Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
98d047d7
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
98d047d7
编写于
9月 10, 2021
作者:
Z
zhiboniu
提交者:
GitHub
9月 10, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add api_op fill_diagonal_tensor (#34515)
上级
deb40f06
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
1127 addition
and
0 deletion
+1127
-0
paddle/fluid/operators/fill_diagonal_tensor_op.cc
paddle/fluid/operators/fill_diagonal_tensor_op.cc
+292
-0
paddle/fluid/operators/fill_diagonal_tensor_op.cu
paddle/fluid/operators/fill_diagonal_tensor_op.cu
+207
-0
paddle/fluid/operators/fill_diagonal_tensor_op.h
paddle/fluid/operators/fill_diagonal_tensor_op.h
+27
-0
python/paddle/fluid/tests/unittests/test_fill_diagonal_tensor_op.py
...dle/fluid/tests/unittests/test_fill_diagonal_tensor_op.py
+149
-0
python/paddle/fluid/tests/unittests/test_tensor_fill_diagonal_tensor.py
...fluid/tests/unittests/test_tensor_fill_diagonal_tensor.py
+172
-0
python/paddle/fluid/tests/unittests/test_tensor_fill_diagonal_tensor_.py
...luid/tests/unittests/test_tensor_fill_diagonal_tensor_.py
+173
-0
python/paddle/tensor/manipulation.py
python/paddle/tensor/manipulation.py
+106
-0
tools/static_mode_white_list.py
tools/static_mode_white_list.py
+1
-0
未找到文件。
paddle/fluid/operators/fill_diagonal_tensor_op.cc
0 → 100644
浏览文件 @
98d047d7
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/fill_diagonal_tensor_op.h"
namespace
paddle
{
namespace
operators
{
// calculate the offset\new_dims\(strides of dim1/dim2)\matoffset
void
CalMatDims
(
framework
::
DDim
out_dims
,
int
dim1
,
int
dim2
,
int64_t
*
offset
,
int64_t
*
new_dims
,
int64_t
*
strides
,
int64_t
*
matoffset
)
{
int64_t
dimprod
=
1
,
batchdim
=
1
;
int
rank
=
out_dims
.
size
();
int
matoffidx
=
0
;
for
(
int
i
=
rank
-
1
;
i
>=
0
;
i
--
)
{
if
(
i
==
dim2
)
{
strides
[
0
]
=
dimprod
;
}
else
if
(
i
==
dim1
)
{
strides
[
1
]
=
dimprod
;
}
else
{
batchdim
*=
out_dims
[
i
];
// matoffset calculate the offset position of the diagonal defined by dim1
// and dim2
// the first circle calculate the final free dimension
// and then calculate the front free dim one by one
if
(
matoffidx
==
0
)
{
for
(
int64_t
j
=
0
;
j
<
out_dims
[
i
];
j
++
)
{
matoffset
[
matoffidx
]
=
dimprod
*
j
;
matoffidx
++
;
}
}
else
{
auto
size
=
matoffidx
;
for
(
int64_t
j
=
1
;
j
<
out_dims
[
i
];
j
++
)
{
for
(
int64_t
k
=
0
;
k
<
size
;
k
++
)
{
matoffset
[
matoffidx
]
=
matoffset
[
k
]
+
dimprod
*
j
;
matoffidx
++
;
}
}
}
}
dimprod
*=
out_dims
[
i
];
}
auto
diagdim
=
dim1
;
if
(
*
offset
>=
0
)
{
diagdim
=
std
::
min
(
out_dims
[
dim1
],
out_dims
[
dim2
]
-
*
offset
);
*
offset
*=
strides
[
0
];
}
else
{
diagdim
=
std
::
min
(
out_dims
[
dim1
]
+
*
offset
,
out_dims
[
dim2
]);
*
offset
*=
-
strides
[
1
];
}
new_dims
[
0
]
=
batchdim
;
new_dims
[
1
]
=
diagdim
;
return
;
}
class
FillDiagonalTensorOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
AddComment
(
R"DOC(Fill replace operator
Fill the diagonal of an tensor with `Y` Tensor.
)DOC"
);
AddInput
(
"X"
,
"(Tensor) The input tensor."
);
AddInput
(
"Y"
,
"(Tensor) The input tensor to fill in."
);
AddOutput
(
"Out"
,
"Tensor, the output tensor, with the same shape and data type "
"as input(x)"
);
AddAttr
<
int
>
(
"dim1"
,
"the first dim to figure out the diagonal"
)
.
