Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
9e4b9d97
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
9e4b9d97
编写于
6月 16, 2019
作者:
F
FDInSky
提交者:
qingqing01
6月 16, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Update generate_proposal_labels_op to support CascadeRCNN. (#17200)
* Update generate_proposal_labels_op to support CascadeRCNN.
上级
9ed2f936
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
181 addition
and
108 deletion
+181
-108
paddle/fluid/API.spec
paddle/fluid/API.spec
+1
-1
paddle/fluid/operators/detection/generate_proposal_labels_op.cc
.../fluid/operators/detection/generate_proposal_labels_op.cc
+106
-60
python/paddle/fluid/layers/detection.py
python/paddle/fluid/layers/detection.py
+10
-2
python/paddle/fluid/tests/unittests/test_generate_proposal_labels_op.py
...fluid/tests/unittests/test_generate_proposal_labels_op.py
+64
-45
未找到文件。
paddle/fluid/API.spec
浏览文件 @
9e4b9d97
...
@@ -351,7 +351,7 @@ paddle.fluid.layers.rpn_target_assign (ArgSpec(args=['bbox_pred', 'cls_logits',
...
@@ -351,7 +351,7 @@ paddle.fluid.layers.rpn_target_assign (ArgSpec(args=['bbox_pred', 'cls_logits',
paddle.fluid.layers.retinanet_target_assign (ArgSpec(args=['bbox_pred', 'cls_logits', 'anchor_box', 'anchor_var', 'gt_boxes', 'gt_labels', 'is_crowd', 'im_info', 'num_classes', 'positive_overlap', 'negative_overlap'], varargs=None, keywords=None, defaults=(1, 0.5, 0.4)), ('document', 'fa1d1c9d5e0111684c0db705f86a2595'))
paddle.fluid.layers.retinanet_target_assign (ArgSpec(args=['bbox_pred', 'cls_logits', 'anchor_box', 'anchor_var', 'gt_boxes', 'gt_labels', 'is_crowd', 'im_info', 'num_classes', 'positive_overlap', 'negative_overlap'], varargs=None, keywords=None, defaults=(1, 0.5, 0.4)), ('document', 'fa1d1c9d5e0111684c0db705f86a2595'))
paddle.fluid.layers.anchor_generator (ArgSpec(args=['input', 'anchor_sizes', 'aspect_ratios', 'variance', 'stride', 'offset', 'name'], varargs=None, keywords=None, defaults=(None, None, [0.1, 0.1, 0.2, 0.2], None, 0.5, None)), ('document', '82b2aefeeb1b706bc4afec70928a259a'))
paddle.fluid.layers.anchor_generator (ArgSpec(args=['input', 'anchor_sizes', 'aspect_ratios', 'variance', 'stride', 'offset', 'name'], varargs=None, keywords=None, defaults=(None, None, [0.1, 0.1, 0.2, 0.2], None, 0.5, None)), ('document', '82b2aefeeb1b706bc4afec70928a259a'))
paddle.fluid.layers.roi_perspective_transform (ArgSpec(args=['input', 'rois', 'transformed_height', 'transformed_width', 'spatial_scale'], varargs=None, keywords=None, defaults=(1.0,)), ('document', 'd1ddc75629fedee46f82e631e22c79dc'))
paddle.fluid.layers.roi_perspective_transform (ArgSpec(args=['input', 'rois', 'transformed_height', 'transformed_width', 'spatial_scale'], varargs=None, keywords=None, defaults=(1.0,)), ('document', 'd1ddc75629fedee46f82e631e22c79dc'))
paddle.fluid.layers.generate_proposal_labels (ArgSpec(args=['rpn_rois', 'gt_classes', 'is_crowd', 'gt_boxes', 'im_info', 'batch_size_per_im', 'fg_fraction', 'fg_thresh', 'bg_thresh_hi', 'bg_thresh_lo', 'bbox_reg_weights', 'class_nums', 'use_random'
], varargs=None, keywords=None, defaults=(256, 0.25, 0.25, 0.5, 0.0, [0.1, 0.1, 0.2, 0.2], None, True)), ('document', '9c601df88b251f22e9311c52939948cd
'))
paddle.fluid.layers.generate_proposal_labels (ArgSpec(args=['rpn_rois', 'gt_classes', 'is_crowd', 'gt_boxes', 'im_info', 'batch_size_per_im', 'fg_fraction', 'fg_thresh', 'bg_thresh_hi', 'bg_thresh_lo', 'bbox_reg_weights', 'class_nums', 'use_random'
, 'is_cls_agnostic', 'is_cascade_rcnn'], varargs=None, keywords=None, defaults=(256, 0.25, 0.25, 0.5, 0.0, [0.1, 0.1, 0.2, 0.2], None, True, False, False)), ('document', 'c0d00acf724691ff3480d4207036a722
'))
paddle.fluid.layers.generate_proposals (ArgSpec(args=['scores', 'bbox_deltas', 'im_info', 'anchors', 'variances', 'pre_nms_top_n', 'post_nms_top_n', 'nms_thresh', 'min_size', 'eta', 'name'], varargs=None, keywords=None, defaults=(6000, 1000, 0.5, 0.1, 1.0, None)), ('document', 'b7d707822b6af2a586bce608040235b1'))
paddle.fluid.layers.generate_proposals (ArgSpec(args=['scores', 'bbox_deltas', 'im_info', 'anchors', 'variances', 'pre_nms_top_n', 'post_nms_top_n', 'nms_thresh', 'min_size', 'eta', 'name'], varargs=None, keywords=None, defaults=(6000, 1000, 0.5, 0.1, 1.0, None)), ('document', 'b7d707822b6af2a586bce608040235b1'))
paddle.fluid.layers.generate_mask_labels (ArgSpec(args=['im_info', 'gt_classes', 'is_crowd', 'gt_segms', 'rois', 'labels_int32', 'num_classes', 'resolution'], varargs=None, keywords=None, defaults=None), ('document', 'b319b10ddaf17fb4ddf03518685a17ef'))
paddle.fluid.layers.generate_mask_labels (ArgSpec(args=['im_info', 'gt_classes', 'is_crowd', 'gt_segms', 'rois', 'labels_int32', 'num_classes', 'resolution'], varargs=None, keywords=None, defaults=None), ('document', 'b319b10ddaf17fb4ddf03518685a17ef'))
paddle.fluid.layers.iou_similarity (ArgSpec(args=['x', 'y', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '72fca4a39ccf82d5c746ae62d1868a99'))
paddle.fluid.layers.iou_similarity (ArgSpec(args=['x', 'y', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '72fca4a39ccf82d5c746ae62d1868a99'))
...
