Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
9a964901
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
9a964901
编写于
10月 28, 2021
作者:
L
Li Min
提交者:
GitHub
10月 28, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[fix-doc-bug] Fix fused_attention_op english doc test=document_fix (#36803) (#36829)
* Fix fused_attention english doc test=document_fix
上级
5fb28500
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
33 addition
and
23 deletion
+33
-23
python/paddle/incubate/nn/functional/fused_transformer.py
python/paddle/incubate/nn/functional/fused_transformer.py
+24
-18
python/paddle/incubate/nn/layer/fused_transformer.py
python/paddle/incubate/nn/layer/fused_transformer.py
+9
-5
未找到文件。
python/paddle/incubate/nn/functional/fused_transformer.py
浏览文件 @
9a964901
...
@@ -194,24 +194,27 @@ def fused_multi_head_attention(x,
...
@@ -194,24 +194,27 @@ def fused_multi_head_attention(x,
Multi-Head Attention performs multiple parallel attention to jointly attending
Multi-Head Attention performs multiple parallel attention to jointly attending
to information from different representation subspaces. This API only
to information from different representation subspaces. This API only
support self_attention. The pseudo code is as follows:
support self_attention. The pseudo code is as follows:
if pre_layer_norm:
out = layer_norm(x);
.. code-block:: python
out = linear(out) + qkv)bias
else:
if pre_layer_norm:
out = linear(x) + bias;
out = layer_norm(x)
out = transpose(out, perm=[2, 0, 3, 1, 4]);
out = linear(out) + qkv) + bias
# extract q, k and v from out.
else:
q = out[0:1,::]
out = linear(x) + bias
k = out[1:2,::]
out = transpose(out, perm=[2, 0, 3, 1, 4])
v = out[2:3,::]
# extract q, k and v from out.
out = q * k^t;
q = out[0:1,::]
out = attn_mask + out;
k = out[1:2,::]
out = softmax(out);
v = out[2:3,::]
out = dropout(out);
out = q * k^t
out = out * v;
out = attn_mask + out
out = transpose(out, perm=[0, 2, 1, 3]);
out = softmax(out)
out = out_linear(out);
out = dropout(out)
out = layer_norm(x + dropout(linear_bias + out));
out = out * v
out = transpose(out, perm=[0, 2, 1, 3])
out = out_linear(out)
out = layer_norm(x + dropout(linear_bias + out))
Parameters:
Parameters:
x (Tensor): The input tensor of fused_multi_head_attention. The shape is
x (Tensor): The input tensor of fused_multi_head_attention. The shape is
...
@@ -245,6 +248,9 @@ def fused_multi_head_attention(x,
...
@@ -245,6 +248,9 @@ def fused_multi_head_attention(x,
ln_epsilon (float, optional): Small float value added to denominator of layer_norm
ln_epsilon (float, optional): Small float value added to denominator of layer_norm
to avoid dividing by zero. Default is 1e-5.
to avoid dividing by zero. Default is 1e-5.
Returns:
Tensor: The output Tensor, the data type and shape is same as `x`.
Examples:
Examples:
.. code-block:: python
.. code-block:: python
...
...
python/paddle/incubate/nn/layer/fused_transformer.py
浏览文件 @
9a964901
...
@@ -24,11 +24,12 @@ import collections
...
@@ -24,11 +24,12 @@ import collections
class
FusedMultiHeadAttention
(
Layer
):
class
FusedMultiHeadAttention
(
Layer
):
"""
"""
Attention mapps queries and a set of key-value pairs to outputs, and
Attention mapps queries and a set of key-value pairs to outputs, and
Multi-Head Attention performs multiple parallel attention to jointly attending
Multi-Head Attention performs multiple parallel attention to jointly attending
to information from different representation subspaces.
to information from different representation subspaces.
Please refer to `Attention Is All You Need <https://arxiv.org/pdf/1706.03762.pdf>`_
Please refer to `Attention Is All You Need <https://arxiv.org/pdf/1706.03762.pdf>`_
for more details.
for more details.
Parameters:
Parameters:
embed_dim (int): The expected feature size in the input and output.
embed_dim (int): The expected feature size in the input and output.
num_heads (int): The number of heads in multi-head attention.
num_heads (int): The number of heads in multi-head attention.
...
@@ -42,17 +43,18 @@ class FusedMultiHeadAttention(Layer):
...
@@ -42,17 +43,18 @@ class FusedMultiHeadAttention(Layer):
`embed_dim`. Default None.
`embed_dim`. Default None.
vdim (int, optional): The feature size in value. If None, assumed equal to
vdim (int, optional): The feature size in value. If None, assumed equal to
`embed_dim`. Default None.
`embed_dim`. Default None.
normalize_before (bool, optional): Indicate whether it is pre_layer_norm
(True)
normalize_before (bool, optional): Indicate whether it is pre_layer_norm
or post_layer_norm architecture (False). Default False.
(True)
or post_layer_norm architecture (False). Default False.
need_weights (bool, optional): Indicate whether to return the attention
need_weights (bool, optional): Indicate whether to return the attention
weights. Now, only False is supported. Default False.
weights. Now, only False is supported. Default False.
weight_attr(ParamAttr, optional): To specify the weight parameter property.
weight_attr(ParamAttr, optional): To specify the weight parameter property.
Default: None, which means the default weight parameter property is used.
Default: None, which means the default weight parameter property is used.
See usage for details in :code:`ParamAttr`
.
See usage for details in :code:`ParamAttr`.
bias_attr (ParamAttr|bool, optional): To specify the bias parameter property.
bias_attr (ParamAttr|bool, optional): To specify the bias parameter property.
Default: None, which means the default bias parameter property is used.
Default: None, which means the default bias parameter property is used.
If it is set to False, this layer will not have trainable bias parameter.
If it is set to False, this layer will not have trainable bias parameter.
See usage for details in :code:`ParamAttr` .
See usage for details in :code:`ParamAttr`.
Examples:
Examples:
.. code-block:: python
.. code-block:: python
...
@@ -139,6 +141,7 @@ class FusedMultiHeadAttention(Layer):
...
@@ -139,6 +141,7 @@ class FusedMultiHeadAttention(Layer):
"""
"""
Applies multi-head attention to map queries and a set of key-value pairs
Applies multi-head attention to map queries and a set of key-value pairs
to outputs.
to outputs.
Parameters:
Parameters:
query (Tensor): The queries for multi-head attention. It is a
query (Tensor): The queries for multi-head attention. It is a
tensor with shape `[batch_size, query_length, embed_dim]`. The
tensor with shape `[batch_size, query_length, embed_dim]`. The
...
@@ -163,6 +166,7 @@ class FusedMultiHeadAttention(Layer):
...
@@ -163,6 +166,7 @@ class FusedMultiHeadAttention(Layer):
nothing wanted or needed to be prevented attention to. Default None.
nothing wanted or needed to be prevented attention to. Default None.
cache (MultiHeadAttention.Cache|MultiHeadAttention.StaticCache, optional):
cache (MultiHeadAttention.Cache|MultiHeadAttention.StaticCache, optional):
Now, only None is supported. Default None.
Now, only None is supported. Default None.
Returns:
Returns:
Tensor|tuple: It is a tensor that has the same shape and data type
\
Tensor|tuple: It is a tensor that has the same shape and data type
\
as `query`, representing attention output.
as `query`, representing attention output.
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录