Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
9b1431b8
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
9b1431b8
编写于
9月 22, 2017
作者:
C
chengduoZH
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix maxpool backward functor and add unit test
上级
b0a47b14
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
664 addition
and
0 deletion
+664
-0
paddle/operators/math/CMakeLists.txt
paddle/operators/math/CMakeLists.txt
+2
-0
paddle/operators/math/pool_test_maxPool2d.cc
paddle/operators/math/pool_test_maxPool2d.cc
+150
-0
paddle/operators/math/pool_test_maxPool3d.cc
paddle/operators/math/pool_test_maxPool3d.cc
+154
-0
paddle/operators/math/pooling.cc
paddle/operators/math/pooling.cc
+142
-0
paddle/operators/math/pooling.cu
paddle/operators/math/pooling.cu
+196
-0
paddle/operators/math/pooling.h
paddle/operators/math/pooling.h
+20
-0
未找到文件。
paddle/operators/math/CMakeLists.txt
浏览文件 @
9b1431b8
...
@@ -7,3 +7,5 @@ endif()
...
@@ -7,3 +7,5 @@ endif()
nv_test
(
math_function_test SRCS math_function_test.cc DEPS math_function tensor
)
nv_test
(
math_function_test SRCS math_function_test.cc DEPS math_function tensor
)
cc_test
(
im2col_test SRCS im2col_test.cc DEPS math_function tensor
)
cc_test
(
im2col_test SRCS im2col_test.cc DEPS math_function tensor
)
cc_test
(
pool_test_maxPool2d_test SRCS pool_test_maxPool2d.cc DEPS math_function tensor
)
cc_test
(
pool_test_maxPool3d_test SRCS pool_test_maxPool3d.cc DEPS math_function tensor
)
paddle/operators/math/pool_test_maxPool2d.cc
0 → 100644
浏览文件 @
9b1431b8
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License. */
#include <gtest/gtest.h>
#include "paddle/operators/math/pooling.h"
#include "paddle/memory/memcpy.h"
#include "paddle/platform/enforce.h"
#include <stdlib.h>
#include <time.h>
#ifndef PADDLE_ONLY_CPU
template
<
typename
PooType
>
void
testPool2d
(
paddle
::
platform
::
DeviceContext
&
context
,
PooType
pool_process
,
paddle
::
framework
::
Tensor
&
input
,
paddle
::
framework
::
Tensor
&
input_grad
,
paddle
::
framework
::
Tensor
&
output
,
paddle
::
framework
::
Tensor
&
output_grad
,
std
::
vector
<
int
>&
ksize
,
std
::
vector
<
int
>&
strides
,
std
::
vector
<
int
>&
paddings
)
{
paddle
::
operators
::
math
::
Pool2dForwardFunctor
<
paddle
::
platform
::
GPUPlace
,
PooType
,
float
>
pool2d_forward
;
pool2d_forward
(
context
,
input
,
output
,
ksize
,
strides
,
paddings
,
pool_process
);
int
times
=
50
;
clock_t
start
,
finish
;
double
totaltime
;
// Pool2dBackwardFunctor
start
=
clock
();
for
(
int
i
=
0
;
i
<
times
;
++
i
)
{
paddle
::
operators
::
math
::
Pool2dBackwardFunctor
<
paddle
::
platform
::
GPUPlace
,
PooType
,
float
>
pool2d_backward
;
pool2d_backward
(
context
,
input
,
input_grad
,
output
,
output_grad
,
ksize
,
strides
,
paddings
,
pool_process
);
PADDLE_ENFORCE
(
cudaStreamSynchronize
(
0
),
"cudaStreamSynchronize failed in pool2d_backward CopyFrom"
);
}
finish
=
clock
();
totaltime
=
(
double
)(
finish
-
start
)
/
CLOCKS_PER_SEC
;
totaltime
/=
times
;
std
::
cout
<<
"
\n
Pool3dBackwardFunctor: "
<<
totaltime
<<
"s"
<<
std
::
endl
;
// MaxPool3dBackwardFunctor
start
=
clock
();
for
(
int
j
=
0
;
j
<
times
;
++
j
)
{
paddle
::
operators
::
math
::
MaxPool2dBackwardFunctor
<
paddle
::
platform
::
GPUPlace
,
float
>
maxpool2d_backward
;
maxpool2d_backward
(
context
,
input
,
input_grad
,
output
,
output_grad
,
ksize
,
strides
,
paddings
);
PADDLE_ENFORCE
(
cudaStreamSynchronize
(
0
),
"cudaStreamSynchronize failed in maxpool2d_backward CopyFrom"
);
}
finish
=
clock
();
totaltime
=
(
double
)(
finish
-
start
)
/
CLOCKS_PER_SEC
;
totaltime
/=
times
;
std
::
cout
<<
"
\n
MaxPool3dBackwardFunctor: "
<<
totaltime
<<
"s"
<<
std
::
endl
;
}
void
test2dPool
()
{
using
paddle
::
platform
::
DeviceContext
;
using
paddle
::
platform
::
CUDADeviceContext
;
using
paddle
::
platform
::
GPUPlace
;
paddle
::
framework
::
Tensor
input_tmp
;
paddle
::
framework
::
Tensor
output_tmp
;
paddle
::
framework
::
Tensor
input
;
paddle
::
framework
::
Tensor
input_grad
;
paddle
::
framework
::
Tensor
output
;
paddle
::
framework
::
Tensor
output_grad
;
int
batch
=
32
;
int
channel
=
32
;
int
input_height
=
128
;
int
input_width
=
128
;
int
in_len
=
batch
*
channel
*
input_height
*
input_width
;
std
::
vector
<
int
>
ksize
({
3
,
3
});
std
::
vector
<
int
>
strides
({
1
,
1
});
std
::
vector
<
int
>
paddings
({
0
,
0
});
int
output_height
=
(
input_height
-
ksize
[
0
]
+
2
*
paddings
[
0
])
/
strides
[
0
]
+
1
;
int
output_width
=
(
input_width
-
ksize
[
1
]
+
2
*
paddings
[
1
])
/
strides
[
1
]
+
1
;
int
output_len
=
output_height
*
output_width
;
input_tmp
.
