Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
9cb8738f
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
9cb8738f
编写于
10月 25, 2018
作者:
T
tensor-tang
提交者:
GitHub
10月 25, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #14018 from tensor-tang/refine/jit/gru
Refine/jit/gru
上级
8c1eea93
032c3a07
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
244 addition
and
154 deletion
+244
-154
paddle/fluid/operators/fusion_gru_op.cc
paddle/fluid/operators/fusion_gru_op.cc
+50
-98
paddle/fluid/operators/math/CMakeLists.txt
paddle/fluid/operators/math/CMakeLists.txt
+1
-1
paddle/fluid/operators/math/jit_kernel.h
paddle/fluid/operators/math/jit_kernel.h
+9
-0
paddle/fluid/operators/math/jit_kernel_rnn.cc
paddle/fluid/operators/math/jit_kernel_rnn.cc
+178
-55
python/paddle/fluid/tests/unittests/test_fusion_gru_op.py
python/paddle/fluid/tests/unittests/test_fusion_gru_op.py
+6
-0
未找到文件。
paddle/fluid/operators/fusion_gru_op.cc
浏览文件 @
9cb8738f
...
@@ -16,10 +16,9 @@ limitations under the License. */
...
@@ -16,10 +16,9 @@ limitations under the License. */
#include <cstring> // for memcpy
#include <cstring> // for memcpy
#include <string>
#include <string>
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/cpu_vec.h"
#include "paddle/fluid/operators/math/fc_compute.h"
#include "paddle/fluid/operators/math/fc_compute.h"
#include "paddle/fluid/operators/math/jit_kernel.h"
#include "paddle/fluid/operators/math/sequence2batch.h"
#include "paddle/fluid/operators/math/sequence2batch.h"
#include "paddle/fluid/platform/cpu_info.h"
namespace
paddle
{
namespace
paddle
{
namespace
operators
{
namespace
operators
{
...
@@ -174,58 +173,44 @@ class FusionGRUKernel : public framework::OpKernel<T> {
...
@@ -174,58 +173,44 @@ class FusionGRUKernel : public framework::OpKernel<T> {
}
}
}
}
#define INIT_VEC_FUNC \
#define INIT_BASE_DEFINES \
std::function<void(const int, const T *, T *)> act_gate, act_state; \
auto* x = ctx.Input<LoDTensor>("X"); \
std::function<void(const int, const T*, const T*, const T*, T*)> cross; \
auto* wh = ctx.Input<Tensor>("WeightH"); \
auto& act_gate_str = ctx.Attr<std::string>("gate_activation"); \
auto* xx = ctx.Output<LoDTensor>("XX"); \
auto& act_state_str = ctx.Attr<std::string>("activation"); \
auto x_lod = x->lod(); \
if (platform::jit::MayIUse(platform::jit::avx)) { \
auto x_dims = x->dims();
/* T x M*/
\
math::VecActivations<T, platform::jit::avx> act_functor; \
auto wh_dims = wh->dims();
/* D x 3D*/
\
act_gate = act_functor(act_gate_str); \
const int total_T = x_dims[0]; \
act_state = act_functor(act_state_str); \
const int D3 = wh_dims[1]
cross = math::vec_cross<T, platform::jit::avx>; \
} else { \
#define INIT_OTHER_DEFINES \
math::VecActivations<T, platform::jit::isa_any> act_functor; \
auto* h0 = ctx.Input<Tensor>("H0"); \
act_gate = act_functor(act_gate_str); \
auto* wx = ctx.Input<Tensor>("WeightX"); \
act_state = act_functor(act_state_str); \
auto* bias = ctx.Input<Tensor>("Bias"); \
cross = math::vec_cross<T, platform::jit::isa_any>; \
auto* hidden_out = ctx.Output<LoDTensor>("Hidden"); \
}
bool is_reverse = ctx.Attr<bool>("is_reverse"); \
const int M = x_dims[1]; \
#define INIT_BASE_INPUT_OUTPUT \
const int D = wh_dims[0]; \
auto* h0 = ctx.Input<Tensor>("H0"); \
const int D2 = D * 2; \
auto* wx = ctx.Input<Tensor>("WeightX"); \
const auto& ker = math::jitkernel::KernelPool::Instance() \
auto* wh = ctx.Input<Tensor>("WeightH"); \
.template Get<math::jitkernel::GRUKernel<T>, \
auto* bias = ctx.Input<Tensor>("Bias"); \
const std::string&, const std::string&>( \
auto* xx = ctx.Output<LoDTensor>("XX"); \
ctx.Attr<std::string>("gate_activation"), \
auto* hidden_out = ctx.Output<LoDTensor>("Hidden"); \
ctx.Attr<std::string>("activation"), D); \
bool is_reverse = ctx.Attr<bool>("is_reverse");
const T* x_data = x->data<T>(); \
const T* wx_data = wx->data<T>(); \
#define INIT_BASE_SIZES \
const T* wh_data = wh->data<T>(); \
auto x_dims = x->dims();
/* T x M*/
\
auto place = ctx.GetPlace(); \
auto wh_dims = wh->dims();
/* D x 3D*/
\
T* xx_data = xx->mutable_data<T>(place)
const int total_T = x_dims[0]; \
const int M = x_dims[1]; \
const int D = wh_dims[0]; \
const int D3 = wh_dims[1]; \
const int D2 = D * 2;
void
SeqCompute
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
void
SeqCompute
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
using
DeviceContext
=
paddle
::
platform
::
CPUDeviceContext
;
using
DeviceContext
=
paddle
::
platform
::
CPUDeviceContext
;
auto
*
x
=
ctx
.