SetDefault
(
0
);
AddAttr
<
int
>
(
"dim2"
,
"the second dim to figure out the diagonal"
)
.
SetDefault
(
1
);
AddAttr
<
int64_t
>
(
"offset"
,
"offset of diagonal, zero means no offset, positive means "
"offset to up-right corner; negtive means offset to "
"bottom-left corner"
)
.
SetDefault
(
0
);
}
};
class
FillDiagonalTensorOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
context
)
const
override
{
OP_INOUT_CHECK
(
context
->
HasInput
(
"X"
),
"Input"
,
"X"
,
"FillDiagonalTensor"
);
OP_INOUT_CHECK
(
context
->
HasOutput
(
"Out"
),
"Output"
,
"Out"
,
"FillDiagonalTensor"
);
auto
x_dims
=
context
->
GetInputDim
(
"X"
);
context
->
SetOutputDim
(
"Out"
,
x_dims
);
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
OperatorWithKernel
::
IndicateVarDataType
(
ctx
,
"X"
),
ctx
.
GetPlace
());
}
};
class
FillDiagonalTensorOpVarTypeInference
:
public
framework
::
VarTypeInference
{
public:
void
operator
()(
framework
::
InferVarTypeContext
*
ctx
)
const
override
{
auto
var_type
=
ctx
->
GetInputType
(
"X"
,
0
);
auto
data_type
=
ctx
->
GetInputDataType
(
"X"
,
0
);
ctx
->
SetOutputType
(
"Out"
,
var_type
,
framework
::
ALL_ELEMENTS
);
ctx
->
SetOutputDataType
(
"Out"
,
data_type
,
framework
::
ALL_ELEMENTS
);
}
};
template
<
typename
T
>
class
FillDiagonalTensorKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
paddle
::
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
out
=
ctx
.
Output
<
framework
::
Tensor
>
(
"Out"
);
auto
*
srctensor
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Y"
);
auto
dim1
=
ctx
.
Attr
<
int
>
(
"dim1"
);
auto
dim2
=
ctx
.
Attr
<
int
>
(
"dim2"
);
auto
offset
=
ctx
.
Attr
<
int64_t
>
(
"offset"
);
auto
*
xin
=
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
);
T
*
out_data
=
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
const
T
*
fill_data
=
srctensor
->
data
<
T
>
();
framework
::
TensorCopy
(
*
xin
,
ctx
.
GetPlace
(),
out
);
auto
out_dims
=
out
->
dims
();
auto
matdims
=
srctensor
->
dims
();
auto
fill_dims
=
flatten_to_2d
(
matdims
,
matdims
.
size
()
-
1
);
int64_t
new_dims
[
2
],
strides
[
2
];
std
::
vector
<
int64_t
>
matdim
;
matdim
.
resize
(
fill_dims
[
0
]);
CalMatDims
(
out_dims
,
dim1
,
dim2
,
&
offset
,
new_dims
,
strides
,
matdim
.
data
());
PADDLE_ENFORCE_EQ
(
new_dims
[
0
],
fill_dims
[
0
],
platform
::
errors
::
InvalidArgument
(
"The dims should be %d x %d, but get "
"%d x %d in fill tensor Y"
,
new_dims
[
0
],
new_dims
[
1
],
fill_dims
[
0
],
fill_dims
[
1
]));
PADDLE_ENFORCE_EQ
(
new_dims
[
1
],
fill_dims
[
1
],
platform
::
errors
::
InvalidArgument
(
"The dims should be %d x %d, but get "
"%d x %d in fill tensor Y"
,
new_dims
[
0
],
new_dims
[
1
],
fill_dims
[
0
],
fill_dims
[
1
]));
auto
size
=
out
->
numel
();
for
(
int64_t
i
=
0
;
i
<
fill_dims
[
0
];
i
+=
1
)
{
auto
sumoff
=
matdim
[
i
]
+
offset
;
for
(
int64_t
j
=
0
;
j
<
fill_dims
[
1
];
j
+=
1
)
{
auto
fill_index
=
j
*
(
strides
[
1
]
+
strides
[
0
])
+
sumoff
;
if
(
fill_index
<
size
)
{
out_data
[
fill_index
]
=
fill_data
[
i
*
fill_dims
[
1
]
+
j
];
}
}
}
}
};
class
FillDiagonalTensorGradOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
OP_INOUT_CHECK
(
ctx
->
HasInput
(
framework
::
GradVarName
(
"Out"
)),
"Input"
,
"Out@GRAD"
,
"mul"
);
auto
x_dims
=
ctx
->
GetInputDim
(
framework
::
GradVarName
(
"Out"
));
auto
x_grad_name
=
framework
::
GradVarName
(
"X"
);
if
(
ctx
->
HasOutput
(
x_grad_name
))
{
ctx
->
SetOutputDim
(
x_grad_name
,
x_dims
);
}
}
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
// Note: don't get data type from ctx.Input<framework::Tensor>("Input");
auto
dtype
=
ctx
.