...
paddle/fluid/operators/detection/generate_proposal_labels_op.cc
浏览文件 @
9e4b9d97
...
@@ -109,17 +109,18 @@ std::vector<std::vector<int>> SampleFgBgGt(
...
@@ -109,17 +109,18 @@ std::vector<std::vector<int>> SampleFgBgGt(
const
platform
::
CPUDeviceContext
&
context
,
Tensor
*
iou
,
const
platform
::
CPUDeviceContext
&
context
,
Tensor
*
iou
,
const
Tensor
&
is_crowd
,
const
int
batch_size_per_im
,
const
Tensor
&
is_crowd
,
const
int
batch_size_per_im
,
const
float
fg_fraction
,
const
float
fg_thresh
,
const
float
bg_thresh_hi
,
const
float
fg_fraction
,
const
float
fg_thresh
,
const
float
bg_thresh_hi
,
const
float
bg_thresh_lo
,
std
::
minstd_rand
engine
,
const
bool
use_random
)
{
const
float
bg_thresh_lo
,
std
::
minstd_rand
engine
,
const
bool
use_random
,
const
bool
is_cascade_rcnn
,
const
Tensor
&
rpn_rois
)
{
std
::
vector
<
int
>
fg_inds
;
std
::
vector
<
int
>
fg_inds
;
std
::
vector
<
int
>
bg_inds
;
std
::
vector
<
int
>
bg_inds
;
std
::
vector
<
int
>
gt_inds
;
std
::
vector
<
int
>
mapped_
gt_inds
;
int64_t
gt_num
=
is_crowd
.
numel
();
int64_t
gt_num
=
is_crowd
.
numel
();
const
int
*
crowd_data
=
is_crowd
.
data
<
int
>
();
const
int
*
crowd_data
=
is_crowd
.
data
<
int
>
();
T
*
proposal_to_gt_overlaps
=
iou
->
data
<
T
>
();
T
*
proposal_to_gt_overlaps
=
iou
->
data
<
T
>
();
int64_t
row
=
iou
->
dims
()[
0
];
int64_t
row
=
iou
->
dims
()[
0
];
int64_t
col
=
iou
->
dims
()[
1
];
int64_t
col
=
iou
->
dims
()[
1
];
float
epsilon
=
0.00001
;
float
epsilon
=
0.00001
;
const
T
*
rpn_rois_dt
=
rpn_rois
.
data
<
T
>
();
// Follow the Faster RCNN's implementation
// Follow the Faster RCNN's implementation
for
(
int64_t
i
=
0
;
i
<
row
;
++
i
)
{
for
(
int64_t
i
=
0
;
i
<
row
;
++
i
)
{
const
T
*
v
=
proposal_to_gt_overlaps
+
i
*
col
;
const
T
*
v
=
proposal_to_gt_overlaps
+
i
*
col
;
...
@@ -127,64 +128,82 @@ std::vector<std::vector<int>> SampleFgBgGt(
...
@@ -127,64 +128,82 @@ std::vector<std::vector<int>> SampleFgBgGt(
if
((
i
<
gt_num
)
&&
(
crowd_data
[
i
]))
{
if
((
i
<
gt_num
)
&&
(
crowd_data
[
i
]))
{
max_overlap
=
-
1.0
;
max_overlap
=
-
1.0
;
}
}
if
(
max_overlap
>
fg_thresh
)
{
if
(
is_cascade_rcnn
&&
((
rpn_rois_dt
[
i
*
4
+
2
]
-
rpn_rois_dt
[
i
*
4
+
0
]
+
1
)
<=
0
||
(
rpn_rois_dt
[
i
*
4
+
3
]
-
rpn_rois_dt
[
i
*
4
+
1
]
+
1
)
<=
0
))
{
continue
;
}
if
(
max_overlap
>=
fg_thresh
)
{
// fg mapped gt label index
for
(
int64_t
j
=
0
;
j
<
col
;
++
j
)
{
for
(
int64_t
j
=
0
;
j
<
col
;
++
j
)
{
T
val
=
proposal_to_gt_overlaps
[
i
*
col
+
j
];
T
val
=
proposal_to_gt_overlaps
[
i
*
col
+
j
];
auto
diff
=
std
::
abs
(
max_overlap
-
val
);
auto
diff
=
std
::
abs
(
max_overlap
-
val
);
if
(
diff
<
epsilon
)
{
if
(
diff
<
epsilon
)
{
fg_inds
.
emplace_back
(
i
);
fg_inds
.
emplace_back
(
i
);
gt_inds
.
emplace_back
(
j
);
mapped_
gt_inds
.
emplace_back
(
j
);
break
;
break
;
}
}
}
}
}
else
if
((
max_overlap
>=
bg_thresh_lo
)
&&
(
max_overlap
<
bg_thresh_hi
))
{
bg_inds
.
emplace_back
(
i
);
}
else
{
}
else
{
if
((
max_overlap
>=
bg_thresh_lo
)
&&
(
max_overlap
<
bg_thresh_hi
))
{
continue
;
bg_inds
.
emplace_back
(
i
);
}
}
}
}
}
// Reservoir Sampling
std
::
vector
<
std
::
vector
<
int
>>
res
;
std
::
uniform_real_distribution
<
float
>
uniform
(
0
,
1
);
if
(
is_cascade_rcnn
)
{
int
fg_rois_per_im
=
std
::
floor
(
batch_size_per_im
*
fg_fraction
);
res
.
emplace_back
(
fg_inds
);
int
fg_rois_this_image
=
fg_inds
.
size
();
res
.
emplace_back
(
bg_inds
);
int
fg_rois_per_this_image
=
std
::
min
(
fg_rois_per_im
,
fg_rois_this_image
);
res
.
emplace_back
(
mapped_gt_inds
);
if
(
use_random
)
{
}
else
{
const
int64_t
fg_size
=
static_cast
<
int64_t
>
(
fg_inds
.
size
());
// Reservoir Sampling
if
(
fg_size
>
fg_rois_per_this_image
)
{
// sampling fg
for
(
int64_t
i
=
fg_rois_per_this_image
;
i
<
fg_size
;
++
i
)
{
std
::
uniform_real_distribution
<
float
>
uniform
(
0
,
1
);
int
rng_ind
=
std
::
floor
(
uniform
(
engine
)
*
i
);
int
fg_rois_per_im
=
std
::
floor
(
batch_size_per_im
*
fg_fraction
);
if
(
rng_ind
<
fg_rois_per_this_image
)
{
int
fg_rois_this_image
=
fg_inds
.