Input
<
LoDTensor
>
(
"X"
);
INIT_BASE_DEFINES
;
INIT_BASE_INPUT_OUTPUT
INIT_OTHER_DEFINES
;
INIT_BASE_SIZES
INIT_VEC_FUNC
auto
x_lod
=
x
->
lod
();
const
int
N
=
x_lod
[
0
].
size
()
-
1
;
const
int
N
=
x_lod
[
0
].
size
()
-
1
;
const
T
*
x_data
=
x
->
data
<
T
>
();
const
T
*
h0_data
=
h0
?
h0
->
data
<
T
>
()
:
nullptr
;
const
T
*
h0_data
=
h0
?
h0
->
data
<
T
>
()
:
nullptr
;
const
T
*
wx_data
=
wx
->
data
<
T
>
();
const
T
*
wh_data
=
wh
->
data
<
T
>
();
const
T
*
wh_state_data
=
wh_data
+
D
*
D2
;
const
T
*
wh_state_data
=
wh_data
+
D
*
D2
;
T
*
xx_data
=
xx
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
*
hidden_out_data
=
hidden_out
->
mutable_data
<
T
>
(
place
);
T
*
hidden_out_data
=
hidden_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
blas
=
math
::
GetBlas
<
DeviceContext
,
T
>
(
ctx
);
auto
blas
=
math
::
GetBlas
<
DeviceContext
,
T
>
(
ctx
);
math
::
FCCompute
<
DeviceContext
,
T
>
(
blas
,
total_T
,
D3
,
M
,
x_data
,
wx_data
,
math
::
FCCompute
<
DeviceContext
,
T
>
(
blas
,
total_T
,
D3
,
M
,
x_data
,
wx_data
,
xx_data
,
xx_data
,
...
@@ -252,14 +237,7 @@ class FusionGRUKernel : public framework::OpKernel<T> {
...
@@ -252,14 +237,7 @@ class FusionGRUKernel : public framework::OpKernel<T> {
if
(
h0_data
)
{
if
(
h0_data
)
{
prev_hidden_data
=
h0_data
+
bid
*
D
;
prev_hidden_data
=
h0_data
+
bid
*
D
;
}
else
{
}
else
{
// W: {W_update, W_reset; W_state}
ker
->
ComputeH1
(
xx_data
,
hidden_out_data
);
// update gate
act_gate
(
D
,
xx_data
,
xx_data
);
// state gate
act_state
(
D
,
xx_data
+
D2
,
xx_data
+
D2
);
// out = a*b
blas
.
VMUL
(
D
,
xx_data
,
xx_data
+
D2
,
hidden_out_data
);
// save prev
prev_hidden_data
=
hidden_out_data
;
prev_hidden_data
=
hidden_out_data
;
tstart
=
1
;
tstart
=
1
;
move_step
();
move_step
();
...
@@ -269,17 +247,12 @@ class FusionGRUKernel : public framework::OpKernel<T> {
...
@@ -269,17 +247,12 @@ class FusionGRUKernel : public framework::OpKernel<T> {
blas
.
GEMM
(
CblasNoTrans
,
CblasNoTrans
,
1
,
D2
,
D
,
static_cast
<
T
>
(
1
),
blas
.
GEMM
(
CblasNoTrans
,
CblasNoTrans
,
1
,
D2
,
D
,
static_cast
<
T
>
(
1
),
prev_hidden_data
,
D
,
wh_data
,
D2
,
static_cast
<
T
>
(
1
),
xx_data
,
prev_hidden_data
,
D
,
wh_data
,
D2
,
static_cast
<
T
>
(
1
),
xx_data
,
D3
);
D3
);
act_gate
(
D2
,
xx_data
,
xx_data
);
ker
->
ComputeHtPart1
(
xx_data
,
prev_hidden_data
,
hidden_out_data
);
// rt = rt*ht_1 inplace result
blas
.