Input
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Out"
))
->
type
();
return
framework
::
OpKernelType
(
dtype
,
ctx
.
GetPlace
());
}
};
template
<
typename
T
>
class
FillDiagonalTensorGradOpMaker
:
public
framework
::
SingleGradOpMaker
<
T
>
{
public:
using
framework
::
SingleGradOpMaker
<
T
>::
SingleGradOpMaker
;
protected:
void
Apply
(
GradOpPtr
<
T
>
retv
)
const
override
{
retv
->
SetType
(
"fill_diagonal_tensor_grad"
);
retv
->
SetInput
(
framework
::
GradVarName
(
"Out"
),
this
->
OutputGrad
(
"Out"
));
retv
->
SetOutput
(
framework
::
GradVarName
(
"X"
),
this
->
InputGrad
(
"X"
));
retv
->
SetAttrMap
(
this
->
Attrs
());
}
};
template
<
typename
T
>
class
FillDiagonalTensorGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
paddle
::
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
dx
=
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
dout
=
ctx
.
Input
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
dim1
=
ctx
.
Attr
<
int
>
(
"dim1"
);
auto
dim2
=
ctx
.
Attr
<
int
>
(
"dim2"
);
auto
offset
=
ctx
.
Attr
<
int64_t
>
(
"offset"
);
auto
matrows
=
1
;
if
(
dx
)
{
auto
*
data
=
dx
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
dx_dims
=
dx
->
dims
();
for
(
int
i
=
0
;
i
<
dx_dims
.
size
();
i
++
)
{
if
(
i
!=
dim1
&&
i
!=
dim2
)
{
matrows
*=
dx_dims
[
i
];
}
}
int64_t
new_dims
[
2
],
strides
[
2
];
std
::
vector
<
int64_t
>
matdim
;
matdim
.
resize
(
matrows
);
CalMatDims
(
dx_dims
,
dim1
,
dim2
,
&
offset
,
new_dims
,
strides
,
matdim
.
data
());
auto
size
=
dx
->
numel
();
framework
::
TensorCopy
(
*
dout
,
ctx
.
GetPlace
(),
dx
);
for
(
int64_t
i
=
0
;
i
<
new_dims
[
0
];
i
+=
1
)
{
auto
sumoff
=
matdim
[
i
]
+
offset
;
for
(
int64_t
j
=
0
;
j
<
new_dims
[
1
];
j
+=
1
)
{
auto
fill_index
=
j
*
(
strides
[
1
]
+
strides
[
0
])
+
sumoff
;
if
(
fill_index
<
size
)
{
data
[
fill_index
]
=
0
;
}
}
}
}
}
};
DECLARE_INPLACE_OP_INFERER
(
FillDiagonalTensorOpInplaceInferer
,
{
"X"
,
"Out"
});
DECLARE_INPLACE_OP_INFERER
(
FillDiagonalTensorGradOpInplaceInferer
,
{
framework
::
GradVarName
(
"Out"
),
framework
::
GradVarName
(
"X"
)});
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
fill_diagonal_tensor
,
ops
::
FillDiagonalTensorOp
,
ops
::
FillDiagonalTensorOpMaker
,
ops
::
FillDiagonalTensorOpVarTypeInference
,
ops
::
FillDiagonalTensorGradOpMaker
<
paddle
::
framework
::
OpDesc
>
,
ops
::
FillDiagonalTensorGradOpMaker
<
paddle
::
imperative
::
OpBase
>
,
ops
::
FillDiagonalTensorOpInplaceInferer
);
REGISTER_OPERATOR
(
fill_diagonal_tensor_grad
,
ops
::
FillDiagonalTensorGradOp
,
ops
::
FillDiagonalTensorGradOpInplaceInferer
);
REGISTER_OP_CPU_KERNEL
(
fill_diagonal_tensor
,
ops
::
FillDiagonalTensorKernel
<
float
>
,
ops
::
FillDiagonalTensorKernel
<
double
>
,
ops
::
FillDiagonalTensorKernel
<
int64_t
>
,
ops
::
FillDiagonalTensorKernel
<
int
