
void ElementwiseCompute(const framework::ExecutionContext& ctx) {
using Tensor = framework::Tensor;
auto* x = ctx.Input<Tensor>("X");
auto* y = ctx.Input<Tensor>("Y");
auto* z = ctx.Output<Tensor>("Out");
z->mutable_data<T>(ctx.GetPlace());
auto x_dims = x->dims();
auto y_dims = y->dims();
PADDLE_ENFORCE_GE(x_dims.size(), y_dims.size(),
"Rank of first input must >= rank of second input.")
if (x_dims == y_dims || product(y_dims) == 1) {
functor f;
f.template Run<Place, T>(x, y, z, ctx);
return;
}
int axis = ctx.Attr<int>("axis");
axis = (axis == -1 ? x_dims.size() - y_dims.size() : axis);
PADDLE_ENFORCE(axis >= 0 && axis < x_dims.size(),
"Axis should be in range [0, x_dims)");
int pre, n, post;
get_mid_dims(x_dims, y_dims, axis, pre, n, post);
if (post == 1) {
functor f;
f.template RunBroadCast<Place, T>(x, y, z, ctx, pre, n);
return;
} else {
functor f;
f.template RunBroadCast2<Place, T>(x, y, z, ctx, pre, n, post);
return;
}
}
#define EIGEN_ADD(x, y) ((x) + (y))
EIGEN_FUNCTOR(Add, EIGEN_ADD);
#define EIGEN_SUB(x, y) ((x) - (y))
EIGEN_FUNCTOR(Sub, EIGEN_SUB);
#define EIGEN_MUL(x, y) ((x) * (y))
EIGEN_FUNCTOR(Mul, EIGEN_MUL);
#define EIGEN_DIV(x, y) ((x) / (y))
EIGEN_FUNCTOR(Div, EIGEN_DIV);
template <typename Place, typename T, typename functor, typename functor1,
typename broadcastfunctor, typename broadcast2functor>
void ElementwiseGradCompute(const framework::ExecutionContext& ctx) {
using Tensor = framework::Tensor;
auto* x = ctx.Input<Tensor>("X");
auto* y = ctx.Input<Tensor>("Y");
auto* out = ctx.Input<Tensor>("Out");
auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
auto place = ctx.GetEigenDevice<Place>();
auto x_dims = x->dims();
auto y_dims = y->dims();
auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
if (dx) {
dx->mutable_data<T>(ctx.GetPlace());
}
if (dy) {
dy->mutable_data<T>(ctx.GetPlace());
}
if (x_dims == y_dims) {
functor f;
f(place, x, y, out, dx, dy, dout);
return;
}
if (product(y_dims) == 1) {
functor1 f;
f(place, x, y, out, dx, dy, dout);
return;
}
int axis = ctx.Attr<int>("axis");
axis = (axis == -1 ? x_dims.size() - y_dims.size() : axis);
int pre, n, post;
get_mid_dims(x_dims, y_dims, axis, pre, n, post);
if (post == 1) {
broadcastfunctor f;
f(place, x, y, out, dx, dy, dout, pre, n);
return;
} else {
broadcast2functor f;
f(place, x, y, out, dx, dy, dout, pre, n, post);
return;
}
}
class ElementwiseOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
using Tensor = framework::Tensor;
void InferShape(const framework::InferShapeContext& ctx) const override {
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"),
"Input(X) of elementwise op should not be null");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Y"),
"Input(Y) of elementwise op should not be null");
PADDLE_ENFORCE_NOT_NULL(
ctx.OutputVar("Out"),
"Output(Out) of elementwise op should not be null.");
auto x_dim = ctx.Input<Tensor>("X")->dims();
auto y_dim = ctx.Input<Tensor>("Y")->dims();
PADDLE_ENFORCE_GE(x_dim.size(), y_dim.size(),
"Rank of first input must >= rank of second input.")
ctx.Output<framework::Tensor>("Out")->Resize(x_dim);
ctx.ShareLoD("X", /*->*/ "Out");
}
};
class ElementwiseOpMaker : public framework::OpProtoAndCheckerMaker {
public:
ElementwiseOpMaker(framework::OpProto* proto,
framework::OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", R"DOC(
The first input of elementwise op, it's a tensor of any dimensions.
)DOC");
AddInput("Y", R"DOC(
The sencond input of elementwise op, it's a tensor and it's dimensions
must be small or equal to X's dimensions.
)DOC");
AddAttr<int>("axis",
R"DOC(
When the shape(Y) does not equal the shape(X),Y will be broadcasted
to match the shape of X and axis should be dimension index Y in X
)DOC")
.SetDefault(-1)
.EqualGreaterThan(-1);
AddOutput("Out", "The output of elementwise op");
comment_ = R"DOC(
Limited elementwise {name} operator.The equation is: Out = {equation}.
1. The shape of Y should be same with X or
2. Y's shape is a subset of X.
Y will be broadcasted to match the shape of X and axis should be dimension index Y in X.
example:
shape(X) = (2, 3, 4, 5), shape(Y) = (,)
shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5)
shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
Both the input X and Y can carry the LoD (Level of Details) information,
or not. But the output only shares the LoD with input X.
)DOC";
AddComment(comment_);
}
protected:
std::string comment_;
void Replace(std::string& src, std::string from, std::string to) {
std::size_t len_from = std::strlen(from.c_str());
std::size_t len_to = std::strlen(to.c_str());
for (std::size_t pos = src.find(from); pos != std::string::npos;
pos = src.find(from, pos + len_to)) {
src.replace(pos, len_from, to);
}
}
void SetComment(std::string name, std::string equation) {
Replace(comment_, "{name}", name);
Replace(comment_, "{equation}", equation);
}
};
class ElementwiseOpGrad : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
using Tensor = framework::Tensor;
protected:
void InferShape(const framework::InferShapeContext& ctx) const override {
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) should not be null");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Y"), "Input(Y) should not be null");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Out")),
"Input(Out@GRAD) should not be null");
auto x_dims = ctx.Input<Tensor>("X")->dims();
auto y_dims = ctx.Input<Tensor>("Y")->dims();
auto out_dims = ctx.Input<Tensor>(framework::GradVarName("Out"))->dims();
auto* x_grad = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
auto* y_grad = ctx.Output<framework::Tensor>(framework::GradVarName("Y"));
PADDLE_ENFORCE_GE(x_dims.size(), y_dims.size(),
"Rank of first input must >= rank of second input.")
if (x_grad) {
x_grad->Resize(x_dims);
}
if (y_grad) {
y_grad->Resize(y_dims);
}
}
};
} // namespace operators
} // namespace paddle
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/elementwise_sub_op.h"
namespace paddle {
namespace operators {
class ElementwiseSubOpMaker : public ElementwiseOpMaker {
public:
ElementwiseSubOpMaker(framework::OpProto* proto,
framework::OpAttrChecker* op_checker)
: ElementwiseOpMaker(proto, op_checker) {
SetComment("Sub", "Out = X - Y");
AddComment(comment_);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP(elementwise_sub, ops::ElementwiseOp, ops::ElementwiseSubOpMaker,
elementwise_sub_grad, ops::ElementwiseOpGrad);
REGISTER_OP_CPU_KERNEL(
elementwise_sub,
ops::ElementwiseSubKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
elementwise_sub_grad,
ops::ElementwiseSubGradKernel<paddle::platform::CPUPlace, float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#define EIGEN_USE_GPU
#include "paddle/operators/elementwise_sub_op.h"
namespace ops = paddle::operators;
REGISTER_OP_GPU_KERNEL(
elementwise_sub,
ops::ElementwiseSubKernel<paddle::platform::GPUPlace, float>);
REGISTER_OP_GPU_KERNEL(
elementwise_sub_grad,
ops::ElementwiseSubGradKernel<paddle::platform::GPUPlace, float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/operators/elementwise_op.h"
namespace paddle {
namespace operators {
template <typename Place, typename T>
class ElementwiseSubKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
ElementwiseCompute<EigenSubFunctor, Place, T>(ctx);
}
};
template <typename T>
struct ElementwiseSubGradFunctor {
template <typename Device, typename X, typename Y, typename Z, typename dX,
typename dY, typename dZ>
void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz) {
auto dz_e = framework::EigenVector<T>::Flatten(*dz);
if (dx) {
auto dx_e = framework::EigenVector<T>::Flatten(*dx);
dx_e.device(d) = dz_e;
}
if (dy) {
auto dy_e = framework::EigenVector<T>::Flatten(*dy);
dy_e.device(d) = (-1.0) * dz_e;
}
}
};
template <typename T>
struct ElementwiseSubOneGradFunctor {
template <typename Device, typename X, typename Y, typename Z, typename dX,
typename dY, typename dZ>
void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz) {
auto dz_e = framework::EigenVector<T>::Flatten(*dz);
if (dx) {
auto dx_e = framework::EigenVector<T>::Flatten(*dx);
dx_e.device(d) = dz_e;
}
if (dy) {
auto dy_e = framework::EigenVector<T>::Flatten(*dy);
dy_e.device(d) = (-1.0) * dz_e.sum();
}
}
};
template <typename T>
struct ElementwiseSubBroadCastGradFunctor {
template <typename Device, typename X, typename Y, typename Z, typename dX,
typename dY, typename dZ, typename Pre, typename N>
void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz, Pre pre, N n) {
auto dz_e = framework::EigenVector<T>::Flatten(*dz);
if (dx) {
auto dx_e = framework::EigenVector<T>::Flatten(*dx);
dx_e.device(d) = dz_e;
}
if (dy) {
auto dy_e = framework::EigenVector<T>::Flatten(*dy);
dy_e.device(d) = (-1.0) *
dz_e.reshape(Eigen::DSizes<int, 2>(pre, n))
.sum(Eigen::array<int, 1>{{0}});
}
}
};
template <typename T>
struct ElementwiseSubBroadCast2GradFunctor {
template <typename Device, typename X, typename Y, typename Z, typename dX,
typename dY, typename dZ, typename Pre, typename N, typename Post>
void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz, Pre pre, N n,
Post post) {
auto dz_e = framework::EigenVector<T>::Flatten(*dz);
if (dx) {
auto dx_e = framework::EigenVector<T>::Flatten(*dx);
dx_e.device(d) = dz_e;
}
if (dy) {
auto dy_e = framework::EigenVector<T>::Flatten(*dy);
dy_e.device(d) = (-1.0) *
dz_e.reshape(Eigen::DSizes<int, 3>(pre, n, post))
.sum(Eigen::array<int, 2>{{0, 2}});
}
}
};
template <typename Place, typename T>
class ElementwiseSubGradKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
ElementwiseGradCompute<Place, T, ElementwiseSubGradFunctor<T>,
ElementwiseSubOneGradFunctor<T>,
ElementwiseSubBroadCastGradFunctor<T>,
ElementwiseSubBroadCast2GradFunctor<T>>(ctx);
}
};
} // namespace operators
} // namespace paddle
......@@ -186,6 +186,9 @@ W_i is a 2-D matrix of size (K x N), where N means the number of neurons
in the fully connected layer. B is a 1-D vector of size N.