VMUL
(
D
,
prev_hidden_data
,
xx_data
+
D
,
hidden_out_data
);
// gemm rt * Ws
// gemm rt * Ws
blas
.
GEMM
(
CblasNoTrans
,
CblasNoTrans
,
1
,
D
,
D
,
static_cast
<
T
>
(
1
),
blas
.
GEMM
(
CblasNoTrans
,
CblasNoTrans
,
1
,
D
,
D
,
static_cast
<
T
>
(
1
),
hidden_out_data
,
D
,
wh_state_data
,
D
,
static_cast
<
T
>
(
1
),
hidden_out_data
,
D
,
wh_state_data
,
D
,
static_cast
<
T
>
(
1
),
xx_data
+
D2
,
D3
);
xx_data
+
D2
,
D3
);
act_state
(
D
,
xx_data
+
D2
,
xx_data
+
D2
);
ker
->
ComputeHtPart2
(
xx_data
,
prev_hidden_data
,
hidden_out_data
);
// out = zt*ht~ + (1-zt)*ht_1
cross
(
D
,
xx_data
,
xx_data
+
D2
,
prev_hidden_data
,
hidden_out_data
);
// save prev
// save prev
prev_hidden_data
=
hidden_out_data
;
prev_hidden_data
=
hidden_out_data
;
move_step
();
move_step
();
...
@@ -289,28 +262,19 @@ class FusionGRUKernel : public framework::OpKernel<T> {
...
@@ -289,28 +262,19 @@ class FusionGRUKernel : public framework::OpKernel<T> {
void
BatchCompute
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
void
BatchCompute
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
using
DeviceContext
=
paddle
::
platform
::
CPUDeviceContext
;
using
DeviceContext
=
paddle
::
platform
::
CPUDeviceContext
;
auto
*
x
=
ctx
.
Input
<
LoDTensor
>
(
"X"
);
INIT_BASE_DEFINES
;
INIT_BASE_INPUT_OUTPUT
if
(
x_lod
[
0
].
size
()
==
2
)
{
INIT_BASE_SIZES
if
(
x
->
lod
()[
0
].
size
()
==
2
)
{
xx
->
Resize
({
total_T
,
D3
});
xx
->
Resize
({
total_T
,
D3
});
SeqCompute
(
ctx
);
SeqCompute
(
ctx
);
return
;
return
;
}
}
INIT_VEC_FUNC
INIT_OTHER_DEFINES
;
auto
*
reordered_h0
=
ctx
.
Output
<
Tensor
>
(
"ReorderedH0"
);
auto
*
reordered_h0
=
ctx
.
Output
<
Tensor
>
(
"ReorderedH0"
);
auto
*
batched_input
=
ctx
.
Output
<
LoDTensor
>
(
"BatchedInput"
);
auto
*
batched_input
=
ctx
.
Output
<
LoDTensor
>
(
"BatchedInput"
);
auto
*
batched_out
=
ctx
.
Output
<
LoDTensor
>
(
"BatchedOut"
);
auto
*
batched_out
=
ctx
.
Output
<
LoDTensor
>
(
"BatchedOut"
);
T
*
batched_input_data
=
batched_input
->
mutable_data
<
T
>
(
place
);
const
T
*
x_data
=
x
->
data
<
T
>
();
T
*
batched_out_data
=
batched_out
->
mutable_data
<
T
>
(
place
);
const
T
*
wx_data
=
wx
->
data
<
T
>
();
hidden_out
->
mutable_data
<
T
>
(
place
);
const
T
*
wh_data
=
wh
->
data
<
T
>
();
T
*
xx_data
=
xx
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
*
batched_input_data
=
batched_input
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
*
batched_out_data
=
batched_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
hidden_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
auto
blas
=
math
::
GetBlas
<
DeviceContext
,
T
>
(
dev_ctx
);
auto
blas
=
math
::
GetBlas
<
DeviceContext
,
T
>
(
dev_ctx
);
math
::
LoDTensor2BatchFunctor
<
DeviceContext
,
T
>
to_batch
;
math
::
LoDTensor2BatchFunctor
<
DeviceContext
,
T
>
to_batch
;
...
@@ -336,7 +300,7 @@ class FusionGRUKernel : public framework::OpKernel<T> {
...