>
,
ops
::
FillDiagonalTensorKernel
<
int8_t
>
,
ops
::
FillDiagonalTensorKernel
<
uint8_t
>
,
ops
::
FillDiagonalTensorKernel
<
paddle
::
platform
::
float16
>
,
ops
::
FillDiagonalTensorKernel
<
paddle
::
platform
::
complex
<
float
>>
,
ops
::
FillDiagonalTensorKernel
<
paddle
::
platform
::
complex
<
double
>>
,
ops
::
FillDiagonalTensorKernel
<
bool
>
);
REGISTER_OP_CPU_KERNEL
(
fill_diagonal_tensor_grad
,
ops
::
FillDiagonalTensorGradKernel
<
float
>
,
ops
::
FillDiagonalTensorGradKernel
<
double
>
,
ops
::
FillDiagonalTensorGradKernel
<
int64_t
>
,
ops
::
FillDiagonalTensorGradKernel
<
int
>
,
ops
::
FillDiagonalTensorGradKernel
<
int8_t
>
,
ops
::
FillDiagonalTensorGradKernel
<
uint8_t
>
,
ops
::
FillDiagonalTensorGradKernel
<
paddle
::
platform
::
float16
>
,
ops
::
FillDiagonalTensorGradKernel
<
paddle
::
platform
::
complex
<
float
>>
,
ops
::
FillDiagonalTensorGradKernel
<
paddle
::
platform
::
complex
<
double
>>
,
ops
::
FillDiagonalTensorGradKernel
<
bool
>
);
paddle/fluid/operators/fill_diagonal_tensor_op.cu
0 → 100644
浏览文件 @
98d047d7
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/fill_diagonal_tensor_op.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
using
CUDADeviceContext
=
paddle
::
platform
::
CUDADeviceContext
;
template
<
typename
T
>
__global__
void
fill_diagonal_tensor_kernel
(
int64_t
size
,
T
*
out_data
,
const
T
*
fill_data
,
int64_t
*
strides
,
int64_t
*
matdim
,
int64_t
offset
,
int64_t
fill_dims0
,
int64_t
fill_dims1
)
{
int64_t
i
=
blockIdx
.
x
;
auto
sumoff
=
matdim
[
i
]
+
offset
;
for
(
int64_t
j
=
threadIdx
.
x
;
j
<
fill_dims1
;
j
+=
blockDim
.
x
)
{
auto
fill_index
=
j
*
(
strides
[
1
]
+
strides
[
0
])
+
sumoff
;
if
(
fill_index
<
size
)
{
out_data
[
fill_index
]
=
fill_data
[
i
*
fill_dims1
+
j
];
}
}
}
template
<
typename
T
>
__global__
void
fill_grad_kernel
(
int64_t
size
,
T
*
out_data
,
int64_t
*
strides
,
int64_t
*
matdim
,
int64_t
offset
,
int64_t
fill_dims0
,
int64_t
fill_dims1
)
{
int64_t
i
=
blockIdx
.
x
;
auto
sumoff
=
matdim
[
i
]
+
offset
;
for
(
int64_t
j
=
threadIdx
.
x
;
j
<
fill_dims1
;
j
+=
blockDim
.
x
)
{
auto
fill_index
=
j
*
(
strides
[
1
]
+
strides
[
0
])
+
sumoff
;
if
(
fill_index
<
size
)
{
out_data
[
fill_index
]
=
T
(
0
);
}
}
}
template
<
typename
T
>
class
FillDiagonalTensorCUDAKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
#ifdef __HIPCC__
const
int64_t
kMaxBlockDim
=
256
;
#else
const
int64_t
kMaxBlockDim
=
512
;
#endif
auto
*
out
=
ctx
.
Output
<
framework
::
Tensor
>
(
"Out"
);
auto
*
srctensor
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Y"
);
auto
dim1
=
ctx
.
Attr
<
int
>
(
"dim1"
);
auto
dim2
=
ctx
.
Attr
<
int
>
(
"dim2"
);
auto
offset
=
ctx
.
Attr
<
int64_t
>
(
"offset"
);
auto
*
xin
=
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
);
framework
::
TensorCopy
(
*
xin
,
ctx
.