Thus, the output Out is a 2-D matrix of size (M x N).
Activation type can be set to `identity` (default), `sigmoid` or `softmax`.
All the inputs can carry the LoD (Level of Details) information,
or not. But the output only shares the LoD with first input (`X[0]`).
)DOC");
}
};
......
......@@ -23,15 +23,14 @@ class FillZerosLikeOp : public framework::OperatorWithKernel {
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE_NOT_NULL(
ctx.InputVar("Src"),
"Input(Src) of FillZerosLikeOp should not be null.");
PADDLE_ENFORCE_NOT_NULL(
ctx.OutputVar("Dst"),
"Output(Dst) of FillZerosLikeOp should not be null.");
ctx.Output<framework::LoDTensor>("Dst")->Resize(
ctx.Input<framework::Tensor>("Src")->dims());
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"),
"Input(X) of FillZerosLikeOp should not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar("Y"),
"Output(Y) of FillZerosLikeOp should not be null.");
ctx.Output<framework::Tensor>("Y")->Resize(
ctx.Input<framework::Tensor>("X")->dims());
ctx.ShareLoD("X", /*->*/ "Y");
}
};
......@@ -40,8 +39,8 @@ class FillZerosLikeOpMaker : public framework::OpProtoAndCheckerMaker {
FillZerosLikeOpMaker(framework::OpProto *proto,
framework::OpAttrChecker *op_checker)
: framework::OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("Src", "The input of fill-zeros-like op.");
AddOutput("Dst", "The varibale will be filled up with zeros.");
AddInput("X", "The input of fill-zeros-like op.");
AddOutput("Y", "The varibale will be filled up with zeros.");
AddComment(R"DOC(
Fill up a vriable with zeros.
......
......@@ -23,7 +23,7 @@ template <typename Place, typename T>
class FillZerosLikeKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* output = context.Output<framework::Tensor>("Dst");
auto* output = context.Output<framework::Tensor>("Y");
output->mutable_data<T>(context.GetPlace());
auto t = framework::EigenVector<T>::Flatten(*output);
t.device(context.GetEigenDevice<Place>()) = t.constant(static_cast<T>(0));
......
......@@ -35,7 +35,7 @@ class GatherOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE_GE(batch_size, 0, "Batch size must be >0");
framework::DDim output_dims(ctx.Input<Tensor>("X")->dims());
output_dims[0] = batch_size;
ctx.Output<framework::LoDTensor>("Out")->Resize(output_dims);
ctx.Output<framework::Tensor>("Out")->Resize(output_dims);
}
};
......@@ -45,7 +45,7 @@ class GatherGradOp : public framework::OperatorWithKernel {
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
auto X_grad = ctx.Output<framework::LoDTensor>(framework::GradVarName("X"));
auto X_grad = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
auto X = ctx.Input<Tensor>("X");
X_grad->Resize(X->dims());
......
......@@ -48,7 +48,7 @@ class GaussianRandomOp : public framework::OperatorWithKernel {
ctx.OutputVar("Out"),
"Output(Out) of GaussianRandomOp should not be null.");
auto* tensor = ctx.Output<framework::LoDTensor>("Out");
auto* tensor = ctx.Output<framework::Tensor>("Out");
auto dims = Attr<std::vector<int>>("dims");
std::vector<int64_t> temp;
temp.reserve(dims.size());
......
......@@ -32,9 +32,10 @@ class LookupTableOp : public framework::OperatorWithKernel {
auto table_t = ctx.Input<Tensor>("W");
auto ids_t = ctx.Input<Tensor>("Ids");
auto output_t = ctx.Output<framework::LoDTensor>("Out");
auto output_t = ctx.Output<framework::Tensor>("Out");
output_t->Resize({ids_t->dims()[0], table_t->dims()[1]});
ctx.ShareLoD("Ids", /*->*/ "Out");
}
};
......@@ -50,9 +51,13 @@ class LookupTableOpMaker : public framework::OpProtoAndCheckerMaker {
"An input with type int32 or int64"
"contains the ids to be looked up in W.");
AddOutput("Out", "The lookup results, which have the same type with W.");
AddComment(
"This operator is used to perform lookups on the parameter W,"
"then concatenated into a dense tensor.");
AddComment(R"DOC(
This operator is used to perform lookups on the parameter W,
then concatenated into a dense tensor.
The input `Ids` can carry the LoD (Level of Details) information,
or not. And the output only shares the LoD with input `Ids`.
)DOC");
}
};
......@@ -64,7 +69,7 @@ class LookupTableOpGrad : public framework::OperatorWithKernel {
void InferShape(const framework::InferShapeContext &context) const override {
auto table = context.Input<Tensor>("W");
auto d_table =
context.Output<framework::LoDTensor>(framework::GradVarName("W"));
context.Output<framework::Tensor>(framework::GradVarName("W"));
d_table->Resize(table->dims());
}
};
......
......@@ -27,7 +27,7 @@ class MeanOp : public framework::OperatorWithKernel {
"Input(X) of MeanOp should not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar("Out"),
"Output(Out) of MeanOp should not be null.");
ctx.Output<framework::LoDTensor>("Out")->Resize({1});
ctx.Output<framework::Tensor>("Out")->Resize({1});
}
};
......@@ -37,7 +37,8 @@ class MeanOpMaker : public framework::OpProtoAndCheckerMaker {
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "The input of mean op");
AddOutput("Out", "The output of mean op").NotInGradient();
AddComment("Mean Operator");
AddComment(R"DOC( Mean Operator
)DOC");
}
};
......@@ -47,7 +48,7 @@ class MeanGradOp : public framework::OperatorWithKernel {
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
ctx.Output<framework::LoDTensor>(framework::GradVarName("X"))
ctx.Output<framework::Tensor>(framework::GradVarName("X"))
->Resize(ctx.Input<Tensor>("X")->dims());
}
};
......
......@@ -40,7 +40,8 @@ class MinusOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE_EQ(
left_tensor->numel(), right_tensor->numel(),
"Minus operator must take two tensor with same num of elements");
ctx.Output<framework::LoDTensor>("Out")->Resize(left_tensor->dims());
ctx.Output<framework::Tensor>("Out")->Resize(left_tensor->dims());
ctx.ShareLoD("X", /*->*/ "Out");
}
};
......@@ -54,7 +55,12 @@ class MinusOpMaker : public framework::OpProtoAndCheckerMaker {
AddComment(R"DOC(Minus Operator
Equation: Out = X - Y
Equation:
Out = X - Y
Both the input `X` and `Y` can carry the LoD (Level of Details) information,
or not. But the output only shares the LoD with input `X`.
)DOC");
}
};
......
......@@ -34,8 +34,8 @@ class ModifiedHuberLossOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE_EQ(x->dims().size(), 2, "The tensor rank of X must be 2.");
PADDLE_ENFORCE_EQ(x->dims()[1], 1, "The 2nd dimension of X must be 1.");
context.Output<framework::LoDTensor>("IntermediateVal")->Resize(x->dims());
context.Output<framework::LoDTensor>("Out")->Resize({x->dims()[0], 1});
context.Output<framework::Tensor>("IntermediateVal")->Resize(x->dims());
context.Output<framework::Tensor>("Out")->Resize({x->dims()[0], 1});
}
};
......@@ -81,7 +81,7 @@ class ModifiedHuberLossGradOp : public framework::OperatorWithKernel {
auto* intermediate_val = context.Input<Tensor>("IntermediateVal");
auto* out_grad = context.Input<Tensor>(framework::GradVarName("Out"));
auto* x_grad =
context.Output<framework::LoDTensor>(framework::GradVarName("X"));
context.Output<framework::Tensor>(framework::GradVarName("X"));
PADDLE_ENFORCE_NOT_NULL(x, "X must be initialized.");
PADDLE_ENFORCE_NOT_NULL(y, "Y must be initialized.");
......
......@@ -52,8 +52,8 @@ class ModifiedHuberLossKernel : public framework::OpKernel {
void Compute(const framework::ExecutionContext& context) const override {
auto* in0 = context.Input<Tensor>("X");
auto* in1 = context.Input<Tensor>("Y");
auto* out0 = context.Output<framework::LoDTensor>("IntermediateVal");
auto* out1 = context.Output<framework::LoDTensor>("Out");
auto* out0 = context.Output<framework::Tensor>("IntermediateVal");
auto* out1 = context.Output<framework::Tensor>("Out");
out0->mutable_data<T>(context.GetPlace());
out1->mutable_data<T>(context.GetPlace());
......@@ -77,11 +77,9 @@ class ModifiedHuberLossGradCPUKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* in0 = context.Input<Tensor>("Y");
auto* in1 = context.Input<framework::LoDTensor>("IntermediateVal");
auto* in2 =
context.Input<framework::LoDTensor>(framework::GradVarName("Out"));
auto* out0 =
context.Output<framework::LoDTensor>(framework::GradVarName("X"));
auto* in1 = context.Input<framework::Tensor>("IntermediateVal");
auto* in2 = context.Input<framework::Tensor>(framework::GradVarName("Out"));
auto* out0 = context.Output<framework::Tensor>(framework::GradVarName("X"));
if (out0) {
const T* y_ptr = in0->data<T>();
......
......@@ -18,7 +18,6 @@ namespace paddle {
namespace operators {
using framework::Tensor;
using framework::LoDTensor;
class MulOp : public framework::OperatorWithKernel {
public:
......@@ -53,8 +52,9 @@ class MulOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE_EQ(
x_mat_dims[1], y_mat_dims[0],
"First matrix's width must be equal with second matrix's height.");
ctx.Output<framework::LoDTensor>("Out")->Resize(
ctx.Output<framework::Tensor>("Out")->Resize(
{x_mat_dims[0], y_mat_dims[1]});
ctx.ShareLoD("X", /*->*/ "Out");
}
};
......@@ -83,9 +83,14 @@ class MulOpMaker : public framework::OpProtoAndCheckerMaker {
.SetDefault(1)
.EqualGreaterThan(1);
AddComment(R"DOC(
Two Element Mul Operator.
Mul operator is used to perform matrix multiplication for input X and Y.
The equation is: Out = X * Y
The equation is:
Out = X * Y
Both the input `X` and `Y` can carry the LoD (Level of Details) information,
or not. But the output only shares the LoD with input `X`.