size
();
std
::
iter_swap
(
fg_inds
.
begin
()
+
rng_ind
,
fg_inds
.
begin
()
+
i
);
int
fg_rois_per_this_image
=
std
::
min
(
fg_rois_per_im
,
fg_rois_this_image
);
std
::
iter_swap
(
gt_inds
.
begin
()
+
rng_ind
,
gt_inds
.
begin
()
+
i
);
if
(
use_random
)
{
const
int64_t
fg_size
=
static_cast
<
int64_t
>
(
fg_inds
.
size
());
if
(
fg_size
>
fg_rois_per_this_image
)
{
for
(
int64_t
i
=
fg_rois_per_this_image
;
i
<
fg_size
;
++
i
)
{
int
rng_ind
=
std
::
floor
(
uniform
(
engine
)
*
i
);
if
(
rng_ind
<
fg_rois_per_this_image
)
{
std
::
iter_swap
(
fg_inds
.
begin
()
+
rng_ind
,
fg_inds
.
begin
()
+
i
);
std
::
iter_swap
(
mapped_gt_inds
.
begin
()
+
rng_ind
,
mapped_gt_inds
.
begin
()
+
i
);
}
}
}
}
}
}
}
}
std
::
vector
<
int
>
new_fg_inds
(
fg_inds
.
begin
(),
std
::
vector
<
int
>
new_fg_inds
(
fg_inds
.
begin
(),
fg_inds
.
begin
()
+
fg_rois_per_this_image
);
fg_inds
.
begin
()
+
fg_rois_per_this_image
);
std
::
vector
<
int
>
new_gt_inds
(
std
::
vector
<
int
>
new_gt_inds
(
gt_inds
.
begin
(),
mapped_gt_inds
.
begin
(),
gt_inds
.
begin
()
+
fg_rois_per_this_image
);
mapped_gt_inds
.
begin
()
+
fg_rois_per_this_image
);
// sampling bg
int
bg_rois_per_image
=
batch_size_per_im
-
fg_rois_per_this_image
;
int
bg_rois_per_image
=
batch_size_per_im
-
fg_rois_per_this_image
;
int
bg_rois_this_image
=
bg_inds
.
size
();
int
bg_rois_this_image
=
bg_inds
.
size
();
int
bg_rois_per_this_image
=
std
::
min
(
bg_rois_per_image
,
bg_rois_this_image
);
int
bg_rois_per_this_image
=
if
(
use_random
)
{
std
::
min
(
bg_rois_per_image
,
bg_rois_this_image
);
const
int64_t
bg_size
=
static_cast
<
int64_t
>
(
bg_inds
.
size
());
if
(
use_random
)
{
if
(
bg_size
>
bg_rois_per_this_image
)
{
const
int64_t
bg_size
=
static_cast
<
int64_t
>
(
bg_inds
.
size
());
for
(
int64_t
i
=
bg_rois_per_this_image
;
i
<
bg_size
;
++
i
)
{
if
(
bg_size
>
bg_rois_per_this_image
)
{
int
rng_ind
=
std
::
floor
(
uniform
(
engine
)
*
i
);
for
(
int64_t
i
=
bg_rois_per_this_image
;
i
<
bg_size
;
++
i
)
{
if
(
rng_ind
<
fg_rois_per_this_image
)
int
rng_ind
=
std
::
floor
(
uniform
(
engine
)
*
i
);
std
::
iter_swap
(
bg_inds
.
begin
()
+
rng_ind
,
bg_inds
.
begin
()
+
i
);
if
(
rng_ind
<
fg_rois_per_this_image
)
std
::
iter_swap
(
bg_inds
.
begin
()
+
rng_ind
,
bg_inds
.
begin
()
+
i
);
}
}
}
}
}
std
::
vector
<
int
>
new_bg_inds
(
bg_inds
.
begin
(),
bg_inds
.
begin
()
+
bg_rois_per_this_image
);
//
res
.
emplace_back
(
new_fg_inds
);
res
.
emplace_back
(
new_bg_inds
);
res
.
emplace_back
(
new_gt_inds
);
}
}
std
::
vector
<
int
>
new_bg_inds
(
bg_inds
.
begin
(),
bg_inds
.
begin
()
+
bg_rois_per_this_image
);
std
::
vector
<
std
::
vector
<
int
>>
res
;
res
.
emplace_back
(
new_fg_inds
);
res
.
emplace_back
(
new_bg_inds
);
res
.
emplace_back
(
new_gt_inds
);
return
res
;
return
res
;
}
}
...
@@ -231,35 +250,50 @@ std::vector<Tensor> SampleRoisForOneImage(
...
@@ -231,35 +250,50 @@ std::vector<Tensor> SampleRoisForOneImage(
const
Tensor
&
im_info
,
const
int
batch_size_per_im
,
const
float
fg_fraction
,
const
Tensor
&
im_info
,
const
int
batch_size_per_im
,
const
float
fg_fraction
,
const
float
fg_thresh
,
const
float
bg_thresh_hi
,
const
float
bg_thresh_lo
,
const
float
fg_thresh
,
const
float
bg_thresh_hi
,
const
float
bg_thresh_lo
,
const
std
::
vector
<
float
>&
bbox_reg_weights
,
const
int
class_nums
,
const
std
::
vector
<
float
>&
bbox_reg_weights
,
const
int
class_nums
,
std
::
minstd_rand
engine
,
bool
use_random
)
{
std
::
minstd_rand
engine
,
bool
use_random
,
bool
is_cascade_rcnn
,
bool
is_cls_agnostic
)
{
// 1.1 map to original image
auto
im_scale
=
im_info
.
data
<
T
>
()[
2
];
auto
im_scale
=
im_info
.
data
<
T
>
()[
2
];
Tensor
rpn_rois_slice
;
Tensor
rpn_rois
;
Tensor
rpn_rois
;
rpn_rois
.
mutable_data
<
T
>
(
rpn_rois_in
.
dims
(),
context
.
GetPlace
());
T
*
rpn_rois_dt
=
rpn_rois
.
data
<
T
>
();
if
(
is_cascade_rcnn
)
{
const
T
*
rpn_rois_in_dt
=
rpn_rois_in
.
data
<
T
>
();
// slice rpn_rois from gt_box_num refer to detectron
for
(
int
i
=
0
;
i
<
rpn_rois
.
numel
();
++
i
)
{
rpn_rois_slice
=
rpn_rois_dt
[
i
]
=
rpn_rois_in_dt
[
i
]
/
im_scale
;
rpn_rois_in
.