mutable_data
<
float
>
({
batch
,
channel
,
input_height
,
input_width
},
paddle
::
platform
::
CPUPlace
());
output_tmp
.
mutable_data
<
float
>
({
batch
,
channel
,
output_height
,
output_width
},
paddle
::
platform
::
CPUPlace
());
float
*
arr
=
new
float
[
in_len
];
auto
*
place
=
new
paddle
::
platform
::
GPUPlace
();
float
*
input_ptr
=
input_tmp
.
data
<
float
>
();
for
(
int
i
=
0
;
i
<
in_len
;
++
i
)
arr
[
i
]
=
i
;
// rand() / double(RAND_MAX/2);
memcpy
(
input_ptr
,
arr
,
in_len
*
sizeof
(
float
));
input
.
CopyFrom
<
float
>
(
input_tmp
,
*
place
);
input_ptr
=
input_tmp
.
data
<
float
>
();
for
(
int
i
=
0
;
i
<
in_len
;
++
i
)
arr
[
i
]
=
0
;
memcpy
(
input_ptr
,
arr
,
in_len
*
sizeof
(
float
));
input_grad
.
CopyFrom
<
float
>
(
input_tmp
,
*
place
);
// output
input_ptr
=
output_tmp
.
data
<
float
>
();
for
(
int
i
=
0
;
i
<
output_len
;
++
i
)
arr
[
i
]
=
0
;
// rand() / double(RAND_MAX/2);
memcpy
(
input_ptr
,
arr
,
output_len
*
sizeof
(
float
));
output
.
CopyFrom
<
float
>
(
input_tmp
,
*
place
);
// output
input_ptr
=
output_tmp
.
data
<
float
>
();
for
(
int
i
=
0
;
i
<
output_len
;
++
i
)
arr
[
i
]
=
1
;
// rand() / double(RAND_MAX/2);
memcpy
(
input_ptr
,
arr
,
output_len
*
sizeof
(
float
));
output_grad
.
CopyFrom
<
float
>
(
input_tmp
,
*
place
);
paddle
::
platform
::
DeviceContext
*
context
=
new
paddle
::
platform
::
CUDADeviceContext
(
paddle
::
platform
::
GPUPlace
());
paddle
::
operators
::
math
::
pool
::
maxPool
<
float
>
pool_process
;
testPool2d
<
paddle
::
operators
::
math
::
pool
::
maxPool
<
float
>>
(
*
context
,
pool_process
,
input
,
input_grad
,
output
,
output_grad
,
ksize
,
strides
,
paddings
);
}
int
main
()
{
// testPool3d<paddle::platform::CPUPlace>();
test2dPool
();
// testPool3d<paddle::platform::GPUPlace>();
}
#endif
\ No newline at end of file
paddle/operators/math/pool_test_maxPool3d.cc
0 → 100644
浏览文件 @
9b1431b8
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License. */
#include <gtest/gtest.h>
#include "paddle/operators/math/pooling.h"
#include "paddle/memory/memcpy.h"
#include "paddle/platform/enforce.h"
#include <stdlib.h>
#include <time.h>
#ifndef PADDLE_ONLY_CPU
template
<
typename
PooType
>
void
testPool3d
(
paddle
::
platform
::
DeviceContext
&
context
,
PooType
pool_process
,
paddle
::
framework
::
Tensor
&
input
,
paddle
::
framework
::
Tensor
&
input_grad
,
paddle
::
framework
::
Tensor
&
output
,
paddle
::
framework
::
Tensor
&
output_grad
,
std
::
vector
<
int
>&
ksize
,
std
::
vector
<
int
>&
strides
,
std
::
vector
<
int
>&
paddings
)
{
paddle
::
operators
::
math
::
Pool3dForwardFunctor
<
paddle
::
platform
::
GPUPlace
,
PooType
,
float
>
pool3d_forward
;
pool3d_forward
(
context
,
input
,
output
,
ksize
,
strides
,
paddings
,
pool_process
);
int
times
=
50
;
clock_t
start
,
finish
;
double
totaltime
;
// Pool3dBackwardFunctor
start
=
clock
();
for
(
int
i
=
0
;
i
<
times
;
++
i
)
{
paddle
::
operators
::
math
::
Pool3dBackwardFunctor