)DOC");
}
};
......@@ -103,10 +108,8 @@ class MulOpGrad : public framework::OperatorWithKernel {
auto x_dims = ctx.Input<Tensor>("X")->dims();
auto y_dims = ctx.Input<Tensor>("Y")->dims();
auto out_dims = ctx.Input<Tensor>(framework::GradVarName("Out"))->dims();
auto *x_grad =
ctx.Output<framework::LoDTensor>(framework::GradVarName("X"));
auto *y_grad =
ctx.Output<framework::LoDTensor>(framework::GradVarName("Y"));
auto *x_grad = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
auto *y_grad = ctx.Output<framework::Tensor>(framework::GradVarName("Y"));
auto x_mat_dims =
framework::flatten_to_2d(x_dims, Attr<int>("x_num_col_dims"));
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/multiplex_op.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
class MultiplexOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE(!ctx.MultiInputVar("X").empty(),
"Input(X) should not be null");
PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar("Out"),
"Output(Out) shouldn't be null.");
auto ins = ctx.MultiInput<Tensor>("X");
auto *out = ctx.Output<LoDTensor>("Out");
auto num_ins = ins.size();
PADDLE_ENFORCE(num_ins > 2,
"multiplex operator should have more than 2 inputs.");
PADDLE_ENFORCE_EQ(ins[0]->dims().size(), 1,
"The first input must be a index vector.");
auto in_dim = ins[1]->dims();
for (size_t i = 2; i < num_ins; i++) {
auto dim = ins[i]->dims();
PADDLE_ENFORCE(
in_dim == dim,
"All the input tensors except the first one must have the same size");
}
out->Resize(in_dim);
}
};
class MultiplexOpMaker : public framework::OpProtoAndCheckerMaker {
public:
MultiplexOpMaker(framework::OpProto *proto,
framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "The input tensors of multiplex operator.").AsDuplicable();
AddOutput("Out", "The output tensor of multiplex operator.");
AddComment(R"DOC(Multiplex operator
Multiplex multiple tensors according to the index provided by the first
input tensor.
ins[0]: the index tensor.
ins[1:N]: the candidate output tensors.
For each index i from 0 to batchSize - 1, the output is the i-th row of the
the (index[i] + 1)-th tensor.
For i-th row of the output tensor:
y[i][j] = x_{k}[i][j], j = 0,1, ... , (x_{1}.width - 1)
where y is the output tensor. `x_{k}` is the k-th input tensor
and `k = x{0}[i] + 1`.
)DOC");
}
};
class MultiplexGradOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE(!ctx.MultiInputVar("X").empty(),
"Input(X) should not be null");
PADDLE_ENFORCE(!ctx.MultiOutputVar(framework::GradVarName("X")).empty(),
"Output(X@Grad) should not be null");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Out")),
"Input(Out@GRAD) shouldn't be null.");
auto d_ins = ctx.MultiOutput<LoDTensor>(framework::GradVarName("X"));
auto ins = ctx.MultiInput<Tensor>("X");
// don't compute gradient for index (ins[0])
for (size_t i = 1; i < ins.size(); i++) {
if (d_ins[i]) {
d_ins[i]->Resize(ins[i]->dims());
}
}
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP(multiplex, ops::MultiplexOp, ops::MultiplexOpMaker, multiplex_grad,
ops::MultiplexGradOp);
REGISTER_OP_CPU_KERNEL(
multiplex, ops::MultiplexCPUKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
multiplex_grad,
ops::MultiplexGradCPUKernel<paddle::platform::CPUPlace, float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/framework/op_registry.h"
#include "paddle/operators/multiplex_op.h"
namespace paddle {
namespace operators {
template <typename Place, typename T>
class MultiplexGPUKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& ctx) const {
auto ins = ctx.MultiInput<framework::Tensor>("X");
auto* out = ctx.Output<framework::LoDTensor>("Out");
out->mutable_data<T>(ctx.GetPlace());
auto rows = ins[1]->dims()[0];
auto cols = ins[1]->dims()[1];
// copy index to cpu
framework::Tensor index_t_cpu;
index_t_cpu.CopyFrom<T>(*(ins[0]), platform::CPUPlace());
auto* index = index_t_cpu.data<T>();
auto stream = reinterpret_cast<const platform::CUDADeviceContext&>(
ctx.device_context())
.stream();
Place place = boost::get<Place>(ctx.GetPlace());
for (auto i = 0; i < rows; i++) {
int k = (int)index[i] + 1;
PADDLE_ENFORCE_LT(k, ins.size(),
"index exceeds the number of candidate tensors.");
memory::Copy(place, out->data<T>() + i * cols, place,
ins[k]->data<T>() + i * cols, cols * sizeof(T), stream);
}
}
};
template <typename Place, typename T>
class MultiplexGradGPUKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& ctx) const {
auto* d_out = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
auto ins = ctx.MultiInput<framework::Tensor>("X");
auto d_ins =
ctx.MultiOutput<framework::Tensor>(framework::GradVarName("X"));
for (size_t i = 1; i < d_ins.size(); i++) {
if (d_ins[i]) {
d_ins[i]->mutable_data<T>(ctx.GetPlace());
auto t = framework::EigenVector<T>::Flatten(*d_ins[i]);
t.device(ctx.GetEigenDevice<Place>()) = t.constant(static_cast<T>(0));
}
}
auto rows = ins[1]->dims()[0];
auto cols = ins[1]->dims()[1];
// copy index to cpu
framework::Tensor index_t_cpu;
index_t_cpu.CopyFrom<T>(*(ins[0]), platform::CPUPlace());
auto* index = index_t_cpu.data<T>();
auto stream = reinterpret_cast<const platform::CUDADeviceContext&>(
ctx.device_context())
.stream();
Place place = boost::get<Place>(ctx.GetPlace());
for (auto i = 0; i < rows; i++) {
int k = (int)index[i] + 1;
if (d_ins[k]) {
memory::Copy(place, d_ins[k]->data<T>() + i * cols, place,
d_out->data<T>() + i * cols, cols * sizeof(T), stream);
}
}
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_GPU_KERNEL(
multiplex, ops::MultiplexGPUKernel<paddle::platform::GPUPlace, float>);
REGISTER_OP_GPU_KERNEL(
multiplex_grad,
ops::MultiplexGradGPUKernel<paddle::platform::GPUPlace, float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
#include "paddle/memory/memcpy.h"
namespace paddle {
namespace operators {
template <typename Place, typename T>
class MultiplexCPUKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& ctx) const {
auto ins = ctx.MultiInput<framework::Tensor>("X");
auto* out = ctx.Output<framework::LoDTensor>("Out");
out->mutable_data<T>(ctx.GetPlace());
auto rows = ins[1]->dims()[0];
auto cols = ins[1]->dims()[1];
auto* index = ins[0]->data<T>();
Place place = boost::get<Place>(ctx.GetPlace());
for (auto i = 0; i < rows; i++) {
int k = (int)index[i] + 1;
PADDLE_ENFORCE_LT(k, ins.size(),
"index exceeds the number of candidate tensors.");
memory::Copy(place, out->data<T>() + i * cols, place,
ins[k]->data<T>() + i * cols, cols * sizeof(T));
}
}
};
template <typename Place, typename T>
class MultiplexGradCPUKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& ctx) const {
auto* d_out = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
auto ins = ctx.MultiInput<framework::Tensor>("X");
auto d_ins =
ctx.MultiOutput<framework::Tensor>(framework::GradVarName("X"));
for (size_t i = 1; i < d_ins.size(); i++) {
if (d_ins[i]) {
d_ins[i]->mutable_data<T>(ctx.GetPlace());
auto t = framework::EigenVector<T>::Flatten(*d_ins[i]);
t.device(ctx.GetEigenDevice<Place>()) = t.constant(static_cast<T>(0));
}
}
auto rows = ins[1]->dims()[0];
auto cols = ins[1]->dims()[1];
auto* index = ins[0]->data<T>();
Place place = boost::get<Place>(ctx.GetPlace());
for (auto i = 0; i < rows; i++) {
int k = (int)index[i] + 1;
if (d_ins[k]) {
memory::Copy(place, d_ins[k]->data<T>() + i * cols, place,
d_out->data<T>() + i * cols, cols * sizeof(T));
}
}
}
};
}
}
......@@ -39,8 +39,13 @@ class PadOp : public framework::OperatorWithKernel {
for (int i = 0; i < x_dim.size(); ++i) {
out_dims[i] = x_dim[i] + paddings[i * 2] + paddings[i * 2 + 1];
}
ctx.Output<framework::LoDTensor>("Out")->Resize(
ctx.Output<framework::Tensor>("Out")->Resize(
framework::make_ddim(out_dims));
if (out_dims[0] == x_dim[0]) {
// Only pass LoD when the first dimension is equal between
// output and input.
ctx.ShareLoD("X", /*->*/ "Out");
}
}
};
......@@ -101,7 +106,7 @@ class PadOpGrad : public framework::OperatorWithKernel {
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Out")),
"Input(Out@GRAD) should not be null");
auto x_dims = ctx.Input<Tensor>("X")->dims();
auto *x_g = ctx.Output<framework::LoDTensor>(framework::GradVarName("X"));
auto *x_g = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
if (x_g != nullptr) {
x_g->Resize(x_dims);
}
......
......@@ -36,8 +36,9 @@ class PReluOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar("Out"),
"Output(Out) should not be null");
auto *out = ctx.Output<framework::LoDTensor>("Out");
auto *out = ctx.Output<framework::Tensor>("Out");
out->Resize(in->dims());
ctx.ShareLoD("X", /*->*/ "Out");
}
};
......@@ -55,6 +56,8 @@ The equation is:
f(x) = alpha * x , for x < 0
f(x) = x , for x >= 0
The input `X` can carry the LoD (Level of Details) information,
or not. And the output shares the LoD with input `X`.
)DOC");
}
};
......@@ -69,11 +72,11 @@ class PReluGradOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) must not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Out")),
"Input(Out@GRAD) should not be null");
auto *dx = ctx.Output<framework::LoDTensor>(framework::GradVarName("X"));
auto *dx = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
auto *x = ctx.Input<framework::Tensor>("X");
auto *dalpha =
ctx.Output<framework::LoDTensor>(framework::GradVarName("Alpha"));
ctx.Output<framework::Tensor>(framework::GradVarName("Alpha"));
auto *alpha = ctx.Input<framework::Tensor>("Alpha");
dx->Resize(x->dims());
......