GetPlace
(),
out
);
T
*
out_data
=
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
const
T
*
fill_data
=
srctensor
->
data
<
T
>
();
auto
out_dims
=
out
->
dims
();
auto
matdims
=
srctensor
->
dims
();
auto
fill_dims
=
flatten_to_2d
(
matdims
,
matdims
.
size
()
-
1
);
int64_t
new_dims
[
2
];
std
::
vector
<
int64_t
>
memory_block
;
memory_block
.
resize
(
2
+
fill_dims
[
0
]);
int64_t
*
strides
=
&
(
memory_block
[
0
]);
int64_t
*
matdim
=
&
(
memory_block
[
2
]);
CalMatDims
(
out_dims
,
dim1
,
dim2
,
&
offset
,
new_dims
,
strides
,
matdim
);
PADDLE_ENFORCE_EQ
(
new_dims
[
0
],
fill_dims
[
0
],
platform
::
errors
::
InvalidArgument
(
"The dims should be %d x %d, but get "
"%d x %d in fill tensor Y"
,
new_dims
[
0
],
new_dims
[
1
],
fill_dims
[
0
],
fill_dims
[
1
]));
PADDLE_ENFORCE_EQ
(
new_dims
[
1
],
fill_dims
[
1
],
platform
::
errors
::
InvalidArgument
(
"The dims should be %d x %d, but get "
"%d x %d in fill tensor Y"
,
new_dims
[
0
],
new_dims
[
1
],
fill_dims
[
0
],
fill_dims
[
1
]));
auto
size
=
out
->
numel
();
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
CUDADeviceContext
>();
auto
stream
=
dev_ctx
.
stream
();
Tensor
tensor_tmp
;
int64_t
*
memory_block_cu
=
tensor_tmp
.
mutable_data
<
int64_t
>
({
2
+
fill_dims
[
0
]},
ctx
.
GetPlace
());
const
auto
gpu_place
=
BOOST_GET_CONST
(
platform
::
CUDAPlace
,
ctx
.
GetPlace
());
memory
::
Copy
(
gpu_place
,
memory_block_cu
,
platform
::
CPUPlace
(),
memory_block
.
data
(),
sizeof
(
int64_t
)
*
(
2
+
fill_dims
[
0
]),
stream
);
int64_t
*
strides_cu
=
&
memory_block_cu
[
0
],
*
matdim_cu
=
&
memory_block_cu
[
2
];
auto
kGridDim
=
new_dims
[
0
];
auto
kBlockDim
=
std
::
min
(
int64_t
(
new_dims
[
1
]),
kMaxBlockDim
);
fill_diagonal_tensor_kernel
<
T
><<<
kGridDim
,
kBlockDim
,
0
,
stream
>>>
(
size
,
out_data
,
fill_data
,
strides_cu
,
matdim_cu
,
offset
,
fill_dims
[
0
],
fill_dims
[
1
]);
}
};
template
<
typename
T
>
class
FillDiagonalTensorGradCUDAKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
#ifdef __HIPCC__
const
int64_t
kMaxBlockDim
=
256
;
#else
const
int64_t
kMaxBlockDim
=
512
;
#endif
auto
*
dx
=
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
dout
=
ctx
.
Input
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
dim1
=
ctx
.
Attr
<
int
>
(
"dim1"
);
auto
dim2
=
ctx
.
Attr
<
int
>
(
"dim2"
);
auto
offset
=
ctx
.
Attr
<
int64_t
>
(
"offset"
);
auto
matrows
=
1
;
if
(
dx
)
{
auto
*
data
=
dx
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
dx_dims
=
dx
->
dims
();
framework
::
TensorCopy
(
*
dout
,
ctx
.
GetPlace
(),
dx
);
for
(
int
i
=
0
;
i
<
dx_dims
.
size
();
i
++
)
{
if
(
i
!=
dim1
&&
i
!=
dim2
)
{
matrows
*=
dx_dims
[
i
];
}
}
int64_t
new_dims
[
2
];
std
::
vector
<
int64_t
>
memory_block
;
memory_block
.
resize
(
2
+
matrows
);
int64_t
*
strides
=
&
memory_block
[
0
];
int64_t
*
matdim
=
&
memory_block
[
2
];
CalMatDims
(
dx_dims
,
dim1
,
dim2
,
&
offset
,
new_dims
,
strides
,
matdim
);
auto
size
=
dx
->
numel
();
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
CUDADeviceContext
>();
auto
stream
=
dev_ctx
.
stream
();
Tensor
tensor_tmp
;
int64_t
*
memory_block_cu
=
tensor_tmp
.
mutable_data
<
int64_t
>
({
2
+
matrows
},
ctx
.