<
paddle
::
platform
::
GPUPlace
,
PooType
,
float
>
pool3d_backward
;
pool3d_backward
(
context
,
input
,
input_grad
,
output
,
output_grad
,
ksize
,
strides
,
paddings
,
pool_process
);
PADDLE_ENFORCE
(
cudaStreamSynchronize
(
0
),
"cudaStreamSynchronize failed in pool3d_backward CopyFrom"
);
}
finish
=
clock
();
totaltime
=
(
double
)(
finish
-
start
)
/
CLOCKS_PER_SEC
;
totaltime
/=
times
;
std
::
cout
<<
"
\n
Pool3dBackwardFunctor: "
<<
totaltime
<<
"s"
<<
std
::
endl
;
// MaxPool3dBackwardFunctor
start
=
clock
();
for
(
int
j
=
0
;
j
<
times
;
++
j
)
{
paddle
::
operators
::
math
::
MaxPool3dBackwardFunctor
<
paddle
::
platform
::
GPUPlace
,
float
>
maxpool3d_backward
;
maxpool3d_backward
(
context
,
input
,
input_grad
,
output
,
output_grad
,
ksize
,
strides
,
paddings
);
PADDLE_ENFORCE
(
cudaStreamSynchronize
(
0
),
"cudaStreamSynchronize failed in maxpool3d_backward CopyFrom"
);
}
finish
=
clock
();
totaltime
=
(
double
)(
finish
-
start
)
/
CLOCKS_PER_SEC
;
totaltime
/=
times
;
std
::
cout
<<
"
\n
MaxPool3dBackwardFunctor: "
<<
totaltime
<<
"s"
<<
std
::
endl
;
}
void
test3dPool
()
{
using
paddle
::
platform
::
DeviceContext
;
using
paddle
::
platform
::
CUDADeviceContext
;
using
paddle
::
platform
::
GPUPlace
;
paddle
::
framework
::
Tensor
input_tmp
;
paddle
::
framework
::
Tensor
output_tmp
;
paddle
::
framework
::
Tensor
input
;
paddle
::
framework
::
Tensor
input_grad
;
paddle
::
framework
::
Tensor
output
;
paddle
::
framework
::
Tensor
output_grad
;
int
batch
=
32
;
int
channel
=
4
;
int
input_depth
=
4
;
int
input_height
=
128
;
int
input_width
=
128
;
int
in_len
=
batch
*
channel
*
input_depth
*
input_height
*
input_width
;
std
::
vector
<
int
>
ksize
({
3
,
3
,
3
});
std
::
vector
<
int
>
strides
({
2
,
2
,
2
});
std
::
vector
<
int
>
paddings
({
1
,
1
,
1
});
int
output_depth
=
(
input_depth
-
ksize
[
0
]
+
2
*
paddings
[
0
])
/
strides
[
0
]
+
1
;
int
output_height
=
(
input_height
-
ksize
[
1
]
+
2
*
paddings
[
1
])
/
strides
[
1
]
+
1
;
int
output_width
=
(
input_width
-
ksize
[
2
]
+
2
*
paddings
[
2
])
/
strides
[
2
]
+
1
;
int
output_len
=
output_depth
*
output_height
*
output_width
;
input_tmp
.
mutable_data
<
float
>
(
{
batch
,
channel
,
input_depth
,
input_height
,
input_width
},
paddle
::
platform
::
CPUPlace
());
output_tmp
.
mutable_data
<
float
>
(
{
batch
,
channel
,
output_depth
,
output_height
,
output_width
},
paddle
::
platform
::
CPUPlace
());
float
*
arr
=
new
float
[
in_len
];
auto
*
place
=
new
paddle
::
platform
::
GPUPlace
();
// input
float
*
input_ptr
=
input_tmp
.
data
<
float
>
();
for
(
int
i
=
0
;
i
<
in_len
;
++
i
)
arr
[
i
]
=
i
;
// rand() / double(RAND_MAX/2);
memcpy
(
input_ptr
,
arr
,
in_len
*
sizeof
(
float
));
input
.
CopyFrom
<
float
>
(
input_tmp
,
*
place
);
// input_grad
input_ptr
=
input_tmp
.
data
<
float
>
();
for
(
int
i
=
0
;
i
<
in_len
;
++
i
)
arr
[
i
]
=
0
;
memcpy
(
input_ptr
,
arr
,
in_len
*
sizeof
(
float
));
input_grad
.
