Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
9aecf286
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
9aecf286
编写于
8月 15, 2022
作者:
W
Wilber
提交者:
GitHub
8月 15, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
convert_fp16 support multi block (#45050)
* convert_fp16 support multi block * update * update
上级
b0e7681f
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
252 addition
and
83 deletion
+252
-83
.gitignore
.gitignore
+1
-0
paddle/fluid/inference/analysis/passes/convert_to_mixed_precision.cc
...d/inference/analysis/passes/convert_to_mixed_precision.cc
+243
-74
paddle/fluid/operators/fused/conv_fusion_op.cu
paddle/fluid/operators/fused/conv_fusion_op.cu
+8
-9
未找到文件。
.gitignore
浏览文件 @
9aecf286
...
...
@@ -38,6 +38,7 @@ build_doc/
CMakeSettings.json
Makefile
.test_env/
.cache/
third_party/
*~
...
...
paddle/fluid/inference/analysis/passes/convert_to_mixed_precision.cc
浏览文件 @
9aecf286
...
...
@@ -19,6 +19,7 @@
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/executor.h"
...
...
@@ -29,6 +30,7 @@
#include "paddle/fluid/framework/ir/node.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/var_desc.h"
#include "paddle/fluid/inference/io.h"
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/common/layout.h"
...
...
@@ -63,6 +65,7 @@ inline void StrToBinary(const std::string& path, const std::string& str) {
file
.
write
(
str
.
c_str
(),
str
.
size
());
file
.
close
();
}
inline
bool
NodeVarHasDtype
(
framework
::
ir
::
Node
*
node
)
{
if
(
node
->
IsCtrlVar
())
return
false
;
...
...
@@ -80,12 +83,63 @@ inline bool NodeVarHasDtype(framework::ir::Node* node) {
return
false
;
}
void
SaveMixedModel
(
framework
::
ir
::
Graph
*
graph
,
framework
::
Scope
*
scope
,
framework
::
ProgramDesc
*
mixed_program_desc
,
const
std
::
string
&
mixed_model_file
,
const
std
::
string
&
mixed_params_file
,
phi
::
DataType
mixed_precision
)
{
// Return Node* which first appers in block.
framework
::
ir
::
Node
*
GetRealNode
(
const
std
::
vector
<
framework
::
ir
::
Graph
*>&
graphes
,
int
block_idx
,
framework
::
ir
::
Node
*
node
,
std
::
unordered_map
<
std
::
string
,
std
::
pair
<
framework
::
proto
::
VarType
::
Type
,
int
>>*
vars_in_multi_block_map
)
{
if
(
vars_in_multi_block_map
->
count
(
node
->
Name
()))
{
int
var_origin_block_id
=
vars_in_multi_block_map
->
at
(
node
->
Name
()).
second
;
if
(
block_idx
!=
var_origin_block_id
)
{
auto
graph
=
graphes
[
var_origin_block_id
];
for
(
auto
nd
:
graph
->
Nodes
())
{
if
(
nd
->
Name
()
==
node
->
Name
())
{
return
nd
;
}
}
}
}
return
node
;
}
inline
bool
VarIsMultiOpsOut
(
const
std
::
vector
<
framework
::
ir
::
Graph
*>&
graphes
,
int
block_idx
,
framework
::
ir
::
Node
*
op_node
,
std
::
unordered_map
<
std
::
string
,
std
::
pair
<
framework
::
proto
::
VarType
::
Type
,
int
>>*
vars_in_multi_block_map
,
const
std
::
vector
<
std
::
set
<
std
::
string
>>&
vars_appear_multi_in_one_block
)
{
CHECK_EQ
(
op_node
->
IsOp
(),
true
);
for
(
auto
*
out
:
op_node
->
outputs
)
{
if
(
out
->
IsCtrlVar
())
continue
;
auto
*
real_node
=
GetRealNode
(
graphes
,
block_idx
,
out
,
vars_in_multi_block_map
);
if
(
!
real_node
->
Var
()
->
Persistable
()
&&
vars_appear_multi_in_one_block
[
block_idx
].
count
(
out
->
Name
()))
{
VLOG
(
2
)
<<
out
->
Name
()
<<
" is multi op's out, so we skip convert to fp16"
;
return
true
;
}
}
return
false
;
}
void
SaveMixedModel
(
framework
::
ir
::
Graph
*
graph
,
framework
::
Scope
*
scope
,
framework
::
ProgramDesc
*
mixed_program_desc
,
const
std
::
string
&
mixed_model_file
,
const
std
::
string
&
mixed_params_file
,
phi
::
DataType
mixed_precision
,
const
std
::
unordered_map
<
std
::
string
,
std
::
pair
<
framework
::
proto
::
VarType
::
Type
,
int
>>&
vars_in_multi_block_map
)
{
paddle
::
CPUPlace
place
;
auto
parameters
=
scope
->
LocalVarNames
();
std
::
sort
(
parameters
.
begin
(),
parameters
.
end
());
...