GetPlace
());
const
auto
gpu_place
=
BOOST_GET_CONST
(
platform
::
CUDAPlace
,
ctx
.
GetPlace
());
memory
::
Copy
(
gpu_place
,
memory_block_cu
,
platform
::
CPUPlace
(),
memory_block
.
data
(),
sizeof
(
int64_t
)
*
(
2
+
matrows
),
stream
);
int64_t
*
strides_cu
=
&
memory_block_cu
[
0
],
*
matdim_cu
=
&
memory_block_cu
[
2
];
auto
kGridDim
=
new_dims
[
0
];
auto
kBlockDim
=
std
::
min
(
int64_t
(
new_dims
[
1
]),
kMaxBlockDim
);
fill_grad_kernel
<
T
><<<
kGridDim
,
kBlockDim
,
0
,
stream
>>>
(
size
,
data
,
strides_cu
,
matdim_cu
,
offset
,
new_dims
[
0
],
new_dims
[
1
]);
}
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
namespace
plat
=
paddle
::
platform
;
REGISTER_OP_CUDA_KERNEL
(
fill_diagonal_tensor
,
ops
::
FillDiagonalTensorCUDAKernel
<
float
>
,
ops
::
FillDiagonalTensorCUDAKernel
<
double
>
,
ops
::
FillDiagonalTensorCUDAKernel
<
plat
::
float16
>
,
ops
::
FillDiagonalTensorCUDAKernel
<
int
>
,
ops
::
FillDiagonalTensorCUDAKernel
<
int64_t
>
,
ops
::
FillDiagonalTensorCUDAKernel
<
int8_t
>
,
ops
::
FillDiagonalTensorCUDAKernel
<
uint8_t
>
,
ops
::
FillDiagonalTensorCUDAKernel
<
paddle
::
platform
::
complex
<
float
>>
,
ops
::
FillDiagonalTensorCUDAKernel
<
paddle
::
platform
::
complex
<
double
>>
,
ops
::
FillDiagonalTensorCUDAKernel
<
bool
>
);
REGISTER_OP_CUDA_KERNEL
(
fill_diagonal_tensor_grad
,
ops
::
FillDiagonalTensorGradCUDAKernel
<
float
>
,
ops
::
FillDiagonalTensorGradCUDAKernel
<
double
>
,
ops
::
FillDiagonalTensorGradCUDAKernel
<
int
>
,
ops
::
FillDiagonalTensorGradCUDAKernel
<
int64_t
>
,
ops
::
FillDiagonalTensorGradCUDAKernel
<
plat
::
float16
>
,
ops
::
FillDiagonalTensorGradCUDAKernel
<
int8_t
>
,
ops
::
FillDiagonalTensorGradCUDAKernel
<
uint8_t
>
,
ops
::
FillDiagonalTensorGradCUDAKernel
<
paddle
::
platform
::
complex
<
float
>>
,
ops
::
FillDiagonalTensorGradCUDAKernel
<
paddle
::
platform
::
complex
<
double
>>
,
ops
::
FillDiagonalTensorGradCUDAKernel
<
bool
>
);
paddle/fluid/operators/fill_diagonal_tensor_op.h
0 → 100644
浏览文件 @
98d047d7
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
namespace
paddle
{
namespace
operators
{
void
CalMatDims
(
framework
::
DDim
out_dims
,
int
dim1
,
int
dim2
,
int64_t
*
offset
,
int64_t
*
new_dims
,
int64_t
*
strides
,
int64_t
*
matoffset
);
}
// namespace operators
}
// namespace paddle
python/paddle/fluid/tests/unittests/test_fill_diagonal_tensor_op.py
0 → 100644
浏览文件 @
98d047d7
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
paddle.fluid
as
fluid
import
paddle.nn.functional
as
F
import
unittest
import
numpy
as
np
import
six
import
paddle
from
op_test
import
OpTest
from
paddle.fluid.layers
import
core
def
fill_diagonal_ndarray
(
x
,
value
,
offset
=
0
,
dim1
=
0
,
dim2
=
1
):
"""Fill value into the diagonal of x that offset is ${offset} and the coordinate system is (dim1, dim2)."""
strides
=
x
.
strides
shape
=
x
.