......@@ -40,7 +40,7 @@ class RankLossOp : public framework::OperatorWithKernel {
"All inputs must have the same size");
PADDLE_ENFORCE((label_dims.size() == 2) && (label_dims[1] == 1),
"All inputs must be row vector with size batch_size x 1.");
ctx.Output<framework::LoDTensor>("Out")->Resize(label_dims);
ctx.Output<framework::Tensor>("Out")->Resize(label_dims);
}
};
......@@ -102,9 +102,9 @@ class RankLossGradOp : public framework::OperatorWithKernel {
"Input(Out@GRAD) shouldn't be null.");
auto dims = ctx.Input<framework::Tensor>("Left")->dims();
auto *left_grad =
ctx.Output<framework::LoDTensor>(framework::GradVarName("Left"));
ctx.Output<framework::Tensor>(framework::GradVarName("Left"));
auto *right_grad =
ctx.Output<framework::LoDTensor>(framework::GradVarName("Right"));
ctx.Output<framework::Tensor>(framework::GradVarName("Right"));
if (left_grad) {
left_grad->Resize(dims);
}
......
......@@ -24,7 +24,7 @@ template <typename Place, typename T>
class RankLossKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& ctx) const {
auto* out_t = ctx.Output<framework::LoDTensor>("Out");
auto* out_t = ctx.Output<framework::Tensor>("Out");
auto* label_t = ctx.Input<framework::Tensor>("Label");
auto* left_t = ctx.Input<framework::Tensor>("Left");
auto* right_t = ctx.Input<framework::Tensor>("Right");
......@@ -46,9 +46,9 @@ class RankLossGradKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& ctx) const {
auto* d_left_t =
ctx.Output<framework::LoDTensor>(framework::GradVarName("Left"));
ctx.Output<framework::Tensor>(framework::GradVarName("Left"));
auto* d_right_t =
ctx.Output<framework::LoDTensor>(framework::GradVarName("Right"));
ctx.Output<framework::Tensor>(framework::GradVarName("Right"));
auto* d_out_t = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
auto* label_t = ctx.Input<framework::Tensor>("Label");
......
......@@ -80,7 +80,6 @@ void RecurrentAlgorithm::CreateScopes(const Scope& scope) const {
// Now all variables in scope must be created outside of op.
PADDLE_ENFORCE_NOT_NULL(stepnet_);
PADDLE_ENFORCE(!(*stepnet_)->Outputs().empty(), "stepnet_ op has no outputs");
PADDLE_ENFORCE(!(*stepnet_)->Outputs().empty(), "net_op has no outputs");
if (seq_len_ > step_scopes->size()) {
for (size_t i = step_scopes->size(); i < seq_len_; ++i) {
......@@ -129,8 +128,8 @@ const rnn::ArgumentName RecurrentOp::kArgName{
"memories", "pre_memories", "boot_memories"};
const rnn::ArgumentName RecurrentGradientOp::kArgName{
"step_net", "step_scopes", "outlink@grad", "inlink@grad",
"memories", "pre_memories", "boot_memories@grad"};
"step_net", "step_scopes@GRAD", "outlinks@GRAD", "inlinks@GRAD",
"memories", "pre_memories", "boot_memories@GRAD"};
RecurrentOp::RecurrentOp(const std::string& type,
const framework::VariableNameMap& inputs,
......@@ -226,13 +225,13 @@ RecurrentGradientOp::RecurrentGradientOp(
const framework::VariableNameMap& outputs,
const framework::AttributeMap& attrs)
: OperatorBase(type, inputs, outputs, attrs) {
rnn::InitArgument(kArgName, &arg_, *this);
rnn::InitArgument(kArgName, &arg_, *this, true /*is grad*/);
alg_.Init(&arg_, &stepnet_);
}
} // namespace operators
} // namespace paddle
REGISTER_OP_WITHOUT_GRADIENT(
recurrent, paddle::operators::RecurrentOp,
paddle::operators::RecurrentAlgorithmProtoAndCheckerMaker);
REGISTER_OP(recurrent, paddle::operators::RecurrentOp,
paddle::operators::RecurrentAlgorithmProtoAndCheckerMaker,
recurrent_grad, paddle::operators::RecurrentGradientOp);
......@@ -22,7 +22,7 @@ namespace paddle {
namespace operators {
// The sequence format in RecurrentOp is Tensor<seq_len, batch_size, dim> now.
// TODO(Yan Chunwei):
// TODO(Superjom)
// 1. No-padding computing for sequences with indifinite length in one batch.
// 2. Hierarchical RNN for sequence with sub-sequence.
// 3. Internal Memory.
......@@ -177,6 +177,9 @@ class RecurrentGradientOp : public framework::OperatorBase {
static const rnn::ArgumentName kArgName;
/*
* set a stepnet that is created according to a RecurrentOp's stepnet.
*/
void set_stepnet(std::unique_ptr<OperatorBase> net) {
stepnet_ = std::move(net);
}
......
......@@ -49,7 +49,12 @@ class ReshapeOp : public framework::OperatorWithKernel {
std::transform(shape.begin(), shape.end(), shape_int64.begin(),
[](int a) { return static_cast<int64_t>(a); });
auto out_dims = framework::make_ddim(shape_int64);
ctx.Output<framework::LoDTensor>("Out")->Resize(out_dims);
ctx.Output<framework::Tensor>("Out")->Resize(out_dims);
if (shape[0] == in->dims()[0]) {
// Only pass LoD when the first dimension is equal between
// output and input.
ctx.ShareLoD("X", /*->*/ "Out");
}
}
};
......@@ -93,7 +98,7 @@ class ReshapeGradOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Out")),
"Input(Out@GRAD) shouldn't be null.");
auto dims = ctx.Input<framework::Tensor>("X")->dims();
auto *d_in = ctx.Output<framework::LoDTensor>(framework::GradVarName("X"));
auto *d_in = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
d_in->Resize(dims);
}
};
......
......@@ -109,15 +109,14 @@ void LinkMemories(const std::vector<Scope*>& scopes,
}
void InitArgument(const ArgumentName& name, Argument* arg,
const framework::OperatorBase& op) {
arg->step_scopes = op.Output(name.step_scopes);
const framework::OperatorBase& op, bool is_grad) {
arg->step_scopes =
is_grad ? op.Input(name.step_scopes) : op.Output(name.step_scopes);
arg->inlinks = op.Inputs(name.inlinks);
arg->outlinks = op.Outputs(name.outlinks);
auto boot_memories = op.Inputs(name.boot_memories);
auto boot_memories =
is_grad ? op.Outputs(name.boot_memories) : op.Inputs(name.boot_memories);
// attributes
auto memories = op.Attr<std::vector<std::string>>(name.memories);
auto pre_memories = op.Attr<std::vector<std::string>>(name.pre_memories);
......
......@@ -78,7 +78,7 @@ void LinkMemories(const std::vector<Scope*>& step_scopes,
const int offset, bool infer_shape_mode);
void InitArgument(const ArgumentName& name, Argument* arg,
const framework::OperatorBase& op);
const framework::OperatorBase& op, bool is_grad = false);
} // namespace rnn
} // namespace operators
......
......@@ -44,7 +44,8 @@ class RowwiseAddOp : public framework::OperatorWithKernel {
framework::slice_ddim(x_dims, num_col_dims, x_dims.size()), b_dims,
"The width of two operands must be same");
PADDLE_ENFORCE_EQ(ctx.OutputSize("Out"), 1, "The output size must be 1");
ctx.Output<framework::LoDTensor>("Out")->Resize(x_dims);
ctx.Output<framework::Tensor>("Out")->Resize(x_dims);
ctx.ShareLoD("X", /*->*/ "Out");
}
};
......@@ -83,8 +84,8 @@ class RowwiseAddGradOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE_EQ(
framework::slice_ddim(x_dims, num_col_dims, x_dims.size()), b_dims,
"The width of two operands must be same");
auto *dx = ctx.Output<framework::LoDTensor>(framework::GradVarName("X"));
auto *db = ctx.Output<framework::LoDTensor>(framework::GradVarName("b"));
auto *dx = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
auto *db = ctx.Output<framework::Tensor>(framework::GradVarName("b"));
if (dx) dx->Resize(x_dims);
if (db) db->Resize(b_dims);
}
......
......@@ -33,8 +33,9 @@ class ScaleOp : public framework::OperatorWithKernel {
"Output(Out) of ScaleOp should not be null.");
auto *in = ctx.Input<framework::Tensor>("X");
auto *out = ctx.Output<framework::LoDTensor>("Out");
auto *out = ctx.Output<framework::Tensor>("Out");
out->Resize(in->dims());
ctx.ShareLoD("X", /*->*/ "Out");
}
};
......
......@@ -44,7 +44,7 @@ class ScatterOp : public framework::OperatorWithKernel {
framework::DDim data_dim(ctx.Input<Tensor>("Updates")->dims());
for (int i = 1; i < data_dim.size(); ++i)
PADDLE_ENFORCE_EQ(data_dim[i], ctx.Input<Tensor>("Updates")->dims()[i]);
ctx.Output<framework::LoDTensor>("Out")->Resize(
ctx.Output<framework::Tensor>("Out")->Resize(
ctx.Input<Tensor>("Ref")->dims());
}
};
......@@ -56,10 +56,9 @@ class ScatterGradOp : public framework::OperatorWithKernel {
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
auto *dUpdates =
ctx.Output<framework::LoDTensor>(framework::GradVarName("Updates"));
ctx.Output<framework::Tensor>(framework::GradVarName("Updates"));
auto *Updates = ctx.Input<Tensor>("Updates");
auto *dRef =
ctx.Output<framework::LoDTensor>(framework::GradVarName("Ref"));
auto *dRef = ctx.Output<framework::Tensor>(framework::GradVarName("Ref"));
auto *Ref = ctx.Input<Tensor>("Ref");
dRef->Resize(Ref->dims());
......
......@@ -12,22 +12,22 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/sequence_avg_pool_op.h"
#include "paddle/operators/sequence_pool_op.h"
namespace paddle {
namespace operators {
class SequenceAvgPoolOp : public framework::OperatorWithKernel {
class SequencePoolOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(const framework::InferShapeContext& ctx) const override {
PADDLE_ENFORCE_NOT_NULL(
ctx.InputVar("X"), "Input(X) of SequenceAvgPoolOp should not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"),
"Input(X) of SequencePoolOp should not be null.");
PADDLE_ENFORCE_NOT_NULL(
ctx.OutputVar("Out"),
"Output(Out) of SequenceAvgPoolOp should not be null.");
"Output(Out) of SequencePoolOp should not be null.");
auto* x = ctx.Input<framework::LoDTensor>("X");
auto dims = x->dims();
......@@ -42,21 +42,45 @@ class SequenceAvgPoolOp : public framework::OperatorWithKernel {
}
};
class SequenceAvgPoolOpMaker : public framework::OpProtoAndCheckerMaker {
class SequencePoolOpMaker : public framework::OpProtoAndCheckerMaker {
public:
SequenceAvgPoolOpMaker(framework::OpProto* proto,
framework::OpAttrChecker* op_checker)
SequencePoolOpMaker(framework::OpProto* proto,
framework::OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "Input of SequenceAvgPoolOp.");
AddOutput("Out", "The output of SequenceAvgPoolOp.");
AddInput("X",
"A float LoDTensor, the variable-length input of SequencePoolOp");
AddOutput(
"Out",
"A float LoDTensor, the variable-length output of SequencePoolOp.");
AddAttr<int>(
"strategy",
"(int, default AVERAGE) the pooling strategy of SequencePoolOp.")