Slice
(
gt_boxes
.
dims
()[
0
],
rpn_rois_in
.
dims
()[
0
]);
rpn_rois
.
mutable_data
<
T
>
(
rpn_rois_slice
.
dims
(),
context
.
GetPlace
());
const
T
*
rpn_rois_in_dt
=
rpn_rois_slice
.
data
<
T
>
();
T
*
rpn_rois_dt
=
rpn_rois
.
data
<
T
>
();
for
(
int
i
=
0
;
i
<
rpn_rois
.
numel
();
++
i
)
{
rpn_rois_dt
[
i
]
=
rpn_rois_in_dt
[
i
]
/
im_scale
;
}
}
else
{
rpn_rois
.
mutable_data
<
T
>
(
rpn_rois_in
.
dims
(),
context
.
GetPlace
());
const
T
*
rpn_rois_in_dt
=
rpn_rois_in
.
data
<
T
>
();
T
*
rpn_rois_dt
=
rpn_rois
.
data
<
T
>
();
for
(
int
i
=
0
;
i
<
rpn_rois
.
numel
();
++
i
)
{
rpn_rois_dt
[
i
]
=
rpn_rois_in_dt
[
i
]
/
im_scale
;
}
}
}
Tensor
boxes
;
// 1.2 compute overlaps
int
proposals_num
=
gt_boxes
.
dims
()[
0
]
+
rpn_rois
.
dims
()[
0
];
int
proposals_num
=
gt_boxes
.
dims
()[
0
]
+
rpn_rois
.
dims
()[
0
];
Tensor
boxes
;
boxes
.
mutable_data
<
T
>
({
proposals_num
,
kBoxDim
},
context
.
GetPlace
());
boxes
.
mutable_data
<
T
>
({
proposals_num
,
kBoxDim
},
context
.
GetPlace
());
Concat
<
T
>
(
context
,
gt_boxes
,
rpn_rois
,
&
boxes
);
Concat
<
T
>
(
context
,
gt_boxes
,
rpn_rois
,
&
boxes
);
// Overlaps
Tensor
proposal_to_gt_overlaps
;
Tensor
proposal_to_gt_overlaps
;
proposal_to_gt_overlaps
.
mutable_data
<
T
>
({
proposals_num
,
gt_boxes
.
dims
()[
0
]},
proposal_to_gt_overlaps
.
mutable_data
<
T
>
({
proposals_num
,
gt_boxes
.
dims
()[
0
]},
context
.
GetPlace
());
context
.
GetPlace
());
BboxOverlaps
<
T
>
(
boxes
,
gt_boxes
,
&
proposal_to_gt_overlaps
);
BboxOverlaps
<
T
>
(
boxes
,
gt_boxes
,
&
proposal_to_gt_overlaps
);
// Generate proposal index
// Generate proposal index
std
::
vector
<
std
::
vector
<
int
>>
fg_bg_gt
=
SampleFgBgGt
<
T
>
(
std
::
vector
<
std
::
vector
<
int
>>
fg_bg_gt
=
context
,
&
proposal_to_gt_overlaps
,
is_crowd
,
batch_size_per_im
,
SampleFgBgGt
<
T
>
(
context
,
&
proposal_to_gt_overlaps
,
is_crowd
,
fg_fraction
,
fg_thresh
,
bg_thresh_hi
,
bg_thresh_lo
,
engine
,
use_random
);
batch_size_per_im
,
fg_fraction
,
fg_thresh
,
bg_thresh_hi
,
bg_thresh_lo
,
engine
,
use_random
,
is_cascade_rcnn
,
boxes
);
std
::
vector
<
int
>
fg_inds
=
fg_bg_gt
[
0
];
std
::
vector
<
int
>
fg_inds
=
fg_bg_gt
[
0
];
std
::
vector
<
int
>
bg_inds
=
fg_bg_gt
[
1
];
std
::
vector
<
int
>
bg_inds
=
fg_bg_gt
[
1
];
std
::
vector
<
int
>
gt_inds
=
fg_bg_gt
[
2
];
std
::
vector
<
int
>
mapped_gt_inds
=
fg_bg_gt
[
2
];
// mapped_gt_labels
// Gather boxes and labels
// Gather boxes and labels
Tensor
sampled_boxes
,
sampled_labels
,
sampled_gts
;
Tensor
sampled_boxes
,
sampled_labels
,
sampled_gts
;
...
@@ -271,7 +305,8 @@ std::vector<Tensor> SampleRoisForOneImage(
...
@@ -271,7 +305,8 @@ std::vector<Tensor> SampleRoisForOneImage(
sampled_labels
.
mutable_data
<
int
>
({
boxes_num
},
context
.
GetPlace
());
sampled_labels
.
mutable_data
<
int
>
({
boxes_num
},
context
.
GetPlace
());
sampled_gts
.
mutable_data
<
T
>
({
fg_num
,
kBoxDim
},
context
.
GetPlace
());
sampled_gts
.
mutable_data
<
T
>
({
fg_num
,
kBoxDim
},
context
.
GetPlace
());
GatherBoxesLabels
<
T
>
(
context
,
boxes
,
gt_boxes
,
gt_classes
,
fg_inds
,
bg_inds
,
GatherBoxesLabels
<
T
>
(
context
,
boxes
,
gt_boxes
,
gt_classes
,
fg_inds
,
bg_inds
,
gt_inds
,
&
sampled_boxes
,
&
sampled_labels
,
&
sampled_gts
);
mapped_gt_inds
,
&
sampled_boxes
,
&
sampled_labels
,
&
sampled_gts
);
// Compute targets
// Compute targets
Tensor
bbox_targets_single
;
Tensor
bbox_targets_single
;
...
@@ -305,6 +340,9 @@ std::vector<Tensor> SampleRoisForOneImage(
...