...
@@ -169,7 +223,8 @@ bool GpuKernelSupportPrecision(
auto
it
=
all_kernels
.
find
(
op_type
);
if
(
it
!=
all_kernels
.
end
())
{
for
(
auto
&
kern_pair
:
it
->
second
)
{
if
(
platform
::
is_gpu_place
(
kern_pair
.
first
.
place_
))
{
if
(
platform
::
is_gpu_place
(
kern_pair
.
first
.
place_
)
&&
kern_pair
.
first
.
data_type_
==
framework
::
proto
::
VarType
::
FP16
)
{
res
=
true
;
}
}
...
...
@@ -205,10 +260,18 @@ bool OutShouldNotConvert(ir::Node* var_node) {
return
false
;
}
void
ProcessOutputNode
(
ir
::
Node
*
var_node
,
framework
::
proto
::
VarType
::
Type
to_type
)
{
if
(
!
NodeVarHasDtype
(
var_node
))
return
;
auto
*
out_var
=
var_node
->
Var
();
void
ProcessOutputNode
(
const
std
::
vector
<
framework
::
ir
::
Graph
*>&
graphes
,
int
block_idx
,
ir
::
Node
*
var_node
,
framework
::
proto
::
VarType
::
Type
to_type
,
std
::
unordered_map
<
std
::
string
,
std
::
pair
<
framework
::
proto
::
VarType
::
Type
,
int
>>*
vars_in_multi_block_map
)
{
auto
*
real_node
=
GetRealNode
(
graphes
,
block_idx
,
var_node
,
vars_in_multi_block_map
);
if
(
!
NodeVarHasDtype
(
real_node
))
return
;
auto
*
out_var
=
real_node
->
Var
();
if
(
out_var
->
GetDataType
()
==
framework
::
proto
::
VarType
::
FP32
)
{
if
(
OutShouldNotConvert
(
var_node
))
return
;
out_var
->
SetDataType
(
to_type
);
...
...
@@ -241,6 +304,26 @@ bool WeightsShouldNotConvert(ir::Node* var_node) {
if
(
std
::
find
(
vecs
.
begin
(),
vecs
.
end
(),
var_node
->
Name
())
!=
vecs
.
end
())
{
return
true
;
}
}
else
if
(
op_desc
->
Type
()
==
"fused_multi_transformer"
)
{
auto
vecs
=
op_desc
->
Input
(
"LnScale"
);
if
(
std
::
find
(
vecs
.
begin
(),
vecs
.
end
(),
var_node
->
Name
())
!=
vecs
.
end
())
{
return
true
;
}
vecs
=
op_desc
->
Input
(
"LnBias"
);
if
(
std
::
find
(
vecs
.
begin
(),
vecs
.
end
(),
var_node
->
Name
())
!=
vecs
.
end
())
{
return
true
;
}
vecs
=
op_desc
->
Input
(
"FFNLnScale"
);
if
(
std
::
find
(
vecs
.
begin
(),
vecs
.
end
(),
var_node
->
Name
())
!=
vecs
.
end
())
{
return
true
;
}
vecs
=
op_desc
->
Input
(
"FFNLnBias"
);
if
(
std
::
find
(
vecs
.
begin
(),
vecs
.
end
(),
var_node
->
Name
())
!=
vecs
.
end
())
{
return
true
;
}
}
}
...
...
@@ -255,21 +338,28 @@ inline bool IsFloatVarType(framework::proto::VarType::Type type) {
}
void
ProcessInputNode
(
bool
support_precision
,
framework
::
ir
::
Graph
*
graph
,
std
::
vector
<
framework
::
ir
::
Graph
*>
graphes
,
ir
::
Node
*
in_node
,
ir
::
Node
*
op_node
,
int
*
suffix
,
framework
::
BlockDesc
*
block_desc
,
std
::
unordered_map
<
framework
::
ir
::
Node
*
,
framework
::
ir
::
Node
*>*
cast_map
,
framework
::
proto
::
VarType
::
Type
to_type
,
bool
is_main_block
,
std
::
unordered_map
<
std
::
string
,
framework
::
proto
::
VarType
::
Type
>*
int
block_idx
,
std
::
unordered_map
<
std
::
string
,
std
::
pair
<
framework
::
proto
::
VarType
::
Type
,
int
>>*
vars_in_multi_block_map
)
{
if
(
!