CopyFrom
<
float
>
(
input_tmp
,
*
place
);
// output
input_ptr
=
output_tmp
.
data
<
float
>
();
for
(
int
i
=
0
;
i
<
output_len
;
++
i
)
arr
[
i
]
=
0
;
// rand() / double(RAND_MAX/2);
memcpy
(
input_ptr
,
arr
,
output_len
*
sizeof
(
float
));
output
.
CopyFrom
<
float
>
(
input_tmp
,
*
place
);
// output_grad
input_ptr
=
output_tmp
.
data
<
float
>
();
for
(
int
i
=
0
;
i
<
output_len
;
++
i
)
arr
[
i
]
=
1
;
// rand() / double(RAND_MAX/2);
memcpy
(
input_ptr
,
arr
,
output_len
*
sizeof
(
float
));
output_grad
.
CopyFrom
<
float
>
(
input_tmp
,
*
place
);
paddle
::
platform
::
DeviceContext
*
context
=
new
paddle
::
platform
::
CUDADeviceContext
(
paddle
::
platform
::
GPUPlace
());
paddle
::
operators
::
math
::
pool
::
maxPool
<
float
>
pool_process
;
testPool3d
<
paddle
::
operators
::
math
::
pool
::
maxPool
<
float
>>
(
*
context
,
pool_process
,
input
,
input_grad
,
output
,
output_grad
,
ksize
,
strides
,
paddings
);
}
int
main
()
{
test3dPool
();
}
#endif
\ No newline at end of file
paddle/operators/math/pooling.cc
浏览文件 @
9b1431b8
...
@@ -134,6 +134,70 @@ class Pool2dBackwardFunctor<platform::CPUPlace, PoolProcess, T> {
...
@@ -134,6 +134,70 @@ class Pool2dBackwardFunctor<platform::CPUPlace, PoolProcess, T> {
}
}
};
};
template
<
class
T
>
class
MaxPool2dBackwardFunctor
<
platform
::
CPUPlace
,
T
>
{
public:
void
operator
()(
const
platform
::
DeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
framework
::
Tensor
&
input_grad
,
const
framework
::
Tensor
&
output
,
const
framework
::
Tensor
&
output_grad
,
std
::
vector
<
int
>&
ksize
,
std
::
vector
<
int
>&
strides
,
std
::
vector
<
int
>&
paddings
)
{
const
int
batch_size
=
input
.
dims
()[
0
];
const
int
input_height
=
input
.
dims
()[
2
];
const
int
input_width
=
input
.
dims
()[
3
];
const
int
output_channels
=
output
.
dims
()[
1
];
const
int
output_height
=
output
.
dims
()[
2
];
const
int
output_width
=
output
.
dims
()[
3
];
const
int
ksize_height
=
ksize
[
0
];
const
int
ksize_width
=
ksize
[
1
];
const
int
stride_height
=
strides
[
0
];
const
int
stride_width
=
strides
[
1
];
const
int
padding_height
=
paddings
[
0
];
const
int
padding_width
=
paddings
[
1
];
const
int
input_stride
=
input_height
*
input_width
;
const
int
output_stride
=
output_height
*
output_width
;
const
T
*
input_data
=
input
.
data
<
T
>
();
const
T
*
output_data
=
output
.
data
<
T
>
();
const
T
*
output_grad_data
=
output_grad
.
data
<
T
>
();
T
*
input_grad_data
=
input_grad
.
mutable_data
<
T
>
(
context
.
GetPlace
());
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
for
(
int
c
=
0
;
c
<
output_channels
;
++
c
)
{
for
(
int
ph
=
0
;
ph
<
output_height
;
++
ph
)
{
int
hstart
=
ph
*
stride_height
-
padding_height
;
int
hend
=
std
::
min
(
hstart
+
ksize_height
,
input_height
);
hstart
=
std
::
max
(
hstart
,
0
);
for
(
int
pw
=
0
;
pw
<
output_width
;
++
pw
)
{
int
wstart
=
pw
*
stride_width
-
padding_width
;
int
wend
=
std
::
min
(
wstart
+
ksize_width
,
input_width
);
wstart
=
std
::
max
(
wstart
,
0
);
bool
stop
=
false
;
for
(
int
h
=
hstart
;
h
<
hend
&&
!
stop
;
++
h
)
{
for
(
int
w
=
wstart
;
w
<
wend
&&
!
stop
;
++
w
)
{
int
input_idx
=
h
*
input_width
+
w
;
int
output_idx
=
ph
*
output_width
+
pw
;
if
(
input_data
[
input_idx
]
==
output_data
[
output_idx
])
{
input_grad_data
[
input_idx
]
+=
output_grad_data
[
output_idx
];
stop
=
true
;
}
}
}
}
}
input_data
+=
input_stride
;
output_data
+=
output_stride
;
input_grad_data
+=
input_stride
;
output_grad_data
+=
output_stride
;
}
}
}
};
template
class
MaxPool2dBackwardFunctor
<
platform
::
CPUPlace
,
float
>;
template
class
MaxPool2dBackwardFunctor
<
platform
::
CPUPlace
,
double
>;
template
class
Pool2dForwardFunctor
<
template
class
Pool2dForwardFunctor
<
platform
::
CPUPlace
,
paddle
::
operators
::
math
::
pool
::
maxPool
<
float
>,
float
>
;
platform
::
CPUPlace
,
paddle
::
operators
::
math
::
pool
::
maxPool
<
float
>,
float
>
;
template
class
Pool2dForwardFunctor
<
template
class
Pool2dForwardFunctor
<
...