.SetDefault(AVERAGE)
.InEnum({AVERAGE, SUM, SQRT, MAX, LAST, FIRST});
AddComment(R"DOC(
SequenceAvgPoolOp averages features of all time-steps of each instance.
More detailed comments will be added later.
SequencePoolOp pools features of all time-steps of each instance.
For a mini-batch of 3 variable lengths sentences, containing 2, 3, and 2 time-steps:
Assume X is a [7,M,N] float LoDTensor, and X->lod()[0] = [0, 2, 5, 7].
Besides, for the sake of simplicity, we assume M=1 and N=1,
and the value of X = [[1, 3], [2, 4, 6], [5, 1]].
Thus, Out is a [3,1,1] float LoDTensor, but Out->lod() is nullptr.
And for different strategy, the value of Out is as follows:
- AVERAGE: [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
- SUM: [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
- SQRT: [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
- MAX: [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
- LAST: [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
- FIRST: [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
)DOC");
}
};
class SequenceAvgPoolGradOp : public framework::OperatorWithKernel {
class SequencePoolGradOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
......@@ -84,12 +108,10 @@ class SequenceAvgPoolGradOp : public framework::OperatorWithKernel {
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP(sequence_avg_pool, ops::SequenceAvgPoolOp,
ops::SequenceAvgPoolOpMaker, sequence_avg_pool_grad,
ops::SequenceAvgPoolGradOp);
REGISTER_OP(sequence_pool, ops::SequencePoolOp, ops::SequencePoolOpMaker,
sequence_pool_grad, ops::SequencePoolGradOp);
REGISTER_OP_CPU_KERNEL(
sequence_avg_pool,
ops::SequenceAvgPoolKernel<paddle::platform::CPUPlace, float>);
sequence_pool, ops::SequencePoolKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
sequence_avg_pool_grad,
ops::SequenceAvgPoolGradKernel<paddle::platform::CPUPlace, float>);
sequence_pool_grad,
ops::SequencePoolGradKernel<paddle::platform::CPUPlace, float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#define EIGEN_USE_GPU
#include "paddle/operators/sequence_pool_op.h"
namespace ops = paddle::operators;
REGISTER_OP_GPU_KERNEL(
sequence_pool, ops::SequencePoolKernel<paddle::platform::GPUPlace, float>);
REGISTER_OP_GPU_KERNEL(
sequence_pool_grad,
ops::SequencePoolGradKernel<paddle::platform::GPUPlace, float>);
......@@ -28,54 +28,85 @@ template <typename T, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;
enum SeqPoolType {
AVERAGE = 0,
SUM = 1,
SQRT = 2, // square_root_n
MAX = 3,
LAST = 4,
FIRST = 5
};
template <typename Place, typename T>
class SequenceAvgPoolKernel : public framework::OpKernel {
class SequencePoolKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* in = context.Input<LoDTensor>("X");
auto* out = context.Output<LoDTensor>("Out");
int strategy = context.Attr<int>("strategy");
auto dims = in->dims();
auto lod = in->lod();
auto lod = in->lod()[0];
int64_t w = in->numel() / dims[0];
out->mutable_data<T>(context.GetPlace());
auto place = context.GetEigenDevice<Place>();
for (int i = 0; i < static_cast<int>(lod[0].size()) - 1; ++i) {
Tensor in_t = in->Slice<T>(static_cast<int>(lod[0][i]),
static_cast<int>(lod[0][i + 1]));
for (int i = 0; i < static_cast<int>(lod.size()) - 1; ++i) {
Tensor in_t =
in->Slice<T>(static_cast<int>(lod[i]), static_cast<int>(lod[i + 1]));
Tensor out_t = out->Slice<T>(i, i + 1);
int64_t h = static_cast<int64_t>(lod[0][i + 1] - lod[0][i]);
int64_t h = static_cast<int64_t>(lod[i + 1] - lod[i]);
auto in_e = EigenMatrix<T>::From(in_t, framework::make_ddim({h, w}));
auto out_e = EigenVector<T>::Flatten(out_t);
out_e.device(place) = in_e.mean(Eigen::array<int, 1>({{0}}));
switch (strategy) {
case AVERAGE:
out_e.device(place) = in_e.mean(Eigen::array<int, 1>({{0}}));
break;
case SUM:
out_e.device(place) = in_e.sum(Eigen::array<int, 1>({{0}}));
break;
default:
PADDLE_THROW("unsupported pooling strategy");
}
}
}
};
template <typename Place, typename T>
class SequenceAvgPoolGradKernel : public framework::OpKernel {
class SequencePoolGradKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* in = context.Input<LoDTensor>("X");
auto* out_g = context.Input<LoDTensor>(framework::GradVarName("Out"));
auto* in_g = context.Output<LoDTensor>(framework::GradVarName("X"));
int strategy = context.Attr<int>("strategy");
auto dims = in->dims();
auto lod = in->lod();
auto lod = in->lod()[0];
int64_t w = in->numel() / dims[0];
in_g->mutable_data<T>(context.GetPlace());
auto place = context.GetEigenDevice<Place>();
for (int i = 0; i < static_cast<int>(lod[0].size()) - 1; ++i) {
auto in_g_t = in_g->Slice<T>(static_cast<int>(lod[0][i]),
static_cast<int>(lod[0][i + 1]));
for (int i = 0; i < static_cast<int>(lod.size()) - 1; ++i) {
auto in_g_t = in_g->Slice<T>(static_cast<int>(lod[i]),
static_cast<int>(lod[i + 1]));
auto out_g_t = out_g->Slice<T>(i, i + 1);
int64_t h = static_cast<int64_t>(lod[0][i + 1] - lod[0][i]);
int64_t h = static_cast<int64_t>(lod[i + 1] - lod[i]);
auto in_g_e = EigenMatrix<T>::From(in_g_t, {h, w});
auto out_g_e = EigenMatrix<T>::From(out_g_t, {1, w});
Eigen::DSizes<int, 2> bcast(h, 1);
in_g_e.device(place) = (out_g_e / static_cast<T>(h)).broadcast(bcast);
switch (strategy) {
case AVERAGE:
in_g_e.device(place) = (out_g_e / static_cast<T>(h)).broadcast(bcast);
break;
case SUM:
in_g_e.device(place) = (out_g_e).broadcast(bcast);
break;
default:
PADDLE_THROW("unsupported pooling strategy");
}
}
}
};
......
......@@ -33,7 +33,7 @@ class SGDOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE_EQ(ctx.Input<Tensor>("param")->dims(),
ctx.Input<Tensor>("grad")->dims(),
"Two input of SGD Op's dimension must be same.");
ctx.Output<framework::LoDTensor>("param_out")
ctx.Output<framework::Tensor>("param_out")
->Resize(ctx.Input<Tensor>("param")->dims());
}
};
......
......@@ -44,8 +44,8 @@ class SmoothL1LossOp : public framework::OperatorWithKernel {
"The shape of OutsideWeight must be same as X.");
}
auto* diff = ctx.Output<framework::LoDTensor>("Diff");
auto* out = ctx.Output<framework::LoDTensor>("Out");
auto* diff = ctx.Output<framework::Tensor>("Diff");
auto* out = ctx.Output<framework::Tensor>("Out");
diff->Resize(x->dims());
// loss is a two-rank tensor
out->Resize({x->dims()[0], 1});
......@@ -103,10 +103,8 @@ class SmoothL1LossGradOp : public framework::OperatorWithKernel {
auto in_dims = ctx.Input<framework::Tensor>("X")->dims();
auto out_dims =
ctx.Input<framework::Tensor>(framework::GradVarName("Out"))->dims();
auto* x_grad =
ctx.Output<framework::LoDTensor>(framework::GradVarName("X"));
auto* y_grad =
ctx.Output<framework::LoDTensor>(framework::GradVarName("Y"));
auto* x_grad = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
auto* y_grad = ctx.Output<framework::Tensor>(framework::GradVarName("Y"));
PADDLE_ENFORCE_GE(out_dims.size(), 2,
"The tensor rank of Input(Out@Grad) should be 2.");
......
......@@ -30,8 +30,7 @@ class SoftmaxOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE(ctx.Input<Tensor>("X")->dims().size() == 2UL,
"The input of softmax op must be a matrix.");
ctx.Output<framework::LoDTensor>("Y")->Resize(
ctx.Input<Tensor>("X")->dims());
ctx.Output<framework::Tensor>("Y")->Resize(ctx.Input<Tensor>("X")->dims());
}
};
......@@ -77,7 +76,7 @@ class SoftmaxOpGrad : public framework::OperatorWithKernel {
ctx.Input<Tensor>(framework::GradVarName("Y"))->dims(),
"Input(Y) and its gradients should have a same shape.");
ctx.Output<framework::LoDTensor>(framework::GradVarName("X"))
ctx.Output<framework::Tensor>(framework::GradVarName("X"))
->Resize(ctx.Input<Tensor>("X")->dims());
}
};
......
......@@ -27,7 +27,7 @@ class SplitOp : public framework::OperatorWithKernel {
void InferShape(const framework::InferShapeContext &ctx) const override {
// infershape
auto *in = ctx.Input<framework::Tensor>("X");
auto outs = ctx.MultiOutput<framework::LoDTensor>("Out");
auto outs = ctx.MultiOutput<framework::Tensor>("Out");
size_t axis = static_cast<size_t>(ctx.Attr<int>("axis"));
size_t num = static_cast<size_t>(ctx.Attr<int>("num"));
std::vector<int> sections =
......
......@@ -54,9 +54,10 @@ class SquaredL2DistanceOp : public framework::OperatorWithKernel {
"First dimension of target must be equal to input "
"or to 1.");
ctx.Output<framework::LoDTensor>("sub_result")
ctx.Output<framework::Tensor>("sub_result")
->Resize({x_dims[0], x->numel() / x_dims[0]});
ctx.Output<framework::LoDTensor>("Out")->Resize({x_dims[0], 1});
ctx.Output<framework::Tensor>("Out")->Resize({x_dims[0], 1});
ctx.ShareLoD("X", /*->*/ "Out");
}
};
......@@ -79,6 +80,9 @@ class SquaredL2DistanceOpMaker : public framework::OpProtoAndCheckerMaker {
input or to 1. If the first dimension of target is 1, SquaredL2DistanceOp
will broadcast target's first dimension to input's first dimension.