@@ -305,6 +340,9 @@ std::vector<Tensor> SampleRoisForOneImage(
for
(
int64_t
i
=
0
;
i
<
boxes_num
;
++
i
)
{
for
(
int64_t
i
=
0
;
i
<
boxes_num
;
++
i
)
{
int
label
=
sampled_labels_data
[
i
];
int
label
=
sampled_labels_data
[
i
];
if
(
label
>
0
)
{
if
(
label
>
0
)
{
if
(
is_cls_agnostic
)
{
label
=
1
;
}
int
dst_idx
=
i
*
width
+
kBoxDim
*
label
;
int
dst_idx
=
i
*
width
+
kBoxDim
*
label
;
int
src_idx
=
kBoxDim
*
i
;
int
src_idx
=
kBoxDim
*
i
;
bbox_targets_data
[
dst_idx
]
=
bbox_targets_single_data
[
src_idx
];
bbox_targets_data
[
dst_idx
]
=
bbox_targets_single_data
[
src_idx
];
...
@@ -356,7 +394,8 @@ class GenerateProposalLabelsKernel : public framework::OpKernel<T> {
...
@@ -356,7 +394,8 @@ class GenerateProposalLabelsKernel : public framework::OpKernel<T> {
context
.
Attr
<
std
::
vector
<
float
>>
(
"bbox_reg_weights"
);
context
.
Attr
<
std
::
vector
<
float
>>
(
"bbox_reg_weights"
);
int
class_nums
=
context
.
Attr
<
int
>
(
"class_nums"
);
int
class_nums
=
context
.
Attr
<
int
>
(
"class_nums"
);
bool
use_random
=
context
.
Attr
<
bool
>
(
"use_random"
);
bool
use_random
=
context
.
Attr
<
bool
>
(
"use_random"
);
bool
is_cascade_rcnn
=
context
.
Attr
<
bool
>
(
"is_cascade_rcnn"
);
bool
is_cls_agnostic
=
context
.
Attr
<
bool
>
(
"is_cls_agnostic"
);
PADDLE_ENFORCE_EQ
(
rpn_rois
->
lod
().
size
(),
1UL
,
PADDLE_ENFORCE_EQ
(
rpn_rois
->
lod
().
size
(),
1UL
,
"GenerateProposalLabelsOp rpn_rois needs 1 level of LoD"
);
"GenerateProposalLabelsOp rpn_rois needs 1 level of LoD"
);
PADDLE_ENFORCE_EQ
(
PADDLE_ENFORCE_EQ
(
...
@@ -411,7 +450,7 @@ class GenerateProposalLabelsKernel : public framework::OpKernel<T> {
...
@@ -411,7 +450,7 @@ class GenerateProposalLabelsKernel : public framework::OpKernel<T> {
dev_ctx
,
rpn_rois_slice
,
gt_classes_slice
,
is_crowd_slice
,
dev_ctx
,
rpn_rois_slice
,
gt_classes_slice
,
is_crowd_slice
,
gt_boxes_slice
,
im_info_slice
,
batch_size_per_im
,
fg_fraction
,
gt_boxes_slice
,
im_info_slice
,
batch_size_per_im
,
fg_fraction
,
fg_thresh
,
bg_thresh_hi
,
bg_thresh_lo
,
bbox_reg_weights
,
class_nums
,
fg_thresh
,
bg_thresh_hi
,
bg_thresh_lo
,
bbox_reg_weights
,
class_nums
,
engine
,
use_random
);
engine
,
use_random
,
is_cascade_rcnn
,
is_cls_agnostic
);
Tensor
sampled_rois
=
tensor_output
[
0
];
Tensor
sampled_rois
=
tensor_output
[
0
];
Tensor
sampled_labels_int32
=
tensor_output
[
1
];
Tensor
sampled_labels_int32
=
tensor_output
[
1
];
Tensor
sampled_bbox_targets
=
tensor_output
[
2
];
Tensor
sampled_bbox_targets
=
tensor_output
[
2
];
...
@@ -513,6 +552,13 @@ class GenerateProposalLabelsOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -513,6 +552,13 @@ class GenerateProposalLabelsOpMaker : public framework::OpProtoAndCheckerMaker {
"use_random"
,
"use_random"
,
"Use random sampling to choose foreground and background boxes."
)
"Use random sampling to choose foreground and background boxes."
)
.
SetDefault
(
true
);
.
SetDefault
(
true
);
AddAttr
<
bool
>
(
"is_cascade_rcnn"
,
"cascade rcnn sampling policy changed from stage 2."
)
.
SetDefault
(
false
);
AddAttr
<
bool
>
(
"is_cls_agnostic"
,
"the box regress will only include fg and bg locations if set true "
)
.
SetDefault
(
false
);
AddComment
(
R"DOC(
AddComment
(
R"DOC(
This operator can be, for given the GenerateProposalOp output bounding boxes and groundtruth,
This operator can be, for given the GenerateProposalOp output bounding boxes and groundtruth,
...
...
python/paddle/fluid/layers/detection.py
浏览文件 @
9e4b9d97
...
@@ -2075,9 +2075,13 @@ def generate_proposal_labels(rpn_rois,
...
@@ -2075,9 +2075,13 @@ def generate_proposal_labels(rpn_rois,
bg_thresh_lo
=
0.0
,
bg_thresh_lo
=
0.0
,
bbox_reg_weights
=
[
0.1
,
0.1
,
0.2
,
0.2
],
bbox_reg_weights
=
[
0.1
,
0.1
,
0.2
,
0.2
],
class_nums
=
None
,
class_nums
=
None
,
use_random
=
True
):
use_random
=
True
,
is_cls_agnostic
=
False
,
is_cascade_rcnn
=
False
):
"""
"""
** Generate Proposal Labels of Faster-RCNN **
** Generate Proposal Labels of Faster-RCNN **
This operator can be, for given the GenerateProposalOp output bounding boxes and groundtruth,
This operator can be, for given the GenerateProposalOp output bounding boxes and groundtruth,
to sample foreground boxes and background boxes, and compute loss target.
to sample foreground boxes and background boxes, and compute loss target.
...
@@ -2108,6 +2112,8 @@ def generate_proposal_labels(rpn_rois,
...
@@ -2108,6 +2112,8 @@ def generate_proposal_labels(rpn_rois,
bbox_reg_weights(list|tuple): Box regression weights.
bbox_reg_weights(list|tuple): Box regression weights.
class_nums(int): Class number.
class_nums(int): Class number.
use_random(bool): Use random sampling to choose foreground and background boxes.
use_random(bool): Use random sampling to choose foreground and background boxes.
is_cls_agnostic(bool): bbox regression use class agnostic simply which only represent fg and bg boxes.
is_cascade_rcnn(bool): it will filter some bbox crossing the image's boundary when setting True.
Examples:
Examples:
.. code-block:: python
.. code-block:: python
...
@@ -2166,7 +2172,9 @@ def generate_proposal_labels(rpn_rois,
...