@@ -336,7 +300,7 @@ class FusionGRUKernel : public framework::OpKernel<T> {
T
*
prev_hidden_data
=
nullptr
;
T
*
prev_hidden_data
=
nullptr
;
if
(
h0
)
{
if
(
h0
)
{
// reorder h0
// reorder h0
T
*
reordered_h0_data
=
reordered_h0
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()
);
T
*
reordered_h0_data
=
reordered_h0
->
mutable_data
<
T
>
(
place
);
const
T
*
h0_data
=
h0
->
data
<
T
>
();
const
T
*
h0_data
=
h0
->
data
<
T
>
();
prev_hidden_data
=
reordered_h0_data
;
prev_hidden_data
=
reordered_h0_data
;
size_t
sz
=
sizeof
(
T
)
*
D
;
size_t
sz
=
sizeof
(
T
)
*
D
;
...
@@ -350,12 +314,7 @@ class FusionGRUKernel : public framework::OpKernel<T> {
...
@@ -350,12 +314,7 @@ class FusionGRUKernel : public framework::OpKernel<T> {
T
*
cur_out_data
=
batched_out_data
;
T
*
cur_out_data
=
batched_out_data
;
// W: {W_update, W_reset; W_state}
// W: {W_update, W_reset; W_state}
for
(
int
i
=
0
;
i
<
max_bs
;
++
i
)
{
for
(
int
i
=
0
;
i
<
max_bs
;
++
i
)
{
// update gate
ker
->
ComputeH1
(
cur_in_data
,
cur_out_data
);
act_gate
(
D
,
cur_in_data
,
cur_in_data
);
// state gate
act_state
(
D
,
cur_in_data
+
D2
,
cur_in_data
+
D2
);
// out = a*b
blas
.
VMUL
(
D
,
cur_in_data
,
cur_in_data
+
D2
,
cur_out_data
);
// add offset
// add offset
cur_in_data
+=
D3
;
cur_in_data
+=
D3
;
cur_out_data
+=
D
;
cur_out_data
+=
D
;
...
@@ -380,10 +339,8 @@ class FusionGRUKernel : public framework::OpKernel<T> {
...
@@ -380,10 +339,8 @@ class FusionGRUKernel : public framework::OpKernel<T> {
T
*
cur_out_data
=
batched_out_data
;
T
*
cur_out_data
=
batched_out_data
;
T
*
cur_prev_hidden_data
=
prev_hidden_data
;
T
*
cur_prev_hidden_data
=
prev_hidden_data
;
for
(
int
i
=
0
;
i
<
cur_bs
;
++
i
)
{
for
(
int
i
=
0
;
i
<
cur_bs
;
++
i
)
{
act_gate
(
D2
,
cur_batched_data
,
cur_batched_data
);
ker
->
ComputeHtPart1
(
cur_batched_data
,
cur_prev_hidden_data
,
// rt = rt*ht_1 inplace result
cur_out_data
);
blas
.
VMUL
(
D
,
cur_prev_hidden_data
,
cur_batched_data
+
D
,
cur_out_data
);
cur_batched_data
+=
D3
;
cur_batched_data
+=
D3
;
cur_prev_hidden_data
+=
D
;
cur_prev_hidden_data
+=
D
;
cur_out_data
+=
D
;
cur_out_data
+=
D
;
...
@@ -397,12 +354,8 @@ class FusionGRUKernel : public framework::OpKernel<T> {
...
@@ -397,12 +354,8 @@ class FusionGRUKernel : public framework::OpKernel<T> {
cur_prev_hidden_data
=
prev_hidden_data
;
cur_prev_hidden_data
=
prev_hidden_data
;
for
(
int
i
=
0
;
i
<
cur_bs
;
++
i
)
{
for
(
int
i
=
0
;
i
<
cur_bs
;
++
i
)
{
// ht~ = act_state(...)
ker
->
ComputeHtPart2
(
cur_batched_data
,
cur_prev_hidden_data
,
act_state
(
D
,
cur_batched_data
+
D2
,
cur_batched_data
+
D2
);
cur_out_data
);
// out = zt*ht~ + (1-zt)*ht_1
cross
(
D
,
cur_batched_data
,
cur_batched_data
+
D2
,
cur_prev_hidden_data
,
cur_out_data
);
cur_batched_data
+=
D3
;
cur_batched_data
+=
D3
;
cur_prev_hidden_data
+=
D
;
cur_prev_hidden_data
+=
D
;
cur_out_data
+=
D
;
cur_out_data
+=
D
;
...
@@ -416,9 +369,8 @@ class FusionGRUKernel : public framework::OpKernel<T> {
...
