Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
9bc54c84
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
9bc54c84
编写于
7月 26, 2022
作者:
B
BiynXu
提交者:
GitHub
7月 26, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[PHI]Move slogdeterminant op to phi (#44547)
* Move slogdeterminant op to phi * Add yaml and unit test for slogdeterminant
上级
fb80048d
变更
16
隐藏空白更改
内联
并排
Showing
16 changed file
with
448 addition
and
271 deletion
+448
-271
paddle/fluid/operators/determinant_op.cc
paddle/fluid/operators/determinant_op.cc
+13
-12
paddle/fluid/operators/determinant_op.cu
paddle/fluid/operators/determinant_op.cu
+0
-29
paddle/fluid/operators/determinant_op.h
paddle/fluid/operators/determinant_op.h
+0
-227
paddle/phi/api/yaml/legacy_api.yaml
paddle/phi/api/yaml/legacy_api.yaml
+9
-0
paddle/phi/api/yaml/legacy_backward.yaml
paddle/phi/api/yaml/legacy_backward.yaml
+10
-0
paddle/phi/kernels/cpu/slogdeterminant_grad_kernel.cc
paddle/phi/kernels/cpu/slogdeterminant_grad_kernel.cc
+25
-0
paddle/phi/kernels/cpu/slogdeterminant_kernel.cc
paddle/phi/kernels/cpu/slogdeterminant_kernel.cc
+25
-0
paddle/phi/kernels/gpu/slogdeterminant_grad_kernel.cu
paddle/phi/kernels/gpu/slogdeterminant_grad_kernel.cu
+25
-0
paddle/phi/kernels/gpu/slogdeterminant_kernel.cu
paddle/phi/kernels/gpu/slogdeterminant_kernel.cu
+25
-0
paddle/phi/kernels/impl/slogdeterminant_grad_kernel_impl.h
paddle/phi/kernels/impl/slogdeterminant_grad_kernel_impl.h
+121
-0
paddle/phi/kernels/impl/slogdeterminant_kernel_impl.h
paddle/phi/kernels/impl/slogdeterminant_kernel_impl.h
+104
-0
paddle/phi/kernels/slogdeterminant_grad_kernel.h
paddle/phi/kernels/slogdeterminant_grad_kernel.h
+28
-0
paddle/phi/kernels/slogdeterminant_kernel.h
paddle/phi/kernels/slogdeterminant_kernel.h
+26
-0
paddle/phi/ops/compat/slogdeterminant_sig.cc
paddle/phi/ops/compat/slogdeterminant_sig.cc
+28
-0
python/paddle/fluid/tests/unittests/test_determinant_op.py
python/paddle/fluid/tests/unittests/test_determinant_op.py
+5
-2
python/paddle/tensor/linalg.py
python/paddle/tensor/linalg.py
+4
-1
未找到文件。
paddle/fluid/operators/determinant_op.cc
浏览文件 @
9bc54c84
...
...
@@ -12,9 +12,10 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/determinant_op.h"
#include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/fluid/framework/op_proto_maker.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/infermeta/backward.h"
#include "paddle/phi/infermeta/unary.h"
...
...