@@ -2166,7 +2172,9 @@ def generate_proposal_labels(rpn_rois,
'bg_thresh_lo'
:
bg_thresh_lo
,
'bg_thresh_lo'
:
bg_thresh_lo
,
'bbox_reg_weights'
:
bbox_reg_weights
,
'bbox_reg_weights'
:
bbox_reg_weights
,
'class_nums'
:
class_nums
,
'class_nums'
:
class_nums
,
'use_random'
:
use_random
'use_random'
:
use_random
,
'is_cls_agnostic'
:
is_cls_agnostic
,
'is_cascade_rcnn'
:
is_cascade_rcnn
})
})
rois
.
stop_gradient
=
True
rois
.
stop_gradient
=
True
...
...
python/paddle/fluid/tests/unittests/test_generate_proposal_labels_op.py
浏览文件 @
9e4b9d97
...
@@ -22,10 +22,10 @@ import paddle.fluid as fluid
...
@@ -22,10 +22,10 @@ import paddle.fluid as fluid
from
op_test
import
OpTest
from
op_test
import
OpTest
def
generate_proposal_labels_in_python
(
rpn_rois
,
gt_classes
,
is_crowd
,
gt_boxes
,
def
generate_proposal_labels_in_python
(
im_info
,
batch_size_per_im
,
fg_fraction
,
rpn_rois
,
gt_classes
,
is_crowd
,
gt_boxes
,
im_info
,
batch_size_per_im
,
fg_thresh
,
bg_thresh_hi
,
bg_thresh_lo
,
fg_fraction
,
fg_thresh
,
bg_thresh_hi
,
bg_thresh_lo
,
bbox_reg_weights
,
bbox_reg_weights
,
class_nums
):
class_nums
,
is_cls_agnostic
,
is_cascade_rcnn
):
rois
=
[]
rois
=
[]
labels_int32
=
[]
labels_int32
=
[]
bbox_targets
=
[]
bbox_targets
=
[]
...
@@ -36,13 +36,12 @@ def generate_proposal_labels_in_python(rpn_rois, gt_classes, is_crowd, gt_boxes,
...
@@ -36,13 +36,12 @@ def generate_proposal_labels_in_python(rpn_rois, gt_classes, is_crowd, gt_boxes,
im_info
),
'batch size of rpn_rois and ground_truth is not matched'
im_info
),
'batch size of rpn_rois and ground_truth is not matched'
for
im_i
in
range
(
len
(
im_info
)):
for
im_i
in
range
(
len
(
im_info
)):
frcn_blobs
=
_sample_rois
(
frcn_blobs
=
_sample_rois
(
rpn_rois
[
im_i
],
gt_classes
[
im_i
],
rpn_rois
[
im_i
],
gt_classes
[
im_i
],
is_crowd
[
im_i
],
gt_boxes
[
im_i
],
is_crowd
[
im_i
],
gt_boxes
[
im_i
],
im_info
[
im_i
],
im_info
[
im_i
],
batch_size_per_im
,
fg_fraction
,
fg_thresh
,
batch_size_per_im
,
fg_fraction
,
fg_thresh
,
bg_thresh_hi
,
bg_thresh_lo
,
bbox_reg_weights
,
class_nums
)
bg_thresh_hi
,
bg_thresh_lo
,
bbox_reg_weights
,
class_nums
,
is_cls_agnostic
,
is_cascade_rcnn
)
lod
.
append
(
frcn_blobs
[
'rois'
].
shape
[
0
])
lod
.
append
(
frcn_blobs
[
'rois'
].
shape
[
0
])
rois
.
append
(
frcn_blobs
[
'rois'
])
rois
.
append
(
frcn_blobs
[
'rois'
])
labels_int32
.
append
(
frcn_blobs
[
'labels_int32'
])
labels_int32
.
append
(
frcn_blobs
[
'labels_int32'
])
bbox_targets
.
append
(
frcn_blobs
[
'bbox_targets'
])
bbox_targets
.
append
(
frcn_blobs
[
'bbox_targets'
])
...
@@ -54,7 +53,8 @@ def generate_proposal_labels_in_python(rpn_rois, gt_classes, is_crowd, gt_boxes,
...
@@ -54,7 +53,8 @@ def generate_proposal_labels_in_python(rpn_rois, gt_classes, is_crowd, gt_boxes,
def
_sample_rois
(
rpn_rois
,
gt_classes
,
is_crowd
,
gt_boxes
,
im_info
,
def
_sample_rois
(
rpn_rois
,
gt_classes
,
is_crowd
,
gt_boxes
,
im_info
,
batch_size_per_im
,
fg_fraction
,
fg_thresh
,
bg_thresh_hi
,
batch_size_per_im
,
fg_fraction
,
fg_thresh
,
bg_thresh_hi
,
bg_thresh_lo
,
bbox_reg_weights
,
class_nums
):
bg_thresh_lo
,
bbox_reg_weights
,
class_nums
,
is_cls_agnostic
,
is_cascade_rcnn
):
rois_per_image
=
int
(
batch_size_per_im
)
rois_per_image
=
int
(
batch_size_per_im
)
fg_rois_per_im
=
int
(
np
.
round
(
fg_fraction
*
rois_per_image
))
fg_rois_per_im
=
int
(
np
.
round
(
fg_fraction
*
rois_per_image
))
...
@@ -62,7 +62,8 @@ def _sample_rois(rpn_rois, gt_classes, is_crowd, gt_boxes, im_info,
...
@@ -62,7 +62,8 @@ def _sample_rois(rpn_rois, gt_classes, is_crowd, gt_boxes, im_info,
im_scale
=
im_info
[
2
]
im_scale
=
im_info
[
2
]
inv_im_scale
=
1.
/
im_scale
inv_im_scale
=
1.
/
im_scale
rpn_rois
=
rpn_rois
*
inv_im_scale
rpn_rois
=
rpn_rois
*
inv_im_scale
if
is_cascade_rcnn
:
rpn_rois
=
rpn_rois
[
gt_boxes
.
shape
[
0
]:,
:]
boxes
=
np
.
vstack
([
gt_boxes
,
rpn_rois
])
boxes
=
np
.
vstack
([
gt_boxes
,
rpn_rois
])
gt_overlaps
=
np
.
zeros
((
boxes
.
shape
[
0
],
class_nums
))
gt_overlaps
=
np
.
zeros
((
boxes
.
shape
[
0
],
class_nums
))
box_to_gt_ind_map
=
np
.
zeros
((
boxes
.
shape
[
0
]),
dtype
=
np
.
int32
)
box_to_gt_ind_map
=
np
.
zeros
((
boxes
.
shape
[
0
]),
dtype
=
np
.
int32
)
...