@@ -416,9 +369,8 @@ class FusionGRUKernel : public framework::OpKernel<T> {
batched_out
->
set_lod
(
batched_lod
);
batched_out
->
set_lod
(
batched_lod
);
to_seq
(
dev_ctx
,
*
batched_out
,
hidden_out
);
to_seq
(
dev_ctx
,
*
batched_out
,
hidden_out
);
}
}
#undef INIT_VEC_FUNC
#undef INIT_OTHER_DEFINES
#undef INIT_BASE_SIZES
#undef INIT_BASE_DEFINES
#undef INIT_BASE_INPUT_OUTPUT
};
};
}
// namespace operators
}
// namespace operators
...
...
paddle/fluid/operators/math/CMakeLists.txt
浏览文件 @
9cb8738f
...
@@ -75,6 +75,6 @@ endif()
...
@@ -75,6 +75,6 @@ endif()
cc_test
(
concat_test SRCS concat_test.cc DEPS concat_and_split
)
cc_test
(
concat_test SRCS concat_test.cc DEPS concat_and_split
)
cc_test
(
cpu_vec_test SRCS cpu_vec_test.cc DEPS blas cpu_info
)
cc_test
(
cpu_vec_test SRCS cpu_vec_test.cc DEPS blas cpu_info
)
cc_library
(
jit_kernel
cc_library
(
jit_kernel
SRCS jit_kernel.cc jit_kernel_blas.cc jit_kernel_exp.cc jit_kernel_
lstm
.cc
SRCS jit_kernel.cc jit_kernel_blas.cc jit_kernel_exp.cc jit_kernel_
rnn
.cc
DEPS cpu_info cblas
)
DEPS cpu_info cblas
)
cc_test
(
jit_kernel_test SRCS jit_kernel_test.cc DEPS jit_kernel
)
cc_test
(
jit_kernel_test SRCS jit_kernel_test.cc DEPS jit_kernel
)
paddle/fluid/operators/math/jit_kernel.h
浏览文件 @
9cb8738f
...
@@ -142,6 +142,15 @@ class LSTMKernel : public Kernel {
...
@@ -142,6 +142,15 @@ class LSTMKernel : public Kernel {
const
T
*
wp_data
=
nullptr
)
const
=
0
;
const
T
*
wp_data
=
nullptr
)
const
=
0
;
};
};
template
<
typename
T
>
class
GRUKernel
:
public
Kernel
{
public:
// compute h1 without h0
virtual
void
ComputeH1
(
T
*
gates
,
T
*
ht
)
const
=
0
;
virtual
void
ComputeHtPart1
(
T
*
gates
,
const
T
*
ht_1
,
T
*
ht
)
const
=
0
;
virtual
void
ComputeHtPart2
(
T
*
gates
,
const
T
*
ht_1
,
T
*
ht
)
const
=
0
;
};
}
// namespace jitkernel
}
// namespace jitkernel
}
// namespace math
}
// namespace math
}
// namespace operators
}
// namespace operators
...
...
paddle/fluid/operators/math/jit_kernel_
lstm
.cc
→
paddle/fluid/operators/math/jit_kernel_
rnn
.cc
浏览文件 @
9cb8738f
...
@@ -136,6 +136,21 @@ static std::shared_ptr<const VActKernel<T>> GetActKernel(
...
@@ -136,6 +136,21 @@ static std::shared_ptr<const VActKernel<T>> GetActKernel(
return
nullptr
;
return
nullptr
;
}
}
template
<
jit
::
cpu_isa_t
isa
>
static
std
::
unique_ptr
<
AVXAct
>
GetAVXAct
(
const
std
::
string
&
type
)
{
if
(
type
==
"sigmoid"
)
{
return
std
::
unique_ptr
<
AVXAct
>
(
new
AVXActImpl
<
kSigmoid
,
isa
>
());
}
else
if
(
type
==
"relu"
)
{
return
std
::
unique_ptr
<
AVXAct
>
(
new
AVXActImpl
<
kRelu
,
isa
>
());
}
else
if
(
type
==
"tanh"
)
{
return
std
::
unique_ptr
<
AVXAct
>
(
new
AVXActImpl
<
kTanh
,
isa
>
());
}
else
if
(
type
==
"identity"
||
type
==
""
)
{
return
std
::
unique_ptr
<
AVXAct
>
(
new
AVXActImpl
<
kIdentity
,
isa
>
());
}
PADDLE_THROW
(
"Not support type: %s"
,
type
);
return
nullptr
;
}
/* LSTM JitKernel */
/* LSTM JitKernel */
template
<
typename
T
,
jit
::
cpu_isa_t
isa
,
jit_block
>
template
<
typename
T
,
jit
::
cpu_isa_t
isa
,
jit_block
>
class
LSTMKernelImpl
:
public
LSTMKernel
<
T
>
{
class
LSTMKernelImpl
:
public
LSTMKernel
<
T
>
{
...