@@ -170,19 +171,19 @@ REGISTER_OPERATOR(determinant_grad,
ops
::
DeterminantGradOp
,
DeterminantGradInferShapeFunctor
);
DECLARE_INFER_SHAPE_FUNCTOR
(
slogdeterminant
,
SlogDeterminantInferShapeFunctor
,
PD_INFER_META
(
phi
::
UnchangedInferMeta
));
REGISTER_OPERATOR
(
slogdeterminant
,
ops
::
SlogDeterminantOp
,
ops
::
SlogDeterminantOpMaker
,
ops
::
SlogDeterminantGradOpMaker
<
paddle
::
framework
::
OpDesc
>
,
ops
::
SlogDeterminantGradOpMaker
<
paddle
::
imperative
::
OpBase
>
);
ops
::
SlogDeterminantGradOpMaker
<
paddle
::
imperative
::
OpBase
>
,
SlogDeterminantInferShapeFunctor
);
DECLARE_INFER_SHAPE_FUNCTOR
(
slogdeterminant_grad
,
SlogDeterminantGradInferShapeFunctor
,
PD_INFER_META
(
phi
::
GeneralUnaryGradInferMeta
));
REGISTER_OPERATOR
(
slogdeterminant_grad
,
ops
::
SlogDeterminantGradOp
)
// reuse det grad op
REGISTER_OP_CPU_KERNEL
(
slogdeterminant
,
ops
::
SlogDeterminantKernel
<
phi
::
CPUContext
,
float
>
,
ops
::
SlogDeterminantKernel
<
phi
::
CPUContext
,
double
>
);
REGISTER_OP_CPU_KERNEL
(
slogdeterminant_grad
,
ops
::
SlogDeterminantGradKernel
<
phi
::
CPUContext
,
float
>
,
ops
::
SlogDeterminantGradKernel
<
phi
::
CPUContext
,
double
>
);
ops
::
SlogDeterminantGradOp
,
SlogDeterminantGradInferShapeFunctor
)
// reuse det grad op
paddle/fluid/operators/determinant_op.cu
已删除
100644 → 0
浏览文件 @
fb80048d
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/determinant_op.h"
#include "paddle/fluid/framework/op_registry.h"
namespace
ops
=
paddle
::
operators
;
namespace
plat
=
paddle
::
platform
;
REGISTER_OP_CUDA_KERNEL
(
slogdeterminant
,
ops
::
SlogDeterminantKernel
<
plat
::
CUDADeviceContext
,
float
>
,
ops
::
SlogDeterminantKernel
<
plat
::
CUDADeviceContext
,
double
>
);
REGISTER_OP_CUDA_KERNEL
(
slogdeterminant_grad
,
ops
::
SlogDeterminantGradKernel
<
plat
::
CUDADeviceContext
,
float
>
,
ops
::
SlogDeterminantGradKernel
<
plat
::
CUDADeviceContext
,
double
>
);
paddle/fluid/operators/determinant_op.h
已删除
100644 → 0
浏览文件 @
fb80048d
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <Eigen/Dense>
#include <Eigen/LU>
#include <algorithm>
#include <cmath>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/for_range.h"
#include "paddle/phi/kernels/complex_kernel.h"
#include "paddle/phi/kernels/elementwise_multiply_kernel.h"
#include "paddle/phi/kernels/full_kernel.h"
#include "paddle/phi/kernels/funcs/common_shape.h"
#include "paddle/phi/kernels/funcs/diag_functor.h"
#include "paddle/phi/kernels/funcs/math_function.h"
#include "paddle/phi/kernels/funcs/matrix_inverse.h"
#include "paddle/phi/kernels/funcs/unsqueeze.h"
#include "paddle/phi/kernels/impl/determinant_grad_kernel_impl.h"
#include "paddle/phi/kernels/impl/determinant_kernel_impl.h"
#include "paddle/phi/kernels/matmul_kernel.h"
#include "paddle/phi/kernels/transpose_kernel.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
T
>
T
sign
(
T
val
)
{
return
static_cast
<
T
>
(
T
(
0
)
<
val
)
-
(
val
<
T
(
0
));
}
template
<
typename
T
>
struct
SlogDeterminantFunctor
{
void
operator
()(
const
Tensor
&
input
,
const
framework
::
ExecutionContext
ctx
,
int64_t
rank
,
int64_t
batch_count
,
Tensor
*
output
)
{
std
::
vector
<
T
>
input_vec
;
std
::
vector
<
T
>
sign_vec
;
std
::
vector
<
T
>
log_vec
;
std
::
vector
<
T
>
output_vec
;
framework
::
TensorToVector
(
input
,
ctx
.
device_context
(),
&
input_vec
);
for
(
int64_t
i
=
0
;
i
<
batch_count
;
++
i
)
{
// maybe can be parallel
auto
begin_iter
=
input_vec
.
begin
()
+
i
*
rank
*
rank
;
auto
end_iter
=
input_vec
.