@@ -299,6 +363,84 @@ class Pool3dBackwardFunctor<platform::CPUPlace, PoolProcess, T> {
...
@@ -299,6 +363,84 @@ class Pool3dBackwardFunctor<platform::CPUPlace, PoolProcess, T> {
}
}
};
};
template
<
class
T
>
class
MaxPool3dBackwardFunctor
<
platform
::
CPUPlace
,
T
>
{
public:
void
operator
()(
const
platform
::
DeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
framework
::
Tensor
&
input_grad
,
const
framework
::
Tensor
&
output
,
const
framework
::
Tensor
&
output_grad
,
std
::
vector
<
int
>&
ksize
,
std
::
vector
<
int
>&
strides
,
std
::
vector
<
int
>&
paddings
)
{
const
int
batch_size
=
input
.
dims
()[
0
];
const
int
input_depth
=
input
.
dims
()[
2
];
const
int
input_height
=
input
.
dims
()[
3
];
const
int
input_width
=
input
.
dims
()[
4
];
const
int
output_channels
=
output
.
dims
()[
1
];
const
int
output_depth
=
output
.
dims
()[
2
];
const
int
output_height
=
output
.
dims
()[
3
];
const
int
output_width
=
output
.
dims
()[
4
];
const
int
ksize_depth
=
ksize
[
0
];
const
int
ksize_height
=
ksize
[
1
];
const
int
ksize_width
=
ksize
[
2
];
const
int
stride_depth
=
strides
[
0
];
const
int
stride_height
=
strides
[
1
];
const
int
stride_width
=
strides
[
2
];
const
int
padding_depth
=
paddings
[
0
];
const
int
padding_height
=
paddings
[
1
];
const
int
padding_width
=
paddings
[
2
];
const
int
input_stride
=
input_depth
*
input_height
*
input_width
;
const
int
output_stride
=
output_depth
*
output_height
*
output_width
;
const
T
*
input_data
=
input
.
data
<
T
>
();
const
T
*
output_data
=
output
.
data
<
T
>
();
const
T
*
output_grad_data
=
output_grad
.
data
<
T
>
();
T
*
input_grad_data
=
input_grad
.
mutable_data
<
T
>
(
context
.
GetPlace
());
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
for
(
int
c
=
0
;
c
<
output_channels
;
++
c
)
{
for
(
int
pd
=
0
;
pd
<
output_depth
;
++
pd
)
{
int
dstart
=
pd
*
stride_depth
-
padding_depth
;
int
dend
=
std
::
min
(
dstart
+
ksize_depth
,
input_depth
);
dstart
=
std
::
max
(
dstart
,
0
);
for
(
int
ph
=
0
;
ph
<
output_height
;
++
ph
)
{
int
hstart
=
ph
*
stride_height
-
padding_height
;
int
hend
=
std
::
min
(
hstart
+
ksize_height
,
input_height
);
hstart
=
std
::
max
(
hstart
,
0
);
for
(
int
pw
=
0
;
pw
<
output_width
;
++
pw
)
{
int
wstart
=
pw
*
stride_width
-
padding_width
;
int
wend
=
std
::
min
(
wstart
+
ksize_width
,
input_width
);
wstart
=
std
::
max
(
wstart
,
0
);
bool
stop
=
false
;
for
(
int
d
=
dstart
;
d
<
dend
&&
!
stop
;
++
d
)
{
for
(
int
h
=
hstart
;
h
<
hend
&&
!
stop
;
++
h
)
{
for
(
int
w
=
wstart
;
w
<
wend
&&
!
stop
;
++
w
)
{
int
input_idx
=
(
d
*
input_height
+
h
)
*
input_width
+
w
;
int
output_idx
=
(
pd
*
output_height
+
ph
)
*
output_width
+
pw
;
if
(
input_data
[
input_idx
]
==
output_data
[
output_idx
])
{
input_grad_data
[
input_idx
]
+=
output_grad_data
[
output_idx
];
stop
=
true
;
}
}
}
}
}
}
}
input_data
+=
input_stride
;
output_data
+=
output_stride
;
input_grad_data
+=
input_stride
;
output_grad_data
+=
output_stride
;
}
}
}
};
template
class
MaxPool3dBackwardFunctor
<
platform
::
CPUPlace
,
float
>;
template
class
MaxPool3dBackwardFunctor
<
platform
::
CPUPlace
,
double
>;
template
class
Pool3dForwardFunctor
<
template
class
Pool3dForwardFunctor
<
platform
::
CPUPlace
,
paddle
::
operators
::
math
::
pool
::
maxPool
<
float
>,
float
>
;
platform
::
CPUPlace
,
paddle
::
operators
::
math
::
pool
::
maxPool
<
float
>,
float
>
;
template
class
Pool3dForwardFunctor
<
template
class
Pool3dForwardFunctor
<
...