@@ -192,61 +207,49 @@ class LSTMKernelImpl : public LSTMKernel<T> {
...
@@ -192,61 +207,49 @@ class LSTMKernelImpl : public LSTMKernel<T> {
#endif
#endif
};
};
#define INTRI8_FLOAT(isa) \
#define INTRI8_FLOAT(isa) \
template <> \
template <> \
LSTMKernelImpl<float, isa, kEQ8>::LSTMKernelImpl( \
LSTMKernelImpl<float, isa, kEQ8>::LSTMKernelImpl( \
const std::string& act_gate, const std::string& act_cand, \
const std::string& act_gate, const std::string& act_cand, \
const std::string& act_cell, int d) \
const std::string& act_cell, int d) \
: LSTMKernel<float>() { \
: LSTMKernel<float>() { \
auto GetAVXAct = [&](const std::string& type) -> std::unique_ptr<AVXAct> { \
avx_act_gate_ = GetAVXAct<isa>(act_gate); \
if (type == "sigmoid") { \
avx_act_cand_ = GetAVXAct<isa>(act_cand); \
return std::unique_ptr<AVXAct>(new AVXActImpl<kSigmoid, isa>()); \
avx_act_cell_ = GetAVXAct<isa>(act_cell); \
} else if (type == "relu") { \
} \
return std::unique_ptr<AVXAct>(new AVXActImpl<kRelu, isa>()); \
template <> \
} else if (type == "tanh") { \
void LSTMKernelImpl<float, isa, kEQ8>::ComputeCtHt( \
return std::unique_ptr<AVXAct>(new AVXActImpl<kTanh, isa>()); \
float* gates, const float* ct_1, float* ct, float* ht, \
} else if (type == "identity" || type == "") { \
const float* wp_data, float* checked) const { \
return std::unique_ptr<AVXAct>(new AVXActImpl<kIdentity, isa>()); \
/* gates: W_ch, W_ih, W_fh, W_oh */
\
} \
__m256 c, i, f, o; \
PADDLE_THROW("Not support type: %s", type); \
c = _mm256_loadu_ps(gates); \
}; \
i = _mm256_loadu_ps(gates + 8); \
avx_act_gate_ = GetAVXAct(act_gate); \
f = _mm256_loadu_ps(gates + 16); \
avx_act_cand_ = GetAVXAct(act_cand); \
o = _mm256_loadu_ps(gates + 24); \
avx_act_cell_ = GetAVXAct(act_cell); \
/* C_t = C_t-1 * fgated + cand_gated * igated*/
\
} \
c = _mm256_mul_ps(avx_act_cand_->Compute(c), avx_act_gate_->Compute(i)); \
template <> \
i = _mm256_loadu_ps(ct_1); \
void LSTMKernelImpl<float, isa, kEQ8>::ComputeCtHt( \
f = _mm256_mul_ps(i, avx_act_gate_->Compute(f)); \
float* gates, const float* ct_1, float* ct, float* ht, \
f = _mm256_add_ps(c, f); \
const float* wp_data, float* checked) const { \
_mm256_storeu_ps(ct, f); \
/* gates: W_ch, W_ih, W_fh, W_oh */
\
/* H_t = act_cell(C_t) * ogated */
\
__m256 c, i, f, o; \
o = _mm256_mul_ps(avx_act_cell_->Compute(f), avx_act_gate_->Compute(o)); \
c = _mm256_loadu_ps(gates); \
_mm256_storeu_ps(ht, o); \
i = _mm256_loadu_ps(gates + 8); \
} \
f = _mm256_loadu_ps(gates + 16); \
template <> \
o = _mm256_loadu_ps(gates + 24); \
void LSTMKernelImpl<float, isa, kEQ8>::ComputeC1H1( \
/* C_t = C_t-1 * fgated + cand_gated * igated*/
\
float* gates, float* ct, float* ht, const float* wp_data) const { \
c = _mm256_mul_ps(avx_act_cand_->Compute(c), avx_act_gate_->Compute(i)); \
__m256 c, i, o; \
i = _mm256_loadu_ps(ct_1); \
c = _mm256_loadu_ps(gates); \
f = _mm256_mul_ps(i, avx_act_gate_->Compute(f)); \
i = _mm256_loadu_ps(gates + 8); \
f = _mm256_add_ps(c, f); \