@@ -87,26 +88,37 @@ def _sample_rois(rpn_rois, gt_classes, is_crowd, gt_boxes, im_info,
...
@@ -87,26 +88,37 @@ def _sample_rois(rpn_rois, gt_classes, is_crowd, gt_boxes, im_info,
max_overlaps
=
gt_overlaps
.
max
(
axis
=
1
)
max_overlaps
=
gt_overlaps
.
max
(
axis
=
1
)
max_classes
=
gt_overlaps
.
argmax
(
axis
=
1
)
max_classes
=
gt_overlaps
.
argmax
(
axis
=
1
)
# Foreground
# Cascade RCNN Decode Filter
fg_inds
=
np
.
where
(
max_overlaps
>=
fg_thresh
)[
0
]
if
is_cascade_rcnn
:
fg_rois_per_this_image
=
np
.
minimum
(
fg_rois_per_im
,
fg_inds
.
shape
[
0
])
ws
=
boxes
[:,
2
]
-
boxes
[:,
0
]
+
1
# Sample foreground if there are too many
hs
=
boxes
[:,
3
]
-
boxes
[:,
1
]
+
1
# if fg_inds.shape[0] > fg_rois_per_this_image:
keep
=
np
.
where
((
ws
>
0
)
&
(
hs
>
0
))[
0
]
# fg_inds = np.random.choice(
boxes
=
boxes
[
keep
]
# fg_inds, size=fg_rois_per_this_image, replace=False)
fg_inds
=
np
.
where
(
max_overlaps
>=
fg_thresh
)[
0
]
fg_inds
=
fg_inds
[:
fg_rois_per_this_image
]
bg_inds
=
np
.
where
((
max_overlaps
<
bg_thresh_hi
)
&
(
max_overlaps
>=
bg_thresh_lo
))[
0
]
# Background
fg_rois_per_this_image
=
fg_inds
.
shape
[
0
]
bg_inds
=
np
.
where
((
max_overlaps
<
bg_thresh_hi
)
&
(
max_overlaps
>=
bg_rois_per_this_image
=
bg_inds
.
shape
[
0
]
bg_thresh_lo
))[
0
]
else
:
bg_rois_per_this_image
=
rois_per_image
-
fg_rois_per_this_image
# Foreground
bg_rois_per_this_image
=
np
.
minimum
(
bg_rois_per_this_image
,
fg_inds
=
np
.
where
(
max_overlaps
>=
fg_thresh
)[
0
]
bg_inds
.
shape
[
0
])
fg_rois_per_this_image
=
np
.
minimum
(
fg_rois_per_im
,
fg_inds
.
shape
[
0
])
# Sample background if there are too many
# Sample foreground if there are too many
# if bg_inds.shape[0] > bg_rois_per_this_image:
if
fg_inds
.
shape
[
0
]
>
fg_rois_per_this_image
:
# bg_inds = np.random.choice(
fg_inds
=
np
.
random
.
choice
(
# bg_inds, size=bg_rois_per_this_image, replace=False)
fg_inds
,
size
=
fg_rois_per_this_image
,
replace
=
False
)
bg_inds
=
bg_inds
[:
bg_rois_per_this_image
]
fg_inds
=
fg_inds
[:
fg_rois_per_this_image
]
# Background
bg_inds
=
np
.
where
((
max_overlaps
<
bg_thresh_hi
)
&
(
max_overlaps
>=
bg_thresh_lo
))[
0
]
bg_rois_per_this_image
=
rois_per_image
-
fg_rois_per_this_image
bg_rois_per_this_image
=
np
.
minimum
(
bg_rois_per_this_image
,
bg_inds
.
shape
[
0
])
# Sample background if there are too many
if
bg_inds
.
shape
[
0
]
>
bg_rois_per_this_image
:
bg_inds
=
np
.
random
.
choice
(
bg_inds
,
size
=
bg_rois_per_this_image
,
replace
=
False
)
bg_inds
=
bg_inds
[:
bg_rois_per_this_image
]
keep_inds
=
np
.
append
(
fg_inds
,
bg_inds
)
keep_inds
=
np
.
append
(
fg_inds
,
bg_inds
)
sampled_labels
=
max_classes
[
keep_inds
]
sampled_labels
=
max_classes
[
keep_inds
]
...
@@ -114,14 +126,12 @@ def _sample_rois(rpn_rois, gt_classes, is_crowd, gt_boxes, im_info,
...
@@ -114,14 +126,12 @@ def _sample_rois(rpn_rois, gt_classes, is_crowd, gt_boxes, im_info,
sampled_boxes
=
boxes
[
keep_inds
]
sampled_boxes
=
boxes
[
keep_inds
]
sampled_gts
=
gt_boxes
[
box_to_gt_ind_map
[
keep_inds
]]
sampled_gts
=
gt_boxes
[
box_to_gt_ind_map
[
keep_inds
]]
sampled_gts
[
fg_rois_per_this_image
:,
:]
=
gt_boxes
[
0
]
sampled_gts
[
fg_rois_per_this_image
:,
:]
=
gt_boxes
[
0
]
bbox_label_targets
=
_compute_targets
(
sampled_boxes
,
sampled_gts
,
bbox_label_targets
=
_compute_targets
(
sampled_boxes
,
sampled_gts
,
sampled_labels
,
bbox_reg_weights
)
sampled_labels
,
bbox_reg_weights
)
bbox_targets
,
bbox_inside_weights
=
_expand_bbox_targets
(
bbox_label_targets
,
bbox_targets
,
bbox_inside_weights
=
_expand_bbox_targets
(
class_nums
)
bbox_label_targets
,
class_nums
,
is_cls_agnostic
)
bbox_outside_weights
=
np
.
array
(
bbox_outside_weights
=
np
.
array
(
bbox_inside_weights
>
0
,
dtype
=
bbox_inside_weights
.
dtype
)
bbox_inside_weights
>
0
,
dtype
=
bbox_inside_weights
.
dtype
)
# Scale rois
# Scale rois
sampled_rois
=
sampled_boxes
*
im_scale
sampled_rois
=
sampled_boxes
*
im_scale
...
@@ -192,19 +202,22 @@ def _box_to_delta(ex_boxes, gt_boxes, weights):
...