NodeVarHasDtype
(
in_node
))
return
;
auto
*
in_var
=
in_node
->
Var
();
auto
*
real_node
=
GetRealNode
(
graphes
,
block_idx
,
in_node
,
vars_in_multi_block_map
);
if
(
!
NodeVarHasDtype
(
real_node
))
return
;
auto
graph
=
graphes
[
block_idx
];
bool
is_main_block
=
block_idx
==
0
;
auto
*
in_var
=
real_node
->
Var
();
auto
in_var_type
=
in_var
->
GetDataType
();
if
(
!
is_main_block
&&
vars_in_multi_block_map
->
count
(
in_var
->
Name
()))
{
in_var_type
=
vars_in_multi_block_map
->
at
(
in_var
->
Name
());
bool
is_in_multi_block
=
vars_in_multi_block_map
->
count
(
in_var
->
Name
());
if
(
!
is_main_block
&&
is_in_multi_block
)
{
in_var_type
=
vars_in_multi_block_map
->
at
(
in_var
->
Name
()).
first
;
}
if
(
support_precision
)
{
if
(
in_var
->
Persistable
()
&&
...
...
@@ -300,8 +390,7 @@ void ProcessInputNode(
cast_map
);
}
}
VLOG
(
3
)
<<
" in_node name "
<<
in_var
->
Name
()
<<
" data_type "
<<
in_var
->
GetDataType
();
VLOG
(
3
)
<<
" in_node name "
<<
in_var
->
Name
()
<<
" data_type "
<<
in_var_type
;
}
void
ConvertAllFp64ToFp32
(
framework
::
ir
::
Graph
*
graph
)
{
...
...
@@ -405,45 +494,87 @@ void FixCastAttr(framework::ir::Graph* graph) {
void
FindVarsInMultiBlock
(
framework
::
ProgramDesc
*
program_desc
,
std
::
unordered_map
<
std
::
string
,
framework
::
proto
::
VarType
::
Type
>*
vars_in_multi_block_map
)
{
std
::
set
<
std
::
string
>
vars_in_multi_block
;
std
::
set
<
std
::
string
>
main_block_var_names_set
;
for
(
auto
op
:
program_desc
->
Block
(
0
).
AllOps
())
{
auto
in_names
=
op
->
InputArgumentNames
();
main_block_var_names_set
.
insert
(
in_names
.
begin
(),
in_names
.
end
());
}
for
(
size_t
i
=
1
;
i
<
program_desc
->
Size
();
++
i
)
{
std
::
set
<
std
::
string
>
block_var_names_set
;
std
::
unordered_map
<
std
::
string
,
std
::
pair
<
framework
::
proto
::
VarType
::
Type
,
int
>>*
vars_in_multi_block_map
,
std
::
vector
<
std
::
set
<
std
::
string
>>*
vars_appear_multi_in_one_block
)
{
std
::
vector
<
std
::
set
<
std
::
string
>>
block_var_names_set
(
program_desc
->
Size
());
for
(
size_t
i
=
0
;
i
<
program_desc
->
Size
();
++
i
)
{
for
(
auto
op
:
program_desc
->
Block
(
i
).
AllOps
())
{
auto
in_names
=
op
->
InputArgumentNames
();
block_var_names_set
.
insert
(
in_names
.
begin
(),
in_names
.
end
());
block_var_names_set
[
i
].
insert
(
in_names
.
begin
(),
in_names
.
end
());
auto
out_names
=
op
->
OutputArgumentNames
();
if
(
op
->
HasAttr
(
"sub_block"
)
==
false
)
{
for
(
auto
&
n
:
out_names
)
{
if
(
block_var_names_set
[
i
].
count
(
n
))
{
(
*
vars_appear_multi_in_one_block
)[
i
].
insert
(
n
);
}
}
}
block_var_names_set
[
i
].
insert
(
out_names
.
begin
(),
out_names
.