...
paddle/operators/math/pooling.cu
浏览文件 @
9b1431b8
...
@@ -102,6 +102,51 @@ __global__ void KernelPool2dBackward(
...
@@ -102,6 +102,51 @@ __global__ void KernelPool2dBackward(
}
}
}
}
template
<
typename
T
>
__global__
void
KernelMaxPool2dBackward
(
const
int
nthreads
,
const
T
*
input_data
,
const
T
*
output_data
,
const
T
*
output_grad
,
T
*
input_grad
,
const
int
channels
,
const
int
input_height
,
const
int
input_width
,
const
int
output_height
,
const
int
output_width
,
const
int
ksize_height
,
const
int
ksize_width
,
const
int
stride_height
,
const
int
stride_width
,
const
int
padding_height
,
const
int
padding_width
)
{
int
index
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
if
(
index
<
nthreads
)
{
int
pw
=
index
%
output_width
;
int
ph
=
(
index
/
output_width
)
%
output_height
;
int
c
=
(
index
/
output_width
/
output_height
)
%
channels
;
int
batch_idx
=
index
/
output_width
/
output_height
/
channels
;
int
hstart
=
ph
*
stride_height
-
padding_height
;
int
hend
=
min
(
hstart
+
ksize_height
,
input_height
);
hstart
=
max
(
hstart
,
0
);
int
wstart
=
pw
*
stride_width
-
padding_width
;
int
wend
=
min
(
wstart
+
ksize_width
,
input_width
);
wstart
=
max
(
wstart
,
0
);
input_data
+=
(
batch_idx
*
channels
+
c
)
*
input_height
*
input_width
;
input_grad
+=
(
batch_idx
*
channels
+
c
)
*
input_height
*
input_width
;
T
ele
=
output_data
[
index
];
int
maxIndex
=
-
1
;
bool
stop
=
false
;
for
(
int
h
=
hstart
;
h
<
hend
&&
!
stop
;
++
h
)
{
for
(
int
w
=
wstart
;
w
<
wend
&&
!
stop
;
++
w
)
{
if
(
ele
==
input_data
[
h
*
input_width
+
w
])
{
maxIndex
=
h
*
input_width
+
w
;
stop
=
true
;
}
}
}
if
(
maxIndex
!=
-
1
)
{
// atomic add
atomicAdd
(
input_grad
+
maxIndex
,
output_grad
[
index
]);
}
}
}
template
<
typename
PoolProcess
,
typename
T
>
template
<
typename
PoolProcess
,
typename
T
>
class
Pool2dForwardFunctor
<
platform
::
GPUPlace
,
PoolProcess
,
T
>
{
class
Pool2dForwardFunctor
<
platform
::
GPUPlace
,
PoolProcess
,
T
>
{
public:
public:
...
@@ -187,6 +232,52 @@ class Pool2dBackwardFunctor<platform::GPUPlace, PoolProcess, T> {
...
@@ -187,6 +232,52 @@ class Pool2dBackwardFunctor<platform::GPUPlace, PoolProcess, T> {
}
}
};
};
template
<
typename
T
>
class
MaxPool2dBackwardFunctor
<
platform
::
GPUPlace
,
T
>
{
public:
void
operator
()(
const
platform
::
DeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
framework
::
Tensor
&
input_grad
,
const
framework
::
Tensor
&
output
,
const
framework
::
Tensor
&
output_grad
,
std
::
vector
<
int
>&
ksize
,
std
::
vector
<
int
>&
strides
,
std
::
vector
<
int
>&
paddings
)
{
const
int
batch_size
=
input
.
dims
()[
0
];
const
int
input_channels
=
input
.
dims
()[
1
];
const
int
input_height
=
input
.
dims
()[
2
];
const
int
input_width
=
input
.
dims
()[
3
];
const
int
output_channels
=
output
.
dims
()[
1
];
const
int
output_height
=
output
.
dims
()[
2
];
const
int
output_width
=
output
.
dims
()[
3
];
const
int
ksize_height
=
ksize
[
0
];
const
int
ksize_width
=
ksize
[
1
];
const
int
stride_height
=
strides
[
0
];
const
int
stride_width
=
strides
[
1
];
const
int
padding_height
=
paddings
[
0
];
const
int
padding_width
=
paddings
[
1
];
const
T
*
input_data
=
input
.
data
<
T
>
();
const
T
*
output_data
=
output
.
data
<
T
>
();
const
T
*
output_grad_data
=
output_grad
.
data
<
T
>
();
T
*
input_grad_data
=
input_grad
.
mutable_data
<
T
>
(
context
.