@@ -192,19 +202,22 @@ def _box_to_delta(ex_boxes, gt_boxes, weights):
return
targets
return
targets
def
_expand_bbox_targets
(
bbox_targets_input
,
class_nums
):
def
_expand_bbox_targets
(
bbox_targets_input
,
class_nums
,
is_cls_agnostic
):
class_labels
=
bbox_targets_input
[:,
0
]
class_labels
=
bbox_targets_input
[:,
0
]
fg_inds
=
np
.
where
(
class_labels
>
0
)[
0
]
fg_inds
=
np
.
where
(
class_labels
>
0
)[
0
]
#if is_cls_agnostic:
bbox_targets
=
np
.
zeros
((
class_labels
.
shape
[
0
],
4
*
class_nums
))
# class_labels = [1 if ll > 0 else 0 for ll in class_labels]
# class_labels = np.array(class_labels, dtype=np.int32)
# class_nums = 2
bbox_targets
=
np
.
zeros
((
class_labels
.
shape
[
0
],
4
*
class_nums
if
not
is_cls_agnostic
else
4
*
2
))
bbox_inside_weights
=
np
.
zeros
(
bbox_targets
.
shape
)
bbox_inside_weights
=
np
.
zeros
(
bbox_targets
.
shape
)
for
ind
in
fg_inds
:
for
ind
in
fg_inds
:
class_label
=
int
(
class_labels
[
ind
])
class_label
=
int
(
class_labels
[
ind
])
if
not
is_cls_agnostic
else
1
start_ind
=
class_label
*
4
start_ind
=
class_label
*
4
end_ind
=
class_label
*
4
+
4
end_ind
=
class_label
*
4
+
4
bbox_targets
[
ind
,
start_ind
:
end_ind
]
=
bbox_targets_input
[
ind
,
1
:]
bbox_targets
[
ind
,
start_ind
:
end_ind
]
=
bbox_targets_input
[
ind
,
1
:]
bbox_inside_weights
[
ind
,
start_ind
:
end_ind
]
=
(
1.0
,
1.0
,
1.0
,
1.0
)
bbox_inside_weights
[
ind
,
start_ind
:
end_ind
]
=
(
1.0
,
1.0
,
1.0
,
1.0
)
return
bbox_targets
,
bbox_inside_weights
return
bbox_targets
,
bbox_inside_weights
...
@@ -228,7 +241,9 @@ class TestGenerateProposalLabelsOp(OpTest):
...
@@ -228,7 +241,9 @@ class TestGenerateProposalLabelsOp(OpTest):
'bg_thresh_lo'
:
self
.
bg_thresh_lo
,
'bg_thresh_lo'
:
self
.
bg_thresh_lo
,
'bbox_reg_weights'
:
self
.
bbox_reg_weights
,
'bbox_reg_weights'
:
self
.
bbox_reg_weights
,
'class_nums'
:
self
.
class_nums
,
'class_nums'
:
self
.
class_nums
,
'use_random'
:
False
'use_random'
:
False
,
'is_cls_agnostic'
:
self
.
is_cls_agnostic
,
'is_cascade_rcnn'
:
self
.
is_cascade_rcnn
}
}
self
.
outputs
=
{
self
.
outputs
=
{
'Rois'
:
(
self
.
rois
,
[
self
.
lod
]),
'Rois'
:
(
self
.
rois
,
[
self
.
lod
]),
...
@@ -252,12 +267,15 @@ class TestGenerateProposalLabelsOp(OpTest):
...
@@ -252,12 +267,15 @@ class TestGenerateProposalLabelsOp(OpTest):
self
.
bg_thresh_hi
=
0.5
self
.
bg_thresh_hi
=
0.5
self
.
bg_thresh_lo
=
0.0
self
.
bg_thresh_lo
=
0.0
self
.
bbox_reg_weights
=
[
0.1
,
0.1
,
0.2
,
0.2
]
self
.
bbox_reg_weights
=
[
0.1
,
0.1
,
0.2
,
0.2
]
self
.
class_nums
=
81
#self.class_nums = 81
self
.
is_cls_agnostic
=
False
#True
self
.
is_cascade_rcnn
=
True
self
.
class_nums
=
2
if
self
.
is_cls_agnostic
else
81
def
init_test_input
(
self
):
def
init_test_input
(
self
):
np
.
random
.
seed
(
0
)
np
.
random
.
seed
(
0
)
gt_nums
=
6
# Keep same with batch_size_per_im for unittest
gt_nums
=
6
# Keep same with batch_size_per_im for unittest
proposal_nums
=
2000
#self.batch_size_per_im - gt_nums
proposal_nums
=
2000
if
not
self
.
is_cascade_rcnn
else
512
#self.batch_size_per_im - gt_nums
images_shape
=
[[
64
,
64
]]
images_shape
=
[[
64
,
64
]]
self
.
im_info
=
np
.
ones
((
len
(
images_shape
),
3
)).
astype
(
np
.
float32
)
self
.
im_info
=
np
.
ones
((
len
(
images_shape
),
3
)).
astype
(
np
.
float32
)
for
i
in
range
(
len
(
images_shape
)):
for
i
in
range
(
len
(
images_shape
)):
...
@@ -280,7 +298,8 @@ class TestGenerateProposalLabelsOp(OpTest):
...
@@ -280,7 +298,8 @@ class TestGenerateProposalLabelsOp(OpTest):
self
.
rpn_rois
,
self
.
gt_classes
,
self
.
is_crowd
,
self
.
gt_boxes
,
self
.
im_info
,
self
.
rpn_rois
,
self
.
gt_classes
,
self
.
is_crowd
,
self
.
gt_boxes
,
self
.
im_info
,
self
.
batch_size_per_im
,
self
.
fg_fraction
,
self
.
batch_size_per_im
,
self
.
fg_fraction
,
self
.
fg_thresh
,
self
.
bg_thresh_hi
,
self
.
bg_thresh_lo
,
self
.
fg_thresh
,
self
.
bg_thresh_hi
,
self
.
bg_thresh_lo
,
self
.
bbox_reg_weights
,
self
.
class_nums
self
.
bbox_reg_weights
,
self
.
class_nums
,
self
.
is_cls_agnostic
,
self
.
is_cascade_rcnn
)
)
self
.
rois
=
np
.
vstack
(
self
.
rois
)
self
.
rois
=
np
.
vstack
(
self
.
rois
)
self
.
labels_int32
=
np
.
hstack
(
self
.
labels_int32
)
self
.
labels_int32
=
np
.
hstack
(
self
.
labels_int32
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录