end
());
}
}
for
(
size_t
i
=
0
;
i
<
program_desc
->
Size
()
-
1
;
++
i
)
{
for
(
size_t
j
=
i
+
1
;
j
<
program_desc
->
Size
();
++
j
)
{
std
::
set
<
std
::
string
>
vars_in_multi_block
;
std
::
set_intersection
(
block_var_names_set
[
i
].
begin
(),
block_var_names_set
[
i
].
end
(),
block_var_names_set
[
j
].
begin
(),
block_var_names_set
[
j
].
end
(),
std
::
inserter
(
vars_in_multi_block
,
vars_in_multi_block
.
begin
()));
for
(
auto
name
:
vars_in_multi_block
)
{
vars_in_multi_block_map
->
emplace
(
name
,
std
::
make_pair
(
framework
::
proto
::
VarType
::
FP32
,
i
));
}
}
}
}
std
::
set_intersection
(
main_block_var_names_set
.
begin
(),
main_block_var_names_set
.
end
(),
block_var_names_set
.
begin
(),
block_var_names_set
.
end
(),
std
::
inserter
(
vars_in_multi_block
,
vars_in_multi_block
.
begin
()));
bool
OpInOutHasTensorArray
(
std
::
vector
<
framework
::
ir
::
Graph
*>
graphes
,
int
block_idx
,
framework
::
ir
::
Node
*
op_node
,
std
::
unordered_map
<
std
::
string
,
std
::
pair
<
framework
::
proto
::
VarType
::
Type
,
int
>>*
vars_in_multi_block_map
)
{
CHECK_EQ
(
op_node
->
IsOp
(),
true
);
for
(
auto
in
:
op_node
->
inputs
)
{
auto
*
real_node
=
GetRealNode
(
graphes
,
block_idx
,
in
,
vars_in_multi_block_map
);
if
(
!
NodeVarHasDtype
(
real_node
))
continue
;
if
(
real_node
->
Var
()
->
GetType
()
==
framework
::
proto
::
VarType
::
LOD_TENSOR_ARRAY
)
return
true
;
}
for
(
auto
name
:
vars_in_multi_block
)
{
vars_in_multi_block_map
->
emplace
(
name
,
framework
::
proto
::
VarType
::
FP32
);
for
(
auto
out
:
op_node
->
outputs
)
{
auto
*
real_node
=
GetRealNode
(
graphes
,
block_idx
,
out
,
vars_in_multi_block_map
);
if
(
!
NodeVarHasDtype
(
real_node
))
continue
;
if
(
real_node
->
Var
()
->
GetType
()
==
framework
::
proto
::
VarType
::
LOD_TENSOR_ARRAY
)
return
true
;
}
return
false
;
}
void
ConvertTensorDtype
(
framework
::
ProgramDesc
*
program_desc
,
framework
::
ir
::
Graph
*
graph
,
std
::
vector
<
framework
::
ir
::
Graph
*>
graphes
,
const
std
::
unordered_set
<
std
::
string
>&
blacklist
,
bool
keep_io_types
,
phi
::
Backend
backend
,
phi
::
DataType
tensor_dtype
,
bool
is_main_block
,
std
::
unordered_map
<
std
::
string
,
framework
::
proto
::
VarType
::
Type
>*
vars_in_multi_block_map
)
{
int
block_idx
,
std
::
unordered_map
<
std
::
string
,
std
::
pair
<
framework
::
proto
::
VarType
::
Type
,
int
>>*
vars_in_multi_block_map
,
const
std
::
vector
<
std
::
set
<
std
::
string
>>&
vars_appear_multi_in_one_block
)
{
auto
graph
=
graphes
[
block_idx
];
framework
::
proto
::
VarType
::
Type
to_type
;
if
(
tensor_dtype
==
phi
::
DataType
::
FLOAT16
)
{
to_type
=
framework
::
proto
::
VarType
::
FP16
;
...
...
@@ -452,8 +583,7 @@ void ConvertTensorDtype(
}
else
{
PADDLE_THROW
(
paddle
::
platform
::
errors
::
InvalidArgument
(
"mixed_precision currently not supported dtype %d, we now only "
"support "
"fp16 and bf16."
,
"support fp16 and bf16."
,
static_cast
<
int
>
(
tensor_dtype
)));
}
...
...