begin
()
+
(
i
+
1
)
*
rank
*
rank
;
std
::
vector
<
T
>
sub_vec
(
begin_iter
,
end_iter
);
// get every square matrix data
typename
phi
::
detail
::
EigenMatrix
<
T
>::
MatrixType
matrix
(
rank
,
rank
);
for
(
int64_t
i
=
0
;
i
<
rank
;
++
i
)
{
for
(
int64_t
j
=
0
;
j
<
rank
;
++
j
)
{
matrix
(
i
,
j
)
=
sub_vec
[
rank
*
i
+
j
];
}
}
VLOG
(
2
)
<<
"det value: "
<<
matrix
.
determinant
();
VLOG
(
2
)
<<
"matrix val: "
<<
matrix
;
auto
det_val
=
matrix
.
determinant
();
sign_vec
.
push_back
(
sign
(
det_val
));
det_val
>=
0
?
log_vec
.
push_back
(
std
::
log
(
det_val
))
:
log_vec
.
push_back
(
std
::
log
(
std
::
abs
(
det_val
)));
// for computing log value of a negative value.
}
// merge sign_vec and log_vec as final output_vec
output_vec
.
insert
(
output_vec
.
end
(),
sign_vec
.
begin
(),
sign_vec
.
end
());
output_vec
.
insert
(
output_vec
.
end
(),
log_vec
.
begin
(),
log_vec
.
end
());
framework
::
TensorFromVector
(
output_vec
,
output
);
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
SlogDeterminantKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
input
=
context
.
Input
<
framework
::
Tensor
>
(
"Input"
);
auto
input_dim
=
vectorize
(
input
->
dims
());
auto
input_dim_size
=
input_dim
.
size
();
auto
*
output
=
context
.
Output
<
framework
::
Tensor
>
(
"Out"
);
auto
batch_count
=
phi
::
detail
::
GetBatchCount
(
input
->
dims
());
VLOG
(
2
)
<<
"input dim:"
<<
input
->
dims
();
PADDLE_ENFORCE_GE
(
input_dim_size
,
2
,
platform
::
errors
::
InvalidArgument
(
"the input matrix dimension size should greater than 2."
));
PADDLE_ENFORCE_EQ
(
input_dim
[
input_dim_size
-
1
],
input_dim
[
input_dim_size
-
2
],
platform
::
errors
::
InvalidArgument
(
"the input matrix should be square matrix."
));
auto
rank
=
input_dim
[
input_dim_size
-
1
];
// square matrix length
SlogDeterminantFunctor
<
T
>
()(
*
input
,
context
,
rank
,
batch_count
,
output
);
std
::
vector
<
int
>
output_dim_vec
(
input_dim
.
begin
(),
input_dim
.
end
()
-
2
);
if
(
input_dim
.
size
()
==
static_cast
<
size_t
>
(
2
))
{
// when input is a two-dimension matrix, The det value is a number.
output_dim_vec
=
{
1
};
}
output_dim_vec
.
insert
(
output_dim_vec
.
begin
(),
2
);
// make the output dims as same as numpy
auto
output_dims
=
phi
::
make_ddim
(
output_dim_vec
);
output
->
Resize
(
output_dims
);
VLOG
(
2
)
<<
"output dim:"
<<
output
->
dims
();
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
SlogDeterminantGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
&
orig_dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
const
auto
*
input
=
context
.
Input
<
framework
::
Tensor
>
(
"Input"
);
const
auto
*
slogdet
=
context
.
Input
<
framework
::
Tensor
>
(
"Out"
);
const
auto
*
grad
=
context
.
Input
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
dslogdet
=
context
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Input"
));
PADDLE_ENFORCE_EQ
(
grad
->
dims
()[
0
],
2
,
platform
::
errors
::
InvalidArgument
(
"The grad tensor of SlogDet should contain two"
" grad: sign and absslogdet, but here %ld."