o = _mm256_loadu_ps(gates + 24); \
_mm256_storeu_ps(ct, f); \
/* C_t = igated * cgated*/
\
/* H_t = act_cell(C_t) * ogated */
\
c = _mm256_mul_ps(avx_act_gate_->Compute(i), avx_act_cand_->Compute(c)); \
o = _mm256_mul_ps(avx_act_cell_->Compute(f), avx_act_gate_->Compute(o)); \
_mm256_storeu_ps(ct, c); \
_mm256_storeu_ps(ht, o); \
/* H_t = act_cell(C_t) * ogated */
\
} \
o = _mm256_mul_ps(avx_act_cell_->Compute(c), avx_act_gate_->Compute(o)); \
template <> \
_mm256_storeu_ps(ht, o); \
void LSTMKernelImpl<float, isa, kEQ8>::ComputeC1H1( \
float* gates, float* ct, float* ht, const float* wp_data) const { \
__m256 c, i, o; \
c = _mm256_loadu_ps(gates); \
i = _mm256_loadu_ps(gates + 8); \
o = _mm256_loadu_ps(gates + 24); \
/* C_t = igated * cgated*/
\
c = _mm256_mul_ps(avx_act_gate_->Compute(i), avx_act_cand_->Compute(c)); \
_mm256_storeu_ps(ct, c); \
/* H_t = act_cell(C_t) * ogated */
\
o = _mm256_mul_ps(avx_act_cell_->Compute(c), avx_act_gate_->Compute(o)); \
_mm256_storeu_ps(ht, o); \
}
}
// TODO(TJ): optimize keq16
// TODO(TJ): optimize keq16
...
@@ -354,6 +357,126 @@ REGISTER_JITKERNEL_ARGS(lstm, LSTMKernel, JITKERNEL_DECLARE_LSTM,
...
@@ -354,6 +357,126 @@ REGISTER_JITKERNEL_ARGS(lstm, LSTMKernel, JITKERNEL_DECLARE_LSTM,
#undef JITKERNEL_DECLARE_LSTM
#undef JITKERNEL_DECLARE_LSTM
#undef JITKERNEL_KEY_LSTM
#undef JITKERNEL_KEY_LSTM
#undef JITKERNEL_NEW_LSTM_IMPL
#undef JITKERNEL_NEW_LSTM_IMPL
/* GRU JitKernel */
template
<
typename
T
,
jit
::
cpu_isa_t
isa
,
jit_block
>
class
GRUKernelImpl
:
public
GRUKernel
<
T
>
{
public:
explicit
GRUKernelImpl
(
const
std
::
string
&
act_gate
,
const
std
::
string
&
act_state
,
int
d
)
:
GRUKernel
<
T
>
()
{
d_
=
d
;
d2_
=
d
*
2
;
act_gate_d2_
=
GetActKernel
<
T
>
(
act_gate
,
d2_
);
act_gate_d_
=
GetActKernel
<
T
>
(
act_gate
,
d
);
act_state_d_
=
GetActKernel
<
T
>
(
act_state
,
d
);
vmul_d_
=
KernelPool
::
Instance
().
template
Get
<
VMulKernel
<
T
>
>
(
d
);
}
void
ComputeH1
(
T
*
gates
,
T
*
ht
)
const
override
{
act_gate_d_
->
Compute
(
gates
,
gates
);
act_state_d_
->
Compute
(
gates
+
d2_
,
gates
+
d2_
);
vmul_d_
->
Compute
(
gates
,
gates
+
d2_
,
ht
);
}
void
ComputeHtPart1
(
T
*
gates
,
const
T
*
ht_1
,
T
*
ht
)
const
override
{
// W: {W_update, W_reset; W_state}
act_gate_d2_
->
Compute
(
gates
,
gates
);
vmul_d_
->
Compute
(
ht_1
,
gates
+
d_
,
ht
);
}
void
ComputeHtPart2
(
T
*
gates
,
const
T
*
ht_1
,
T
*
ht
)
const
override
{
T
*
y
=
gates
+
d2_
;
act_state_d_
->
Compute
(
y
,
y
);
// out = zt*ht~ + (1-zt)*ht_1
for
(
int
i
=
0
;
i
<
d_
;
++
i
)
{
ht
[
i
]
=
gates
[
i
]
*
y
[
i
]
+
(
static_cast
<
T
>
(
1
)
-
gates
[
i
])
*
ht_1
[
i
];
}
}
private:
int
d_
,
d2_
;
std
::
shared_ptr
<
const
VActKernel
<
T
>>
act_gate_d2_
,
act_gate_d_
,
act_state_d_
;
std
::
shared_ptr
<
const
VMulKernel
<
T
>>
vmul_d_
;
#ifdef __AVX__
std
::
unique_ptr
<
const
AVXAct
>
avx_act_gate_
,
avx_act_state_
;
#endif
};
#define INTRI8_FLOAT(isa) \
template <> \
GRUKernelImpl<float, isa, kEQ8>::GRUKernelImpl( \