You can decide whether calculate the gradient of input and target.
Both the input X and Y can carry the LoD (Level of Details) information,
or not. But the output only shares the LoD with input X.
)DOC");
}
};
......@@ -100,10 +104,8 @@ class SquaredL2DistanceGradOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE_EQ(out_dims[1], 1,
"Second dimension of output gradient "
"must be 1.");
auto* x_grad =
ctx.Output<framework::LoDTensor>(framework::GradVarName("X"));
auto* y_grad =
ctx.Output<framework::LoDTensor>(framework::GradVarName("Y"));
auto* x_grad = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
auto* y_grad = ctx.Output<framework::Tensor>(framework::GradVarName("Y"));
if (x_grad) x_grad->Resize(x_dims);
if (y_grad) y_grad->Resize(y_dims);
}
......
......@@ -28,7 +28,7 @@ class SumOp : public framework::OperatorWithKernel {
"Output(Out) of SumOp should not be null.");
auto ins = ctx.MultiInput<framework::Tensor>("X");
auto *out = ctx.Output<framework::LoDTensor>("Out");
auto *out = ctx.Output<framework::Tensor>("Out");
int N = ins.size();
auto in_dim = ins[0]->dims();
......@@ -39,6 +39,7 @@ class SumOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE(in_dim == dim, "Input tensors must have same shape");
}
out->Resize(in_dim);
ctx.ShareLoD("X", /*->*/ "Out");
}
};
......@@ -49,8 +50,11 @@ class SumOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput("X", "the input tensors of sum operator.").AsDuplicable();
AddOutput("Out", "the output tensor of sum operator.");
AddComment(R"DOC(
Sum the input tensors.
)DOC");
Sum the input tensors.
All the inputs can carry the LoD (Level of Details) information,
or not. But the output only shares the LoD with the first input.
)DOC");
}
};
......@@ -61,7 +65,7 @@ class SumGradOp : public framework::OperatorWithKernel {
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
auto outputs =
ctx.MultiOutput<framework::LoDTensor>(framework::GradVarName("X"));
ctx.MultiOutput<framework::Tensor>(framework::GradVarName("X"));
auto dims = ctx.Input<Tensor>(framework::GradVarName("Out"))->dims();
for (auto output : outputs) {
output->Resize(dims);
......
......@@ -40,8 +40,8 @@ class TopkOp : public framework::OperatorWithKernel {
framework::DDim dims = input->dims();
dims[dims.size() - 1] = k;
ctx.Output<framework::LoDTensor>("Out")->Resize(dims);
ctx.Output<framework::LoDTensor>("Indices")->Resize(dims);
ctx.Output<framework::Tensor>("Out")->Resize(dims);
ctx.Output<framework::Tensor>("Indices")->Resize(dims);
}
};
......
......@@ -51,7 +51,7 @@ class TransposeOp : public framework::OperatorWithKernel {
for (size_t i = 0; i < axis_size; i++) {
out_dims[i] = x_dims[axis[i]];
}
ctx.Output<framework::LoDTensor>("Out")->Resize(out_dims);
ctx.Output<framework::Tensor>("Out")->Resize(out_dims);
}
};
......@@ -99,8 +99,7 @@ class TransposeOpGrad : public framework::OperatorWithKernel {
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Out")),
"Input(Out@GRAD) should not be null");
auto x_dims = ctx.Input<Tensor>("X")->dims();
auto *x_grad =
ctx.Output<framework::LoDTensor>(framework::GradVarName("X"));
auto *x_grad = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
if (x_grad) x_grad->Resize(x_dims);
}
......
......@@ -54,7 +54,7 @@ class UniformRandomOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE(Attr<float>("min") < Attr<float>("max"),
"uniform_random's min must less then max");
auto* tensor = ctx.Output<framework::LoDTensor>("Out");
auto* tensor = ctx.Output<framework::Tensor>("Out");
auto dims = Attr<std::vector<int>>("dims");
std::vector<int64_t> temp;
temp.reserve(dims.size());
......
......@@ -34,12 +34,7 @@ limitations under the License. */
namespace py = pybind11;
namespace paddle {
namespace framework {
using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
using LoD = framework::LoD;
namespace pybind {
static size_t UniqueIntegerGenerator() {
static std::atomic<size_t> generator;
return generator.fetch_add(1);
......@@ -56,6 +51,10 @@ bool IsCompileGPU() {
PYBIND11_PLUGIN(core) {
py::module m("core", "C++ core of PaddlePaddle");
// using framework in this function. Since it is inside a function, it will
// not cause namespace pollution.
using namespace paddle::framework; // NOLINT
py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
.def_buffer(
[](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
......@@ -107,7 +106,7 @@ PYBIND11_PLUGIN(core) {
#ifdef PADDLE_ONLY_CPU
new (&instance) LoDTensor(lod);
#else
paddle::framework::LoD new_lod;
LoD new_lod;
new_lod.reserve(lod.size());
std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
new (&instance) LoDTensor(new_lod);
......@@ -118,7 +117,7 @@ PYBIND11_PLUGIN(core) {
#ifdef PADDLE_ONLY_CPU
self.set_lod(lod);
#else
paddle::framework::LoD new_lod;
LoD new_lod;
new_lod.reserve(lod.size());
std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
self.set_lod(new_lod);
......@@ -132,7 +131,7 @@ PYBIND11_PLUGIN(core) {
std::vector<std::vector<size_t>> new_lod;
new_lod.reserve(lod.size());
std::transform(lod.begin(), lod.end(), std::back_inserter(new_lod),
[](paddle::framework::Vector<size_t> item) ->
[](Vector<size_t> item) ->
std::vector<size_t> {
std::vector<size_t> v;
v.reserve(item.size());
......@@ -317,5 +316,5 @@ All parameter, weight, gradient are variables in Paddle.
return m.ptr();
}
} // namespace framework
} // namespace pybind
} // namespace paddle
......@@ -23,7 +23,7 @@ namespace py = pybind11;
namespace paddle {
namespace framework {
namespace pybind {
namespace details {
......
......@@ -89,12 +89,16 @@ class OpDescCreationMethod(object):
new_attr.f = user_defined_attr
elif attr.type == framework_pb2.STRING:
new_attr.s = user_defined_attr
elif attr.type == framework_pb2.BOOLEAN:
new_attr.b = user_defined_attr
elif attr.type == framework_pb2.INTS:
new_attr.ints.extend(user_defined_attr)
elif attr.type == framework_pb2.FLOATS:
new_attr.floats.extend(user_defined_attr)
elif attr.type == framework_pb2.STRINGS:
new_attr.strings.extend(user_defined_attr)
elif attr.type == framework_pb2.BOOLEANS:
new_attr.bools.extend(user_defined_attr)
elif attr.type == framework_pb2.INT_PAIRS:
for p in user_defined_attr:
pair = new_attr.int_pairs.add()
......
......@@ -24,15 +24,15 @@ class TestCosSimOp(OpTest):
self.check_output()
def test_check_grad_normal(self):
self.check_grad(['X', 'Y'], 'Out', max_relative_error=0.05)
self.check_grad(['X', 'Y'], 'Out', max_relative_error=0.06)
def test_check_grad_ingore_x(self):
self.check_grad(
['Y'], 'Out', max_relative_error=0.05, no_grad_set=set("X"))
['Y'], 'Out', max_relative_error=0.06, no_grad_set=set("X"))
def test_check_grad_ingore_y(self):
self.check_grad(
['X'], 'Out', max_relative_error=0.05, no_grad_set=set('Y'))
['X'], 'Out', max_relative_error=0.06, no_grad_set=set('Y'))
class TestCosSimOp2(TestCosSimOp):
......
......@@ -19,7 +19,7 @@ class TestCrossEntropyOp1(OpTest):
dtype="float32")
self.inputs = {"X": X, "Label": label}
self.outputs = {"Y": cross_entropy}
self.attrs = {'soft_label': 0}
self.attrs = {'soft_label': False}
def test_check_output(self):
self.check_output()
......@@ -45,7 +45,7 @@ class TestCrossEntropyOp2(OpTest):
axis=1, keepdims=True).astype("float32")
self.inputs = {'X': X, 'Label': label}
self.outputs = {'Y': cross_entropy}
self.attrs = {'soft_label': 1}
self.attrs = {'soft_label': True}
def test_check_output(self):
self.check_output()
......@@ -76,7 +76,7 @@ class TestCrossEntropyOp3(OpTest):
axis=1, keepdims=True).astype("float32")
self.inputs = {'X': X, 'Label': label}
self.outputs = {'Y': cross_entropy}
self.attrs = {'soft_label': 1}
self.attrs = {'soft_label': True}
def test_check_output(self):
self.check_output()
......
......@@ -7,7 +7,7 @@ class TestDropoutOp(OpTest):
def setUp(self):
self.op_type = "dropout"
self.inputs = {'X': np.random.random((32, 64)).astype("float32")}
self.attrs = {'dropout_prob': 0.0, 'is_training': 1}
self.attrs = {'dropout_prob': 0.0, 'is_training': True}
self.outputs = {'Out': self.inputs['X'], 'Mask': np.ones((32, 64))}
def test_check_output(self):
......@@ -21,7 +21,7 @@ class TestDropoutOp2(TestDropoutOp):
def setUp(self):
self.op_type = "dropout"
self.inputs = {'X': np.random.random((32, 64)).astype("float32")}
self.attrs = {'dropout_prob': 1.0, 'is_training': 1}
self.attrs = {'dropout_prob': 1.0, 'is_training': True}
self.outputs = {'Out': np.zeros((32, 64)), 'Mask': np.zeros((32, 64))}
......@@ -29,7 +29,7 @@ class TestDropoutOp3(TestDropoutOp):
def setUp(self):
self.op_type = "dropout"
self.inputs = {'X': np.random.random((32, 64, 2)).astype("float32")}
self.attrs = {'dropout_prob': 0.0, 'is_training': 1}
self.attrs = {'dropout_prob': 0.0, 'is_training': True}
self.outputs = {'Out': self.inputs['X'], 'Mask': np.ones((32, 64, 2))}
......@@ -37,7 +37,7 @@ class TestDropoutOp4(OpTest):
def setUp(self):
self.op_type = "dropout"
self.inputs = {'X': np.random.random((32, 64)).astype("float32")}
self.attrs = {'dropout_prob': 0.35, 'is_training': 0}
self.attrs = {'dropout_prob': 0.35, 'is_training': False}
self.outputs = {'Out': self.inputs['X'] * self.attrs['dropout_prob']}
def test_check_output(self):
......@@ -48,7 +48,7 @@ class TestDropoutOp5(OpTest):
def setUp(self):
self.op_type = "dropout"
self.inputs = {'X': np.random.random((32, 64, 3)).astype("float32")}
self.attrs = {'dropout_prob': 0.75, 'is_training': 0}
self.attrs = {'dropout_prob': 0.75, 'is_training': False}
self.outputs = {'Out': self.inputs['X'] * self.attrs['dropout_prob']}
def test_check_output(self):
......