GetPlace
());
int
nthreads
=
batch_size
*
output_channels
*
output_height
*
output_width
;
int
blocks
=
(
nthreads
+
1024
-
1
)
/
1024
;
dim3
threads
(
1024
,
1
);
dim3
grid
(
blocks
,
1
);
KernelMaxPool2dBackward
<
T
><<<
grid
,
threads
,
0
,
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
context
)
.
stream
()
>>>
(
nthreads
,
input_data
,
output_data
,
output_grad_data
,
input_grad_data
,
input_channels
,
input_height
,
input_width
,
output_height
,
output_width
,
ksize_height
,
ksize_width
,
stride_height
,
stride_width
,
padding_height
,
padding_width
);
}
};
template
class
MaxPool2dBackwardFunctor
<
platform
::
GPUPlace
,
float
>;
// template class MaxPool2dBackwardFunctor<platform::GPUPlace, double>;
template
class
Pool2dForwardFunctor
<
template
class
Pool2dForwardFunctor
<
platform
::
GPUPlace
,
paddle
::
operators
::
math
::
pool
::
maxPool
<
float
>,
float
>
;
platform
::
GPUPlace
,
paddle
::
operators
::
math
::
pool
::
maxPool
<
float
>,
float
>
;
template
class
Pool2dForwardFunctor
<
template
class
Pool2dForwardFunctor
<
...
@@ -311,6 +402,58 @@ __global__ void KernelPool3DBackward(
...
@@ -311,6 +402,58 @@ __global__ void KernelPool3DBackward(
}
}
}
}
template
<
typename
T
>
__global__
void
KernelMaxPool3DBackward
(
const
int
nthreads
,
const
T
*
input_data
,
const
T
*
output_data
,
const
T
*
output_grad
,
T
*
input_grad
,
const
int
channels
,
const
int
input_depth
,
const
int
input_height
,
const
int
input_width
,
const
int
output_depth
,
const
int
output_height
,
const
int
output_width
,
const
int
ksize_depth
,
const
int
ksize_height
,
const
int
ksize_width
,
const
int
stride_depth
,
const
int
stride_height
,
const
int
stride_width
,
const
int
padding_depth
,
const
int
padding_height
,
const
int
padding_width
)
{
for
(
int
index
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
index
<
(
nthreads
);
index
+=
blockDim
.
x
*
gridDim
.
x
)
{
int
pw
=
index
%
output_width
;
int
ph
=
(
index
/
output_width
)
%
output_height
;
int
pd
=
(
index
/
output_width
/
output_height
)
%
output_depth
;
int
c
=
(
index
/
output_width
/
output_height
/
output_depth
)
%
channels
;
int
batch_idx
=
index
/
output_width
/
output_height
/
output_depth
/
channels
;
int
dstart
=
pd
*
stride_depth
-
padding_depth
;
int
hstart
=
ph
*
stride_height
-
padding_height
;
int
wstart
=
pw
*
stride_width
-
padding_width
;
int
dend
=
min
(
dstart
+
ksize_depth
,
input_depth
);
int
hend
=
min
(
hstart
+
ksize_height
,
input_height
);
int
wend
=
min
(
wstart
+
ksize_width
,
input_width
);
dstart
=
max
(
dstart
,
0
);
hstart
=
max
(
hstart
,
0
);
wstart
=
max
(
wstart
,
0
);
T
ele
=
output_data
[
index
];
bool
stop
=
false
;
int
maxIdx
=
-
1
;
input_data
+=
(
batch_idx
*
channels
+
c
)
*
input_depth
*
input_height
*
input_width
;
input_grad
+=
(
batch_idx
*
channels
+
c
)
*
input_depth
*
input_height
*
input_width
;
for
(
int
d
=
dstart
;
d
<
dend
&&
!
stop
;
++
d
)
{
for
(
int
h
=
hstart
;
h
<
hend
&&
!
stop
;
++
h
)
{
for
(
int
w
=
wstart
;
w
<
wend
&&
!
stop
;
++
w
)
{
if
(
ele
==
input_data
[(
d
*
input_height
+
h
)
*
input_width
+
w
])
{
stop
=
true
;
maxIdx
=
(
d
*
input_height
+
h
)
*
input_width
+
w
;
}
}
}
}
if
(
maxIdx
!=
-
1
)
{
// atomic add
atomicAdd
(
input_grad
+
maxIdx
,
output_grad
[
index
]);
}
}
}
template
<
typename
PoolProcess
,
class
T
>
template
<
typename
PoolProcess
,
class
T
>
class
Pool3dForwardFunctor
<
platform
::
GPUPlace
,
PoolProcess
,
T
>
{
class
Pool3dForwardFunctor
<
platform
::
GPUPlace
,
PoolProcess
,
T
>
{
public:
public:
...
@@ -411,6 +554,59 @@ class Pool3dBackwardFunctor<platform::GPUPlace, PoolProcess, T> {
...