shape
if
dim1
>
dim2
:
dim1
,
dim2
=
dim2
,
dim1
assert
0
<=
dim1
<
dim2
<=
2
assert
len
(
x
.
shape
)
==
3
dim_sum
=
dim1
+
dim2
dim3
=
len
(
x
.
shape
)
-
dim_sum
if
offset
>=
0
:
diagdim
=
min
(
shape
[
dim1
],
shape
[
dim2
]
-
offset
)
diagonal
=
np
.
lib
.
stride_tricks
.
as_strided
(
x
[:,
offset
:]
if
dim_sum
==
1
else
x
[:,
:,
offset
:],
shape
=
(
shape
[
dim3
],
diagdim
),
strides
=
(
strides
[
dim3
],
strides
[
dim1
]
+
strides
[
dim2
]))
else
:
diagdim
=
min
(
shape
[
dim2
],
shape
[
dim1
]
+
offset
)
diagonal
=
np
.
lib
.
stride_tricks
.
as_strided
(
x
[
-
offset
:,
:]
if
dim_sum
in
[
1
,
2
]
else
x
[:,
-
offset
:],
shape
=
(
shape
[
dim3
],
diagdim
),
strides
=
(
strides
[
dim3
],
strides
[
dim1
]
+
strides
[
dim2
]))
diagonal
[...]
=
value
return
x
def
fill_gt
(
x
,
y
,
offset
,
dim1
,
dim2
):
if
dim1
>
dim2
:
dim1
,
dim2
=
dim2
,
dim1
offset
=
-
offset
xshape
=
x
.
shape
yshape
=
y
.
shape
if
len
(
xshape
)
!=
3
:
perm_list
=
[]
unperm_list
=
[
0
]
*
len
(
xshape
)
idx
=
0
for
i
in
range
(
len
(
xshape
)):
if
i
!=
dim1
and
i
!=
dim2
:
perm_list
.
append
(
i
)
unperm_list
[
i
]
=
idx
idx
+=
1
perm_list
+=
[
dim1
,
dim2
]
unperm_list
[
dim1
]
=
idx
unperm_list
[
dim2
]
=
idx
+
1
x
=
np
.
transpose
(
x
,
perm_list
)
y
=
y
.
reshape
(
-
1
,
yshape
[
-
1
])
nxshape
=
x
.
shape
x
=
x
.
reshape
((
-
1
,
xshape
[
dim1
],
xshape
[
dim2
]))
out
=
fill_diagonal_ndarray
(
x
,
y
,
offset
,
1
,
2
)
if
len
(
xshape
)
!=
3
:
out
=
out
.
reshape
(
nxshape
)
out
=
np
.
transpose
(
out
,
unperm_list
)
return
out
class
TensorFillDiagTensor_Test
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"fill_diagonal_tensor"
self
.
init_kernel_type
()
x
=
np
.
random
.
random
((
10
,
10
)).
astype
(
self
.
dtype
)
y
=
np
.
random
.
random
((
10
,
)).
astype
(
self
.
dtype
)
dim1
=
0
dim2
=
1
offset
=
0
out
=
fill_gt
(
x
,
y
,
offset
,
dim1
,
dim2
)
self
.
inputs
=
{
"X"
:
x
,
"Y"
:
y
}
self
.
outputs
=
{
'Out'
:
out
}
self
.
attrs
=
{
"dim1"
:
dim1
,
"dim2"
:
dim2
,
"offset"
:
offset
}
def
init_kernel_type
(
self
):
self
.
dtype
=
np
.
float64
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'Out'
)
class
TensorFillDiagTensor_Test2
(
TensorFillDiagTensor_Test
):
def
setUp
(
self
):
self
.
op_type
=
"fill_diagonal_tensor"
self
.
init_kernel_type
()
x
=
np
.
random
.
random
((
2
,
20
,
25
)).
astype
(
self
.
dtype
)
y
=
np
.
random
.
random
((
2
,
20
)).
astype
(
self
.
dtype
)
dim1
=
2
dim2
=
1
offset
=
-
3
out
=
fill_gt
(
x
,
y
,
offset
,
dim1
,
dim2
)
self
.
inputs
=
{
"X"
:
x
,
"Y"
:
y
}
self
.
outputs
=
{
'Out'
:
out
}
self
.
attrs
=
{
"dim1"
:
dim1
,
"dim2"
:
dim2
,
"offset"
:
offset
}
def
init_kernel_type
(
self
):
self
.
dtype
=
np
.