import unittest
import numpy as np
from op_test import OpTest
class TestElementwiseOp(OpTest):
def setUp(self):
self.op_type = "elementwise_add"
self.inputs = {
'X': np.random.uniform(0.1, 1, [13, 17]).astype("float32"),
'Y': np.random.uniform(0.1, 1, [13, 17]).astype("float32")
}
self.outputs = {'Out': np.add(self.inputs['X'], self.inputs['Y'])}
def test_check_output(self):
self.check_output()
def test_check_grad_normal(self):
self.check_grad(['X', 'Y'], 'Out', max_relative_error=0.005)
def test_check_grad_ingore_x(self):
self.check_grad(
['Y'], 'Out', max_relative_error=0.005, no_grad_set=set("X"))
def test_check_grad_ingore_y(self):
self.check_grad(
['X'], 'Out', max_relative_error=0.005, no_grad_set=set('Y'))
class TestElementwiseAddOp_Vector(TestElementwiseOp):
def setUp(self):
self.op_type = "elementwise_add"
self.inputs = {
'X': np.random.random((32, )).astype("float32"),
'Y': np.random.random((32, )).astype("float32")
}
self.outputs = {'Out': np.add(self.inputs['X'], self.inputs['Y'])}
class TestElementwiseAddOp_broadcast_0(TestElementwiseOp):
def setUp(self):
self.op_type = "elementwise_add"
self.inputs = {
'X': np.random.rand(2, 3, 4).astype(np.float32),
'Y': np.random.rand(2).astype(np.float32)
}
self.attrs = {'axis': 0}
self.outputs = {
'Out': self.inputs['X'] + self.inputs['Y'].reshape(2, 1, 1)
}
class TestElementwiseAddOp_broadcast_1(TestElementwiseOp):
def setUp(self):
self.op_type = "elementwise_add"
self.inputs = {
'X': np.random.rand(2, 3, 4).astype(np.float32),
'Y': np.random.rand(3).astype(np.float32)
}
self.attrs = {'axis': 1}
self.outputs = {
'Out': self.inputs['X'] + self.inputs['Y'].reshape(1, 3, 1)
}
class TestElementwiseAddOp_broadcast_2(TestElementwiseOp):
def setUp(self):
self.op_type = "elementwise_add"
self.inputs = {
'X': np.random.rand(2, 3, 4).astype(np.float32),
'Y': np.random.rand(4).astype(np.float32)
}
self.outputs = {
'Out': self.inputs['X'] + self.inputs['Y'].reshape(1, 1, 4)
}
class TestElementwiseAddOp_broadcast_3(TestElementwiseOp):
def setUp(self):
self.op_type = "elementwise_add"
self.inputs = {
'X': np.random.rand(2, 3, 4, 5).astype(np.float32),
'Y': np.random.rand(3, 4).astype(np.float32)
}
self.attrs = {'axis': 1}
self.outputs = {
'Out': self.inputs['X'] + self.inputs['Y'].reshape(1, 3, 4, 1)
}
if __name__ == '__main__':
unittest.main()
import unittest
import numpy as np
from op_test import OpTest
class ElementwiseDivOp(OpTest):
def setUp(self):
self.op_type = "elementwise_div"
""" Warning
CPU gradient check error!
'X': np.random.random((32,84)).astype("float32"),
'Y': np.random.random((32,84)).astype("float32")
"""
self.inputs = {
'X': np.random.uniform(0.1, 1, [13, 17]).astype("float32"),
'Y': np.random.uniform(0.1, 1, [13, 17]).astype("float32")
}
self.outputs = {'Out': np.divide(self.inputs['X'], self.inputs['Y'])}
def test_check_output(self):
self.check_output()
def test_check_grad_normal(self):
self.check_grad(['X', 'Y'], 'Out', max_relative_error=0.05)
def test_check_grad_ingore_x(self):
self.check_grad(
['Y'], 'Out', max_relative_error=0.05, no_grad_set=set("X"))
def test_check_grad_ingore_y(self):
self.check_grad(
['X'], 'Out', max_relative_error=0.05, no_grad_set=set('Y'))
class TestElementwiseDivOp_Vector(ElementwiseDivOp):
def setUp(self):
self.op_type = "elementwise_div"
self.inputs = {
'X': np.random.uniform(0.1, 1, [32]).astype("float32"),
'Y': np.random.uniform(0.1, 1, [32]).astype("float32")
}
self.outputs = {'Out': np.divide(self.inputs['X'], self.inputs['Y'])}
class TestElementwiseDivOp_broadcast_0(ElementwiseDivOp):
def setUp(self):
self.op_type = "elementwise_div"
self.inputs = {
'X': np.random.uniform(0.1, 1, [2, 3, 4]).astype("float32"),
'Y': np.random.uniform(0.1, 1, [2]).astype("float32")
}
self.attrs = {'axis': 0}
self.outputs = {
'Out':
np.divide(self.inputs['X'], self.inputs['Y'].reshape(2, 1, 1))
}
class TestElementwiseDivOp_broadcast_1(ElementwiseDivOp):
def setUp(self):
self.op_type = "elementwise_div"
self.inputs = {
'X': np.random.uniform(0.1, 1, [2, 3, 4]).astype("float32"),
'Y': np.random.uniform(0.1, 1, [3]).astype("float32")
}
self.attrs = {'axis': 1}
self.outputs = {
'Out':
np.divide(self.inputs['X'], self.inputs['Y'].reshape(1, 3, 1))
}
class TestElementwiseDivOp_broadcast_2(ElementwiseDivOp):
def setUp(self):
self.op_type = "elementwise_div"
self.inputs = {
'X': np.random.uniform(0.1, 1, [2, 3, 4]).astype("float32"),
'Y': np.random.uniform(0.1, 1, [4]).astype("float32")
}
self.outputs = {
'Out':
np.divide(self.inputs['X'], self.inputs['Y'].reshape(1, 1, 4))
}
class TestElementwiseDivOp_broadcast_3(ElementwiseDivOp):
def setUp(self):
self.op_type = "elementwise_div"
self.inputs = {
'X': np.random.uniform(0.1, 1, [2, 3, 4, 5]).astype("float32"),
'Y': np.random.uniform(0.1, 1, [3, 4]).astype("float32")
}
self.attrs = {'axis': 1}
self.outputs = {
'Out':
np.divide(self.inputs['X'], self.inputs['Y'].reshape(1, 3, 4, 1))
}
if __name__ == '__main__':
unittest.main()
......@@ -3,14 +3,9 @@ import numpy as np
from op_test import OpTest
class TestElementwiseMulOp_Matrix(OpTest):
class ElementwiseMulOp(OpTest):
def setUp(self):
self.op_type = "elementwise_mul"
""" Warning
CPU gradient check error!
'X': np.random.random((32,84)).astype("float32"),
'Y': np.random.random((32,84)).astype("float32")
"""
self.inputs = {
'X': np.random.uniform(0.1, 1, [13, 17]).astype("float32"),
'Y': np.random.uniform(0.1, 1, [13, 17]).astype("float32")
......@@ -32,7 +27,7 @@ class TestElementwiseMulOp_Matrix(OpTest):
['X'], 'Out', max_relative_error=0.1, no_grad_set=set('Y'))
class TestElementwiseMulOp_Vector(OpTest):
class TestElementwiseMulOp_Vector(ElementwiseMulOp):
def setUp(self):
self.op_type = "elementwise_mul"
self.inputs = {
......@@ -41,22 +36,8 @@ class TestElementwiseMulOp_Vector(OpTest):
}
self.outputs = {'Out': np.multiply(self.inputs['X'], self.inputs['Y'])}
def test_check_output(self):
self.check_output()
def test_check_grad_normal(self):
self.check_grad(['X', 'Y'], 'Out', max_relative_error=0.1)
def test_check_grad_ingore_x(self):
self.check_grad(
['Y'], 'Out', max_relative_error=0.1, no_grad_set=set("X"))
def test_check_grad_ingore_y(self):
self.check_grad(
['X'], 'Out', max_relative_error=0.1, no_grad_set=set('Y'))
class TestElementwiseMulOp_broadcast_0(OpTest):
class TestElementwiseMulOp_broadcast_0(ElementwiseMulOp):
def setUp(self):
self.op_type = "elementwise_mul"
self.inputs = {
......@@ -69,22 +50,8 @@ class TestElementwiseMulOp_broadcast_0(OpTest):
'Out': self.inputs['X'] * self.inputs['Y'].reshape(2, 1, 1)
}
def test_check_output(self):
self.check_output()
def test_check_grad_normal(self):
self.check_grad(['X', 'Y'], 'Out', max_relative_error=0.1)
def test_check_grad_ingore_x(self):
self.check_grad(
['Y'], 'Out', max_relative_error=0.1, no_grad_set=set("X"))
def test_check_grad_ingore_y(self):
self.check_grad(
['X'], 'Out', max_relative_error=0.1, no_grad_set=set('Y'))
class TestElementwiseMulOp_broadcast_1(OpTest):
class TestElementwiseMulOp_broadcast_1(ElementwiseMulOp):
def setUp(self):
self.op_type = "elementwise_mul"
self.inputs = {
......@@ -97,22 +64,8 @@ class TestElementwiseMulOp_broadcast_1(OpTest):
'Out': self.inputs['X'] * self.inputs['Y'].reshape(1, 3, 1)
}
def test_check_output(self):
self.check_output()
def test_check_grad_normal(self):
self.check_grad(['X', 'Y'], 'Out', max_relative_error=0.1)
def test_check_grad_ingore_x(self):
self.check_grad(
['Y'], 'Out', max_relative_error=0.1, no_grad_set=set("X"))
def test_check_grad_ingore_y(self):
self.check_grad(
['X'], 'Out', max_relative_error=0.1, no_grad_set=set('Y'))
class TestElementwiseMulOp_broadcast_2(OpTest):
class TestElementwiseMulOp_broadcast_2(ElementwiseMulOp):
def setUp(self):
self.op_type = "elementwise_mul"
self.inputs = {
......@@ -124,22 +77,8 @@ class TestElementwiseMulOp_broadcast_2(OpTest):
'Out': self.inputs['X'] * self.inputs['Y'].reshape(1, 1, 4)
}
def test_check_output(self):
self.check_output()
def test_check_grad_normal(self):
self.check_grad(['X', 'Y'], 'Out', max_relative_error=0.1)
def test_check_grad_ingore_x(self):
self.check_grad(
['Y'], 'Out', max_relative_error=0.1, no_grad_set=set("X"))
def test_check_grad_ingore_y(self):
self.check_grad(
['X'], 'Out', max_relative_error=0.1, no_grad_set=set('Y'))
class TestElementwiseMulOp_broadcast_3(OpTest):
class TestElementwiseMulOp_broadcast_3(ElementwiseMulOp):
def setUp(self):
self.op_type = "elementwise_mul"
self.inputs = {
......