@@ -411,6 +554,59 @@ class Pool3dBackwardFunctor<platform::GPUPlace, PoolProcess, T> {
}
}
};
};
template
<
class
T
>
class
MaxPool3dBackwardFunctor
<
platform
::
GPUPlace
,
T
>
{
public:
void
operator
()(
const
platform
::
DeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
framework
::
Tensor
&
input_grad
,
const
framework
::
Tensor
&
output
,
const
framework
::
Tensor
&
output_grad
,
std
::
vector
<
int
>&
ksize
,
std
::
vector
<
int
>&
strides
,
std
::
vector
<
int
>&
paddings
)
{
const
int
batch_size
=
input
.
dims
()[
0
];
const
int
input_channels
=
input
.
dims
()[
1
];
const
int
input_depth
=
input
.
dims
()[
2
];
const
int
input_height
=
input
.
dims
()[
3
];
const
int
input_width
=
input
.
dims
()[
4
];
const
int
output_channels
=
output
.
dims
()[
1
];
const
int
output_depth
=
output
.
dims
()[
2
];
const
int
output_height
=
output
.
dims
()[
3
];
const
int
output_width
=
output
.
dims
()[
4
];
const
int
ksize_depth
=
ksize
[
0
];
const
int
ksize_height
=
ksize
[
1
];
const
int
ksize_width
=
ksize
[
2
];
const
int
stride_depth
=
strides
[
0
];
const
int
stride_height
=
strides
[
1
];
const
int
stride_width
=
strides
[
2
];
const
int
padding_depth
=
paddings
[
0
];
const
int
padding_height
=
paddings
[
1
];
const
int
padding_width
=
paddings
[
2
];
const
T
*
input_data
=
input
.
data
<
T
>
();
const
T
*
output_data
=
output
.
data
<
T
>
();
const
T
*
output_grad_data
=
output_grad
.
data
<
T
>
();
T
*
input_grad_data
=
input_grad
.
mutable_data
<
T
>
(
context
.
GetPlace
());
int
nthreads
=
batch_size
*
output_channels
*
output_depth
*
output_height
*
output_width
;
int
blocks
=
(
nthreads
+
1024
-
1
)
/
1024
;
dim3
threads
(
1024
,
1
);
dim3
grid
(
blocks
,
1
);
KernelMaxPool3DBackward
<
T
><<<
grid
,
threads
,
0
,
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
context
)
.
stream
()
>>>
(
nthreads
,
input_data
,
output_data
,
output_grad_data
,
input_grad_data
,
input_channels
,
input_depth
,
input_height
,
input_width
,
output_depth
,
output_height
,
output_width
,
ksize_depth
,
ksize_height
,
ksize_width
,
stride_depth
,
stride_height
,
stride_width
,
padding_depth
,
padding_height
,
padding_width
);
}
};
template
class
MaxPool3dBackwardFunctor
<
platform
::
GPUPlace
,
float
>;
// template class MaxPool3dBackwardFunctor<platform::GPUPlace, double>;
template
class
Pool3dForwardFunctor
<
template
class
Pool3dForwardFunctor
<
platform
::
GPUPlace
,
paddle
::
operators
::
math
::
pool
::
maxPool
<
float
>,
float
>
;
platform
::
GPUPlace
,
paddle
::
operators
::
math
::
pool
::
maxPool
<
float
>,
float
>
;
template
class
Pool3dForwardFunctor
<
template
class
Pool3dForwardFunctor
<
...
...
paddle/operators/math/pooling.h
浏览文件 @
9b1431b8
...
@@ -72,6 +72,16 @@ class Pool2dBackwardFunctor {
...
@@ -72,6 +72,16 @@ class Pool2dBackwardFunctor {
PoolProcess
pool_process
);
PoolProcess
pool_process
);
};
};
template
<
typename
Place
,
class
T
>
class
MaxPool2dBackwardFunctor
{
public:
void
operator
()(
const
platform
::
DeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
framework
::
Tensor
&
input_grad
,
const
framework
::
Tensor
&
output
,
const
framework
::
Tensor
&
output_grad
,
std
::
vector
<
int
>&
ksize
,
std
::
vector
<
int
>&
strides
,
std
::
vector
<
int
>&
paddings
);
};
template
<
typename
Place
,
typename
PoolProcess
,
typename
T
>
template
<
typename
Place
,
typename
PoolProcess
,
typename
T
>
class
Pool3dForwardFunctor
{
class
Pool3dForwardFunctor
{
public:
public:
...
@@ -92,6 +102,16 @@ class Pool3dBackwardFunctor {
...
@@ -92,6 +102,16 @@ class Pool3dBackwardFunctor {
PoolProcess
pool_process
);
PoolProcess
pool_process
);
};
};
template
<
typename
Place
,
class
T
>
class
MaxPool3dBackwardFunctor
{
public:
void
operator
()(
const
platform
::
DeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
framework
::
Tensor
&
input_grad
,
const
framework
::
Tensor
&
output
,
const
framework
::
Tensor
&
output_grad
,
std
::
vector
<
int
>&
ksize
,
std
::
vector
<
int
>&
strides
,
std
::
vector
<
int
>&
paddings
);
};
}
// namespace math
}
// namespace math
}
// namespace operators
}
// namespace operators
}
// namespace paddle
}
// namespace paddle
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录