@@ -490,15 +620,19 @@ void ConvertTensorDtype(
// same name.
std
::
unordered_map
<
std
::
string
,
framework
::
ir
::
Node
*>
in_name_to_node
;
for
(
auto
*
in
:
op_node
->
inputs
)
{
if
(
NodeVarHasDtype
(
in
))
{
auto
*
real_node
=
GetRealNode
(
graphes
,
block_idx
,
in
,
vars_in_multi_block_map
);
if
(
NodeVarHasDtype
(
real_node
))
{
in_name_to_node
[
in
->
Name
()]
=
in
;
}
}
for
(
auto
out
:
op_node
->
outputs
)
{
if
(
NodeVarHasDtype
(
out
))
{
auto
*
real_node
=
GetRealNode
(
graphes
,
block_idx
,
out
,
vars_in_multi_block_map
);
if
(
NodeVarHasDtype
(
real_node
))
{
if
(
in_name_to_node
.
count
(
out
->
Name
()))
out
->
Var
()
->
SetDataType
(
real_node
->
Var
()
->
SetDataType
(
in_name_to_node
[
out
->
Name
()]
->
Var
()
->
GetDataType
());
}
}
...
...
@@ -506,17 +640,39 @@ void ConvertTensorDtype(
continue
;
}
// A strange case found in multi block.
else
if
(
op_type
==
"assign"
&&
// NOLINT
op_node
->
inputs
[
0
]
->
Name
()
==
op_node
->
outputs
[
0
]
->
Name
())
{
VLOG
(
2
)
<<
" in out are same, continue"
;
continue
;
}
// Handle tensor array.
else
if
(
OpInOutHasTensorArray
(
// NOLINT
graphes
,
block_idx
,
op_node
,
vars_in_multi_block_map
))
{
VLOG
(
2
)
<<
" in or out has tensor array, continue"
;
continue
;
}
// 2. if op support fp16/bf16 and not in blacklist.
// - cast weight to fp16/bf16.
// - add cast op if the input dtype is not fp16/bf16.
// - set output dtype.
else
if
(
blacklist
.
count
(
op_type
)
==
0
)
{
// NOLINT
//
// If a var(op's out var) appears multiple times in a block, we should not
// convert to fp16.
else
if
(
blacklist
.
count
(
op_type
)
==
0
&&
// NOLINT
!
VarIsMultiOpsOut
(
graphes
,
block_idx
,
op_node
,
vars_in_multi_block_map
,
vars_appear_multi_in_one_block
))
{
bool
support_precision
=
OpSupportPrecision
(
op_type
,
backend
,
tensor_dtype
,
blacklist
);
VLOG
(
2
)
<<
"op_type "
<<
op_type
<<
", phi_op_type "
<<
phi
::
TransToPhiKernelName
(
op_type
)
<<
" support low precision "
<<
support_precision
<<
", "
<<
reinterpret_cast
<
void
*>
(
op_node
->
Op
()
->
Block
());
VLOG
(
2
)
<<
" support low precision "
<<
support_precision
;
if
(
support_precision
)
{
HandleSpecialOps
(
op_node
->
Op
());
...
...
@@ -525,32 +681,33 @@ void ConvertTensorDtype(
// Process inputs.
for
(
auto
*
in_node
:
inputs
)
{
ProcessInputNode
(
true
,
graph
,
graph
es
,
in_node
,
op_node
,
&
suffix
,
block_desc
,
&
cast_map
,
to_type
,
is_main_block
,
block_idx
,
vars_in_multi_block_map
);
}
// Process outputs.
for
(
auto
*
out_node
:
op_node
->
outputs
)
{
ProcessOutputNode
(
out_node
,
to_type
);
ProcessOutputNode
(
graphes
,
block_idx
,
out_node
,
to_type
,
vars_in_multi_block_map
);
}
}
else
{
auto
inputs
=
op_node
->
inputs
;
for
(
auto
*
in_node
:
inputs
)
{
ProcessInputNode
(
false
,
graph
,
graph
es
,
in_node
,
op_node
,
&
suffix
,
block_desc
,
&
cast_map
,
framework
::
proto
::
VarType
::
FP32
,
is_main_block
,
block_idx
,
vars_in_multi_block_map
);
}
}
...
...
@@ -606,16 +763,21 @@ void ConvertTensorDtype(
}
}
if
(
is_main_block
)
{
for
(
auto
node
:
graph
->
Nodes
())
{
if
(
vars_in_multi_block_map
->
count
(
node
->
Name
()))
{
vars_in_multi_block_map
->
at
(
node
->
Name
())
=
node
->
Var
()
->
GetDataType
();
}
for
(
auto
node
:
graph
->
Nodes
())
{
auto
*
real_node
=
GetRealNode
(
graphes
,
block_idx
,
node
,
vars_in_multi_block_map
);
if
(
!