,
grad
->
dims
()[
0
]));
if
(
input
->
dims
().
size
()
>
2
)
{
PADDLE_ENFORCE_EQ
(
grad
->
dims
().
size
()
+
1
,
input
->
dims
().
size
(),
platform
::
errors
::
InvalidArgument
(
"The grad tensor of slogdet dims size should 1 less than"
" input tensor's, but here differ %d"
,
input
->
dims
().
size
()
-
grad
->
dims
().
size
()));
}
auto
&
dev_ctx
=
static_cast
<
const
typename
framework
::
ConvertToPhiContext
<
DeviceContext
>::
TYPE
&>
(
orig_dev_ctx
);
// Check Whether the matrix is invertible
// (matrix A not invertible) == (absslogdet(A)=0)
auto
slogdet_vec
=
slogdet
->
Split
(
1
,
0
);
auto
absslogdet_val
=
slogdet_vec
[
0
];
if
(
!
phi
::
detail
::
CheckMatrixInvertible
<
T
,
typename
framework
::
ConvertToPhiContext
<
DeviceContext
>::
TYPE
>
(
dev_ctx
,
&
absslogdet_val
))
{
// The matrix is not invertible
VLOG
(
3
)
<<
"The input matrix not invertible!"
;
dslogdet
->
Resize
(
input
->
dims
());
phi
::
Full
<
T
>
(
dev_ctx
,
phi
::
vectorize
(
input
->
dims
()),
std
::
numeric_limits
<
T
>::
quiet_NaN
(),
dslogdet
);
return
;
}
// The matrix is invertible
// let sl|A| = SlogDeterminant(A)
// Ref to https://people.maths.ox.ac.uk/gilesm/files/NA-08-01.pdf
// we set dsl|A| = unsqueeze(dslA, [-1, -2]) *
// inverse(A).conj().transpose(-2, -1)
// First: inverse(A)
framework
::
Tensor
inverse_A
;
// A must be square matrices!
inverse_A
.
Resize
(
input
->
dims
());
inverse_A
.
mutable_data
<
T
>
(
context
.
GetPlace
());
phi
::
funcs
::
MatrixInverseFunctor
<
DeviceContext
,
T
>
mat_inv
;
mat_inv
(
orig_dev_ctx
,
*
input
,
&
inverse_A
);
VLOG
(
3
)
<<
"inverse(A) dims: "
<<
inverse_A
.
dims
();
// Second: inverse(A).conj()
auto
conj_inverse_A
=
phi
::
Conj
<
T
>
(
dev_ctx
,
inverse_A
);
VLOG
(
3
)
<<
"inverse(A).conj() dims: "
<<
conj_inverse_A
.
dims
();
// Third: inverse(A).conj().transpose(-2, -1)
framework
::
Tensor
transpose_inverse_A
=
phi
::
TransposeLast2Dim
<
T
>
(
dev_ctx
,
conj_inverse_A
);
VLOG
(
3
)
<<
"inverse(A).conj().transpose(-2, -1) dims: "
<<
transpose_inverse_A
.
dims
();
// Fourth: split grad value to [sign_grad, absslogdet_grad]
auto
grad_vec
=
grad
->
Split
(
1
,
0
);
auto
det_grad
=
grad_vec
[
1
];
// remmove useless first dimension
int
det_grad_size
=
det_grad
.
dims
().
size
();
std
::
vector
<
int
>
det_grad_vec
;
for
(
int
i
=
1
;
i
<
det_grad_size
;
++
i
)
{
det_grad_vec
.
emplace_back
(
det_grad
.
dims
()[
i
]);
}
det_grad
.
Resize
(
det_grad
.
dims
().
reshape
(
det_grad_vec
));
// Fifth: unsqueeze(dslA, [-1, -2])
auto
unsqueeze1
=
phi
::
funcs
::
Unsqueeze
(
det_grad
,
-
1
);
auto
unsqueeze2
=
phi
::
funcs
::
Unsqueeze
(
unsqueeze1
,
-
2
);
VLOG
(
3
)
<<
"unsqueezed(dslA, [-1, -2]) dims: "
<<
unsqueeze2
.
dims
();
// Finally: unsqueeze(dslA) * inverse(A)
auto
res
=
phi
::
Multiply
<
T
>
(
dev_ctx
,
unsqueeze2
,
transpose_inverse_A
);
VLOG
(
3
)
<<
"unsqueeze(dslA) * inverse(A) dims: "
<<
res
.
dims
();
framework
::
TensorCopy
(
res
,
context
.