const std::string& act_gate, const std::string& act_state, int d) \
: GRUKernel<float>() { \
avx_act_gate_ = GetAVXAct<isa>(act_gate); \
avx_act_state_ = GetAVXAct<isa>(act_state); \
} \
template <> \
void GRUKernelImpl<float, isa, kEQ8>::ComputeH1(float* gates, float* ht) \
const { \
__m256 u, s; \
/* W: {W_update, W_reset; W_state} */
\
u = _mm256_loadu_ps(gates); \
s = _mm256_loadu_ps(gates + 16); \
s = _mm256_mul_ps(avx_act_gate_->Compute(u), avx_act_state_->Compute(s)); \
_mm256_storeu_ps(ht, s); \
} \
template <> \
void GRUKernelImpl<float, isa, kEQ8>::ComputeHtPart1( \
float* gates, const float* ht_1, float* ht) const { \
/* not exactly equal the any implementation */
\
__m256 r, ht0; \
r = _mm256_loadu_ps(gates + 8); \
ht0 = _mm256_loadu_ps(ht_1); \
r = _mm256_mul_ps(avx_act_gate_->Compute(r), ht0); \
_mm256_storeu_ps(ht, r); \
} \
template <> \
void GRUKernelImpl<float, isa, kEQ8>::ComputeHtPart2( \
float* gates, const float* ht_1, float* ht) const { \
/* not exactly equal the any implementation */
\
__m256 u, s, ht0; \
u = _mm256_loadu_ps(gates); \
s = _mm256_loadu_ps(gates + 16); \
ht0 = _mm256_loadu_ps(ht_1); \
u = avx_act_gate_->Compute(u); \
s = _mm256_mul_ps(u, avx_act_state_->Compute(s)); \
u = _mm256_sub_ps(_mm256_set1_ps(1.f), u); \
u = _mm256_mul_ps(u, ht0); \
u = _mm256_add_ps(s, u); \
_mm256_storeu_ps(ht, u); \
}
#ifdef __AVX__
INTRI8_FLOAT
(
jit
::
avx
);
#endif
#ifdef __AVX2__
INTRI8_FLOAT
(
jit
::
avx2
);
#endif
#ifdef __AVX512F__
INTRI8_FLOAT
(
jit
::
avx512f
);
#endif
#define JITKERNEL_DECLARE_GRU(ker_class, ker_dtype) \
template <> \
std::shared_ptr<const GRUKernel<ker_dtype>> KernelPool::Get< \
GRUKernel<ker_dtype>, const std::string&, const std::string&, int>( \
const std::string& act_gate, const std::string& act_state, int d)
#define JITKERNEL_KEY_GRU(ker_key, dtype_key) \
#ker_key #dtype_key + std::to_string(d) + act_gate + act_state
#define JITKERNEL_NEW_GRU_IMPL(ker, dtype, isa, k) \
p = std::dynamic_pointer_cast<ker<dtype>>( \
std::make_shared<ker##Impl<dtype, isa, k>>(act_gate, act_state, d));
REGISTER_JITKERNEL_ARGS
(
gru
,
GRUKernel
,
JITKERNEL_DECLARE_GRU
,
JITKERNEL_KEY_GRU
,
JITKERNEL_NEW_GRU_IMPL
);
#undef INTRI8_FLOAT
#undef JITKERNEL_NEW_GRU_IMPL
#undef JITKERNEL_KEY_GRU
#undef JITKERNEL_DECLARE_GRU
}
// namespace jitkernel
}
// namespace jitkernel
}
// namespace math
}
// namespace math
}
// namespace operators
}
// namespace operators
...
...
python/paddle/fluid/tests/unittests/test_fusion_gru_op.py
浏览文件 @
9cb8738f
...
@@ -125,6 +125,12 @@ class TestFusionGRUOpMD2(TestFusionGRUOp):
...
@@ -125,6 +125,12 @@ class TestFusionGRUOpMD2(TestFusionGRUOp):
self
.
D
=
8
self
.
D
=
8
class
TestFusionGRUOpMD3
(
TestFusionGRUOp
):
def
set_confs
(
self
):
self
.
M
=
17
self
.
D
=
15
class
TestFusionGRUOpBS1
(
TestFusionGRUOp
):
class
TestFusionGRUOpBS1
(
TestFusionGRUOp
):
def
set_confs
(
self
):
def
set_confs
(
self
):
self
.
lod
=
[[
3
]]
self
.
lod
=
[[
3
]]
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录