import unittest
import numpy as np
from op_test import OpTest
class TestElementwiseOp(OpTest):
def setUp(self):
self.op_type = "elementwise_sub"
self.inputs = {
'X': np.random.uniform(0.1, 1, [13, 17]).astype("float32"),
'Y': np.random.uniform(0.1, 1, [13, 17]).astype("float32")
}
self.outputs = {'Out': self.inputs['X'] - self.inputs['Y']}
def test_check_output(self):
self.check_output()
def test_check_grad_normal(self):
self.check_grad(['X', 'Y'], 'Out', max_relative_error=0.005)
def test_check_grad_ingore_x(self):
self.check_grad(
['Y'], 'Out', max_relative_error=0.005, no_grad_set=set("X"))
def test_check_grad_ingore_y(self):
self.check_grad(
['X'], 'Out', max_relative_error=0.005, no_grad_set=set('Y'))
class TestElementwiseSubOp_Vector(TestElementwiseOp):
def setUp(self):
self.op_type = "elementwise_sub"
self.inputs = {
'X': np.random.random((32, )).astype("float32"),
'Y': np.random.random((32, )).astype("float32")
}
self.outputs = {'Out': self.inputs['X'] - self.inputs['Y']}
class TestElementwiseSubOp_broadcast_0(TestElementwiseOp):
def setUp(self):
self.op_type = "elementwise_sub"
self.inputs = {
'X': np.random.rand(2, 3, 4).astype(np.float32),
'Y': np.random.rand(2).astype(np.float32)
}
self.attrs = {'axis': 0}
self.outputs = {
'Out': self.inputs['X'] - self.inputs['Y'].reshape(2, 1, 1)
}
class TestElementwiseSubOp_broadcast_1(TestElementwiseOp):
def setUp(self):
self.op_type = "elementwise_sub"
self.inputs = {
'X': np.random.rand(2, 3, 4).astype(np.float32),
'Y': np.random.rand(3).astype(np.float32)
}
self.attrs = {'axis': 1}
self.outputs = {
'Out': self.inputs['X'] - self.inputs['Y'].reshape(1, 3, 1)
}
class TestElementwiseSubOp_broadcast_2(TestElementwiseOp):
def setUp(self):
self.op_type = "elementwise_sub"
self.inputs = {
'X': np.random.rand(2, 3, 4).astype(np.float32),
'Y': np.random.rand(4).astype(np.float32)
}
self.outputs = {
'Out': self.inputs['X'] - self.inputs['Y'].reshape(1, 1, 4)
}
class TestElementwiseSubOp_broadcast_3(TestElementwiseOp):
def setUp(self):
self.op_type = "elementwise_sub"
self.inputs = {
'X': np.random.rand(2, 3, 4, 5).astype(np.float32),
'Y': np.random.rand(3, 4).astype(np.float32)
}
self.attrs = {'axis': 1}
self.outputs = {
'Out': self.inputs['X'] - self.inputs['Y'].reshape(1, 3, 4, 1)
}
if __name__ == '__main__':
unittest.main()
......@@ -6,8 +6,8 @@ from op_test import OpTest
class TestFillZerosLikeOp(OpTest):
def setUp(self):
self.op_type = "fill_zeros_like"
self.inputs = {'Src': np.random.random((219, 232)).astype("float32")}
self.outputs = {'Dst': np.zeros_like(self.inputs["Src"])}
self.inputs = {'X': np.random.random((219, 232)).astype("float32")}
self.outputs = {'Y': np.zeros_like(self.inputs["X"])}
def test_check_output(self):
self.check_output()
......
import unittest
import numpy as np
from op_test import OpTest
class TestMultiplexOp(OpTest):
def setUp(self):
self.op_type = "multiplex"
rows = 3
index = np.array([3, 1, 0])
ins1 = np.random.random((rows, 10)).astype("float32")
ins2 = np.random.random((rows, 10)).astype("float32")
ins3 = np.random.random((rows, 10)).astype("float32")
ins4 = np.random.random((rows, 10)).astype("float32")
self.inputs = {
'X': [('index', index), ('x1', ins1), ('x2', ins2), ('x3', ins3),
('x4', ins4)]
}
# multiplex output
output = np.zeros_like(ins1)
for i in range(0, rows):
k = index[i] + 1
output[i] = self.inputs['X'][k][1][i]
self.outputs = {'Out': output}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(['x1', 'x2', 'x3', 'x4'], 'Out')
def test_check_grad_ignore_x1(self):
self.check_grad(['x2', 'x3', 'x4'], 'Out', no_grad_set=set('x1'))
def test_check_grad_ignore_x1_x2(self):
self.check_grad(['x3', 'x4'], 'Out', no_grad_set=set(['x1', 'x2']))
def test_check_grad_ignore_x3(self):
self.check_grad(['x1', 'x2', 'x4'], 'Out', no_grad_set=set('x3'))
if __name__ == '__main__':
unittest.main()
......@@ -3,6 +3,7 @@ import paddle.v2.framework.core as core
import unittest
import numpy as np
from paddle.v2.framework.op import Operator, RecurrentOp
from op_test import get_numeric_gradient
def py_sigmoid(x):
......@@ -47,7 +48,7 @@ class PySimpleRNN(object):
else:
pre_mem = self.h_boot
xW = np.matmul(x, self.W)
hU = np.matmul(mem, self.U)
hU = np.matmul(pre_mem, self.U)
sum = xW + hU
self.mems[step_id] = py_sigmoid(sum)
......@@ -68,7 +69,7 @@ def create_tensor(scope, name, shape, np_data):
return tensor
class TestRecurrentOp(unittest.TestCase):
class RecurrentOpTest(unittest.TestCase):
'''
Test RNNOp
......@@ -158,6 +159,42 @@ class TestRecurrentOp(unittest.TestCase):
print
print 'py_output', py_output
self.assertEqual(pd_output.shape, py_output.shape)
self.assertTrue(np.isclose(pd_output, py_output, rtol=0.1).all())
class RecurrentGradientOpTest(unittest.TestCase):
def create_forward_op(self):
self.forward_op = RecurrentOp(
# inputs
inlinks=["x"],
boot_memories=["h_boot"],
step_net="stepnet",
# outputs
outlinks=["h"],
step_scopes="step_scopes",
# attributes
pre_memories=["h@pre"],
memories=["h@alias"])
# create a stepnet for RNN
stepnet = core.Net.create()
x_fc_op = Operator("mul", X="x@alias", Y="W", Out="Wx")
h_fc_op = Operator("mul", X="h@pre", Y="U", Out="Uh")
sum_op = Operator("add", X="Wx", Y="Uh", Out="sum")
sig_op = Operator("sigmoid", X="sum", Y="h@alias")
for op in [x_fc_op, h_fc_op, sum_op, sig_op]:
stepnet.append_op(op)
stepnet.complete_add_op(True)
self.forward_op.set_stepnet(stepnet)
def create_gradient_op(self):
a = set()
backward_op = core.RecurrentOp.backward(self.forward_op, a)
def test_grad(self):
self.create_forward_op()
self.create_gradient_op()
if __name__ == '__main__':
......
......@@ -3,20 +3,37 @@ import numpy as np
from op_test import OpTest
class TestSeqAvgPool1D(OpTest):
def setUp(self):
self.op_type = 'sequence_avg_pool'
class SeqPoolType(OpTest):
AVERAGE = 0
SUM = 1
SQRT = 2
MAX = 3
LAST = 4
FIRST = 5
class TestSeqAvgPool(OpTest):
def set_data(self):
self.op_type = 'sequence_pool'
# one level, batch size is 4
x = np.random.uniform(0.1, 1, [11, 23]).astype('float32')
lod = [[0, 4, 5, 8, 11]]
self.inputs = {'X': (x, lod)}
out = np.zeros((4, 23)).astype('float32')
self.outputs = {'Out': out}
def compute(self):
self.attrs = {'strategy': SeqPoolType.AVERAGE}
x, lod = self.inputs['X']
out = self.outputs['Out']
for i in range(4):
sub_x = x[lod[0][i]:lod[0][i + 1], :]
out[i] = sub_x.mean(axis=0)
self.inputs = {'X': (x, lod)}
self.outputs = {'Out': out}
def setUp(self):
self.set_data()
self.compute()
def test_check_output(self):
self.check_output()
......@@ -25,26 +42,44 @@ class TestSeqAvgPool1D(OpTest):
self.check_grad(["X"], "Out")
class TestSeqAvgPool2D(OpTest):
def setUp(self):
self.op_type = 'sequence_avg_pool'
class TestSeqAvgPool2D(TestSeqAvgPool):
def set_data(self):
self.op_type = 'sequence_pool'
# one level, batch size is 4
x = np.random.uniform(0.1, 1, [13, 3, 17]).astype('float32')
lod = [[0, 4, 5, 8, 13]]
self.inputs = {'X': (x, lod)}
out = np.zeros((4, 3, 17)).astype('float32')
self.outputs = {'Out': out}
def compute(self):
self.attrs = {'strategy': SeqPoolType.AVERAGE}
x, lod = self.inputs['X']
out = self.outputs['Out']
for i in range(4):
sub_x = np.reshape(x[lod[0][i]:lod[0][i + 1], :], (-1, 3 * 17))
out[i] = np.reshape(sub_x.mean(axis=0), (3, 17))
self.inputs = {'X': (x, lod)}
self.outputs = {'Out': out}
def test_check_output(self):
self.check_output()
class TestSeqSumPool(TestSeqAvgPool):
def compute(self):
self.attrs = {'strategy': SeqPoolType.SUM}
x, lod = self.inputs['X']
out = self.outputs['Out']
for i in range(4):
sub_x = x[lod[0][i]:lod[0][i + 1], :]
out[i] = sub_x.sum(axis=0)
def test_check_grad(self):
self.check_grad(["X"], "Out")
class TestSeqSumPool2D(TestSeqAvgPool2D):
def compute(self):
self.attrs = {'strategy': SeqPoolType.SUM}
x, lod = self.inputs['X']
out = self.outputs['Out']
for i in range(4):
sub_x = np.reshape(x[lod[0][i]:lod[0][i + 1], :], (-1, 3 * 17))
out[i] = np.reshape(sub_x.sum(axis=0), (3, 17))
if __name__ == '__main__':
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册