GetPlace
(),
dslogdet
);
dslogdet
->
Resize
(
input
->
dims
());
VLOG
(
3
)
<<
"dsl|A| dims: "
<<
dslogdet
->
dims
();
}
};
}
// namespace operators
}
// namespace paddle
paddle/phi/api/yaml/legacy_api.yaml
浏览文件 @
9bc54c84
...
...
@@ -2029,6 +2029,15 @@
func
:
slice
backward
:
slice_grad
-
api
:
slogdet
args
:
(Tensor x)
output
:
Tensor
infer_meta
:
func
:
UnchangedInferMeta
kernel
:
func
:
slogdeterminant
backward
:
slogdet_grad
# soft_shrink
-
api
:
soft_shrink
args
:
(Tensor x, float lambda)
...
...
paddle/phi/api/yaml/legacy_backward.yaml
浏览文件 @
9bc54c84
...
...
@@ -1946,6 +1946,16 @@
backward
:
slice_double_grad
no_need_buffer
:
input
-
backward_api
:
slogdet_grad
forward
:
slogdet (Tensor x) -> Tensor(out)
args
:
(Tensor x, Tensor out, Tensor out_grad)
output
:
Tensor(x_grad)
infer_meta
:
func
:
UnchangedInferMeta
param
:
[
x
]
kernel
:
func
:
slogdeterminant_grad
-
backward_api
:
soft_shrink_grad
forward
:
soft_shrink (Tensor x, float lambda) -> Tensor(out)
args
:
(Tensor x, Tensor out_grad, float lambda)
...
...
paddle/phi/kernels/cpu/slogdeterminant_grad_kernel.cc
0 → 100644
浏览文件 @
9bc54c84
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/slogdeterminant_grad_kernel.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/impl/slogdeterminant_grad_kernel_impl.h"
PD_REGISTER_KERNEL
(
slogdeterminant_grad
,
CPU
,
ALL_LAYOUT
,
phi
::
SlogDeterminantGradKernel
,
float
,
double
)
{}
paddle/phi/kernels/cpu/slogdeterminant_kernel.cc
0 → 100644
浏览文件 @
9bc54c84
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/slogdeterminant_kernel.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/impl/slogdeterminant_kernel_impl.h"
PD_REGISTER_KERNEL
(
slogdeterminant
,
CPU
,
ALL_LAYOUT
,
phi
::
SlogDeterminantKernel
,
float
,
double
)
{}
paddle/phi/kernels/gpu/slogdeterminant_grad_kernel.cu
0 → 100644
浏览文件 @
9bc54c84
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/slogdeterminant_grad_kernel.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/impl/slogdeterminant_grad_kernel_impl.h"
PD_REGISTER_KERNEL
(
slogdeterminant_grad
,
GPU
,
ALL_LAYOUT
,
phi
::
SlogDeterminantGradKernel
,
float
,
double
)
{}
paddle/phi/kernels/gpu/slogdeterminant_kernel.cu
0 → 100644
浏览文件 @
9bc54c84
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/slogdeterminant_kernel.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/impl/slogdeterminant_kernel_impl.h"
PD_REGISTER_KERNEL
(
slogdeterminant
,
GPU
,
ALL_LAYOUT
,
phi
::
SlogDeterminantKernel
,
float
,
double
)
{}
paddle/phi/kernels/impl/slogdeterminant_grad_kernel_impl.h
0 → 100644
浏览文件 @
9bc54c84
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/phi/core/tensor_utils.h"
#include "paddle/phi/kernels/complex_kernel.h"
#include "paddle/phi/kernels/elementwise_multiply_kernel.h"
#include "paddle/phi/kernels/full_kernel.h"
#include "paddle/phi/kernels/funcs/math_function.h"
#include "paddle/phi/kernels/funcs/matrix_inverse.h"
#include "paddle/phi/kernels/funcs/unsqueeze.h"
#include "paddle/phi/kernels/impl/determinant_grad_kernel_impl.h"
#include "paddle/phi/kernels/slogdeterminant_grad_kernel.h"
#include "paddle/phi/kernels/transpose_kernel.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
SlogDeterminantGradKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
out
,
const
DenseTensor
&
out_grad
,
DenseTensor
*
x_grad
)
{
PADDLE_ENFORCE_EQ
(
out_grad
.
dims
()[
0
],
2
,
errors
::
InvalidArgument
(
"The grad tensor of SlogDet should contain two"
" grad: sign and absslogdet, but here %ld."