NodeVarHasDtype
(
real_node
))
continue
;
if
(
vars_in_multi_block_map
->
count
(
real_node
->
Name
())
&&
vars_in_multi_block_map
->
at
(
real_node
->
Name
()).
second
==
block_idx
)
{
vars_in_multi_block_map
->
at
(
real_node
->
Name
()).
first
=
real_node
->
Var
()
->
GetDataType
();
}
}
if
(
num_low_precision
)
LOG
(
INFO
)
<<
"--- detected "
<<
num_low_precision
<<
" low precision ops"
;
LOG
(
INFO
)
<<
"--- detected "
<<
num_low_precision
<<
" low precision ops in "
<<
block_idx
<<
" subgraph"
;
}
}
// namespace
...
...
@@ -701,26 +863,32 @@ void ConvertToMixedPrecision(const std::string& model_file,
auto
main_graph
=
std
::
unique_ptr
<
framework
::
ir
::
Graph
>
(
new
framework
::
ir
::
Graph
(
*
program_desc
));
std
::
unordered_map
<
std
::
string
,
framework
::
proto
::
VarType
::
Type
>
std
::
unordered_map
<
std
::
string
,
std
::
pair
<
framework
::
proto
::
VarType
::
Type
,
int
>>
vars_in_multi_block_map
;
FindVarsInMultiBlock
(
program_desc
.
get
(),
&
vars_in_multi_block_map
);
std
::
vector
<
std
::
set
<
std
::
string
>>
vars_appear_multi_in_one_block
(
program_desc
->
Size
());
FindVarsInMultiBlock
(
program_desc
.
get
(),
&
vars_in_multi_block_map
,
&
vars_appear_multi_in_one_block
);
std
::
vector
<
framework
::
ir
::
Graph
*>
graphes
;
for
(
size_t
i
=
0
;
i
<
main_graph
->
SubGraphsSize
();
++
i
)
{
auto
graph
=
main_graph
->
GetSubGraph
(
i
);
graphes
.
push_back
(
graph
);
VLOG
(
2
)
<<
" -------- handle subgraph "
<<
i
<<
", has "
<<
graph
->
Nodes
().
size
()
<<
" nodes"
;
program_desc
->
Block
(
i
).
LocalVarNames
();
<<
graph
->
Nodes
().
size
()
<<
" nodes --------"
;
ConvertAllFp64ToFp32
(
graph
);
ConvertTensorDtype
(
program_desc
.
get
(),
graph
,
graph
es
,
black_list
,
keep_io_types
,
backend
,
mixed_precision
,
i
==
0
,
&
vars_in_multi_block_map
);
i
,
&
vars_in_multi_block_map
,
vars_appear_multi_in_one_block
);
FixCastAttr
(
graph
);
}
...
...
@@ -732,7 +900,8 @@ void ConvertToMixedPrecision(const std::string& model_file,
&
mixed_program_desc
,
mixed_model_file
,
mixed_params_file
,
mixed_precision
);
mixed_precision
,
vars_in_multi_block_map
);
}
}
// namespace analysis
...
...
paddle/fluid/operators/fused/conv_fusion_op.cu
浏览文件 @
9aecf286
...
...
@@ -438,15 +438,14 @@ class CUDNNConvFusionOpKernel : public framework::OpKernel<T> {
cudnn_output_desc
,
algo
,
&
workspace_size_in_bytes
));
PADDLE_ENFORCE_LE
(
workspace_size_in_bytes
,
workspace_size_limit
,
platform
::
errors
::
InvalidArgument
(
"The actual workspace size to be allocated for cuDNN is expected "
"to be less than the limit. But received: the actual workspace "
"size = %d, limit = %d."
,
workspace_size_in_bytes
,
workspace_size_limit
));
// PADDLE_ENFORCE_LE(
// workspace_size_in_bytes,
// workspace_size_limit,
// platform::errors::InvalidArgument(
// "The actual workspace size to be allocated for cuDNN is expected
// " "to be less than the limit. But received: the actual workspace
// " "size = %d, limit = %d.", workspace_size_in_bytes,
// workspace_size_limit));
if
((
activation
==
"identity"
)
&&
(
!
residual
))
{
// Only the CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM algo is
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录