,
out_grad
.
dims
()[
0
]));
if
(
x
.
dims
().
size
()
>
2
)
{
PADDLE_ENFORCE_EQ
(
out_grad
.
dims
().
size
()
+
1
,
x
.
dims
().
size
(),
errors
::
InvalidArgument
(
"The grad tensor of slogdet dims size should 1 less than"
" input tensor's, but here differ %d"
,
x
.
dims
().
size
()
-
out_grad
.
dims
().
size
()));
}
// Check Whether the matrix is invertible
// (matrix A not invertible) == (absslogdet(A)=0)
auto
slogdet_vec
=
out
.
Split
(
1
,
0
);
auto
absslogdet_val
=
slogdet_vec
[
0
];
if
(
!
detail
::
CheckMatrixInvertible
<
T
,
Context
>
(
dev_ctx
,
&
absslogdet_val
))
{
// The matrix is not invertible
VLOG
(
3
)
<<
"The input matrix not invertible!"
;
x_grad
->
Resize
(
x
.
dims
());
phi
::
Full
<
T
>
(
dev_ctx
,
phi
::
vectorize
(
x
.
dims
()),
std
::
numeric_limits
<
T
>::
quiet_NaN
(),
x_grad
);
return
;
}
// The matrix is invertible
// let sl|A| = SlogDeterminant(A)
// Ref to https://people.maths.ox.ac.uk/gilesm/files/NA-08-01.pdf
// we set dsl|A| = unsqueeze(dslA, [-1, -2]) *
// inverse(A).conj().transpose(-2, -1)
// First: inverse(A)
DenseTensor
inverse_A
;
// A must be square matrices!
inverse_A
.
Resize
(
x
.
dims
());
dev_ctx
.
template
Alloc
<
T
>(
&
inverse_A
);
phi
::
funcs
::
MatrixInverseFunctor
<
Context
,
T
>
mat_inv
;
mat_inv
(
dev_ctx
,
x
,
&
inverse_A
);
VLOG
(
3
)
<<
"inverse(A) dims: "
<<
inverse_A
.
dims
();
// Second: inverse(A).conj()
auto
conj_inverse_A
=
phi
::
Conj
<
T
>
(
dev_ctx
,
inverse_A
);
VLOG
(
3
)
<<
"inverse(A).conj() dims: "
<<
conj_inverse_A
.
dims
();
// Third: inverse(A).conj().transpose(-2, -1)
DenseTensor
transpose_inverse_A
=
phi
::
TransposeLast2Dim
<
T
>
(
dev_ctx
,
conj_inverse_A
);
VLOG
(
3
)
<<
"inverse(A).conj().transpose(-2, -1) dims: "
<<
transpose_inverse_A
.
dims
();
// Fourth: split grad value to [sign_grad, absslogdet_grad]
auto
grad_vec
=
out_grad
.
Split
(
1
,
0
);
auto
det_grad
=
grad_vec
[
1
];
// remmove useless first dimension
int
det_grad_size
=
det_grad
.
dims
().
size
();
std
::
vector
<
int
>
det_grad_vec
;
for
(
int
i
=
1
;
i
<
det_grad_size
;
++
i
)
{
det_grad_vec
.
emplace_back
(
det_grad
.
dims
()[
i
]);
}
det_grad
.
Resize
(
det_grad
.
dims
().
reshape
(
det_grad_vec
));
// Fifth: unsqueeze(dslA, [-1, -2])
auto
unsqueeze1
=
phi
::
funcs
::
Unsqueeze
(
det_grad
,
-
1
);
auto
unsqueeze2
=
phi
::
funcs
::
Unsqueeze
(
unsqueeze1
,
-
2
);
VLOG
(
3
)
<<
"unsqueezed(dslA, [-1, -2]) dims: "
<<
unsqueeze2
.
dims
();
// Finally: unsqueeze(dslA) * inverse(A)
auto
res
=
phi
::
Multiply
<
T
>
(
dev_ctx
,
unsqueeze2
,
transpose_inverse_A
);
VLOG
(
3
)
<<
"unsqueeze(dslA) * inverse(A) dims: "
<<
res
.
dims
();
phi
::
Copy
(
dev_ctx
,
res
,
dev_ctx
.
GetPlace
(),
false
,
x_grad
);
x_grad
->
Resize
(
x
.
dims
());
VLOG
(
3
)
<<
"dsl|A| dims: "
<<
x_grad
->
dims
();
}
}
// namespace phi
paddle/phi/kernels/impl/slogdeterminant_kernel_impl.h
0 → 100644
浏览文件 @
9bc54c84
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <algorithm>
#include <cmath>
#include <vector>
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/phi/core/enforce.h"
#include "paddle/phi/kernels/impl/determinant_kernel_impl.h"
#include "paddle/phi/kernels/slogdeterminant_kernel.h"
namespace
phi
{
template
<
typename
T
>
T
sign
(
T
val
)
{
return
static_cast
<
T
>
(
T
(
0
)
<
val
)
-
(
val
<
T
(
0
));
}
template
<
typename
T
,
typename
Context
>
struct
SlogDeterminantFunctor
{
void
operator
()(
const
Context
&
dev_ctx
,
const
DenseTensor
&
input
,
int64_t
rank
,
int64_t
batch_count
,
DenseTensor
*
output
)
{
std
::
vector
<
T
>
input_vec
;
std
::
vector
<
T
>
sign_vec
;
std
::
vector
<
T
>
log_vec
;
std
::
vector
<
T
>
output_vec
;
paddle
::
framework
::
TensorToVector
(
input
,
dev_ctx
,
&
input_vec
);
for
(
int64_t
i
=
0
;
i
<
batch_count
;
++
i
)
{
// maybe can be parallel
auto
begin_iter
=
input_vec
.
begin
()
+
i
*
rank
*
rank
;
auto
end_iter
=
input_vec
.
begin
()
+
(
i
+
1
)
*
rank
*
rank
;
std
::
vector
<
T
>
sub_vec
(
begin_iter
,
end_iter
);
// get every square matrix data
typename
detail
::
EigenMatrix
<
T
>::
MatrixType
matrix
(
rank
,
rank
);
for
(
int64_t
i
=
0
;
i
<
rank
;
++
i
)
{
for
(
int64_t
j
=
0
;
j
<
rank
;
++
j
)
{
matrix
(
i
,
j
)
=
sub_vec
[
rank
*
i
+
j
];
}
}
VLOG
(
2
)
<<
"det value: "
<<
matrix
.
determinant
();
VLOG
(
2
)
<<
"matrix val: "
<<
matrix
;
auto
det_val
=
matrix
.
determinant
();
sign_vec
.
push_back
(
sign
(
det_val
));
det_val
>=
0
?
log_vec
.
push_back
(
std
::
log
(
det_val
))
:
log_vec
.
push_back
(
std
::
log
(
std
::
abs
(
det_val
)));
// for computing log value of a negative value.
}
// merge sign_vec and log_vec as final output_vec
output_vec
.
insert
(
output_vec
.
end
(),
sign_vec
.
begin
(),
sign_vec
.
end
());
output_vec
.
insert
(
output_vec
.
end
(),
log_vec
.
begin
(),
log_vec
.
end
());
paddle
::
framework
::
TensorFromVector
(
output_vec
,
output
);
}
};
template
<
typename
T
,
typename
Context
>
void
SlogDeterminantKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
DenseTensor
*
out
)
{
auto
input_dim
=
vectorize
(
x
.
dims
());
auto
input_dim_size
=
input_dim
.
size
();
auto
batch_count
=
detail
::
GetBatchCount
(
x
.
dims
());
VLOG
(
2
)
<<
"input dim:"
<<
x
.
dims
();
PADDLE_ENFORCE_GE
(
input_dim_size
,
2
,
errors
::
InvalidArgument
(
"the input matrix dimension size should greater than 2."
));
PADDLE_ENFORCE_EQ
(
input_dim
[
input_dim_size
-
1
],
input_dim
[
input_dim_size
-
2
],
errors
::
InvalidArgument
(
"the input matrix should be square matrix."
));
auto
rank
=
input_dim
[
input_dim_size
-
1
];
// square matrix length
SlogDeterminantFunctor
<
T
,
Context
>
()(
dev_ctx
,
x
,
rank
,
batch_count
,
out
);
std
::
vector
<
int
>
output_dim_vec
(
input_dim
.
begin
(),
input_dim
.
end
()
-
2
);
if
(
input_dim
.
size
()
==
static_cast
<
size_t
>
(
2
))
{
// when input is a two-dimension matrix, The det value is a number.
output_dim_vec
=
{
1
};
}
output_dim_vec
.
insert
(
output_dim_vec
.
begin
(),
2
);
// make the output dims as same as numpy
auto
output_dims
=
phi
::
make_ddim
(
output_dim_vec
);
out
->
Resize
(
output_dims
);
VLOG
(
2
)
<<
"output dim:"
<<
out
->
dims
();
}
}
// namespace phi
paddle/phi/kernels/slogdeterminant_grad_kernel.h
0 → 100644
浏览文件 @
9bc54c84
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/phi/core/dense_tensor.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
SlogDeterminantGradKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
out
,
const
DenseTensor
&
out_grad
,
DenseTensor
*
x_grad
);
}
// namespace phi
paddle/phi/kernels/slogdeterminant_kernel.h
0 → 100644
浏览文件 @
9bc54c84
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/phi/core/dense_tensor.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
SlogDeterminantKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
DenseTensor
*
out
);
}
// namespace phi
paddle/phi/ops/compat/slogdeterminant_sig.cc
0 → 100644
浏览文件 @
9bc54c84
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/core/compat/op_utils.h"
namespace
phi
{
KernelSignature
SlogDeterminantGradOpArgumentMapping
(
const
ArgumentMappingContext
&
ctx
)
{
return
KernelSignature
(
"slogdeterminant_grad"
,
{
"Input"
,
"Out"
,
"Out@GRAD"
},
{},
{
"Input@GRAD"
});
}
}
// namespace phi
PD_REGISTER_ARG_MAPPING_FN
(
slogdeterminant_grad
,
phi
::
SlogDeterminantGradOpArgumentMapping
);
python/paddle/fluid/tests/unittests/test_determinant_op.py
浏览文件 @
9bc54c84
...
...
@@ -104,15 +104,18 @@ class TestSlogDeterminantOp(OpTest):
def
setUp
(
self
):
self
.
op_type
=
"slogdeterminant"
self
.
python_api
=
paddle
.
linalg
.
slogdet
self
.
init_data
()
self
.
outputs
=
{
'Out'
:
self
.
target
}
def
test_check_output
(
self
):
self
.
check_output
()
self
.
check_output
(
check_eager
=
True
)
def
test_check_grad
(
self
):
# the slog det's grad value is always huge
self
.
check_grad
([
'Input'
],
[
'Out'
],
max_relative_error
=
0.1
)
self
.
check_grad
([
'Input'
],
[
'Out'
],
max_relative_error
=
0.1
,
check_eager
=
True
)
def
init_data
(
self
):
np
.
random
.
seed
(
0
)
...
...
python/paddle/tensor/linalg.py
浏览文件 @
9bc54c84
...
...
@@ -1781,7 +1781,10 @@ def slogdet(x, name=None):
# [-0.98610914, -0.43010661, -0.10872950]])
"""
if
paddle
.
in_dynamic_mode
():
if
in_dygraph_mode
():
return
_C_ops
.
final_state_slogdet
(
x
)
elif
paddle
.
in_dynamic_mode
():
return
_C_ops
.
slogdeterminant
(
x
)
check_dtype
(
x
.
dtype
,
'Input'
,
[
'float32'
,
'float64'
],
'slogdet'
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录