float32
class
TensorFillDiagTensor_Test3
(
TensorFillDiagTensor_Test
):
def
setUp
(
self
):
self
.
op_type
=
"fill_diagonal_tensor"
self
.
init_kernel_type
()
x
=
np
.
random
.
random
((
2
,
20
,
20
,
3
)).
astype
(
self
.
dtype
)
y
=
np
.
random
.
random
((
2
,
3
,
18
)).
astype
(
self
.
dtype
)
dim1
=
1
dim2
=
2
offset
=
2
out
=
fill_gt
(
x
,
y
,
offset
,
dim1
,
dim2
)
self
.
inputs
=
{
"X"
:
x
,
"Y"
:
y
}
self
.
outputs
=
{
'Out'
:
out
}
self
.
attrs
=
{
"dim1"
:
dim1
,
"dim2"
:
dim2
,
"offset"
:
offset
}
def
init_kernel_type
(
self
):
self
.
dtype
=
np
.
float16
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_tensor_fill_diagonal_tensor.py
0 → 100644
浏览文件 @
98d047d7
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
paddle.fluid
as
fluid
import
paddle.nn.functional
as
F
import
unittest
import
numpy
as
np
import
six
import
paddle
class
TensorFillDiagTensor_Test
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
typelist
=
[
'float32'
,
'float64'
,
'int32'
,
'int64'
]
self
.
places
=
[
fluid
.
CPUPlace
()]
if
fluid
.
core
.
is_compiled_with_cuda
():
self
.
places
.
append
(
fluid
.
CUDAPlace
(
0
))
def
test_dim2
(
self
):
expected_np
=
np
.
array
(
[[
1
,
2
,
2
],
[
2
,
1
,
2
],
[
2
,
2
,
1
],
[
2
,
2
,
2
]]).
astype
(
'float32'
)
expected_grad
=
np
.
array
(
[[
0
,
1
,
1
],
[
1
,
0
,
1
],
[
1
,
1
,
0
],
[
1
,
1
,
1
]]).
astype
(
'float32'
)
for
idx
,
p
in
enumerate
(
self
.
places
):
if
idx
==
0
:
paddle
.
set_device
(
'cpu'
)
else
:
paddle
.
set_device
(
'gpu'
)
for
dtype
in
self
.
typelist
:
v
=
paddle
.
ones
((
3
,
),
dtype
=
dtype
)
var
=
(
np
.
random
.
random
()
+
1
)
x
=
paddle
.
ones
((
4
,
3
),
dtype
=
dtype
)
x
.
stop_gradient
=
False
y
=
x
*
2
ny
=
y
.
fill_diagonal_tensor
(
v
,
offset
=
0
,
dim1
=
0
,
dim2
=
1
)
loss
=
ny
.
sum
()
loss
.
backward
()
self
.
assertEqual
(
(
ny
.
numpy
().
astype
(
'float32'
)
==
expected_np
).
all
(),
True
)
self
.
assertEqual
(
(
y
.
grad
.
numpy
().
astype
(
'float32'
)
==
expected_grad
).
all
(),
True
)
def
test_dim2_offset_1
(
self
):
expected_np
=
np
.
array
(
[[
2
,
2
,
2
],
[
1
,
2
,
2
],
[
2
,
1
,
2
],
[
2
,
2
,
1
]]).
astype
(
'float32'
)
expected_grad
=
np
.
array
(
[[
1
,
1
,
1
],
[
0
,
1
,
1
],
[
1
,
0
,
1
],
[
1
,
1
,
0
]]).
astype
(
'float32'
)
for
idx
,
p
in
enumerate
(
self
.
places
):
if
idx
==
0
:
paddle
.
set_device
(
'cpu'
)
else
:
paddle
.
set_device
(
'gpu'
)
for
dtype
in
self
.
typelist
:
v
=
paddle
.
ones
((
3
,
),
dtype
=
dtype
)
var
=
(
np
.
random
.
random
()
+
1
)
x
=
paddle
.
ones
((
4
,
3
),
dtype
=
dtype
)
x
.
stop_gradient
=
False
y
=
x
*
2
ny
=
y
.
fill_diagonal_tensor
(
v
,
offset
=-
1
,
dim1
=
0
,
dim2
=
1
)
loss
=
ny
.
sum
()
loss
.
backward
()
self
.
assertEqual
(
(
ny
.
numpy
().
astype
(
'float32'
)
==
expected_np
).
all
(),
True
)
self
.
assertEqual
(
(
y
.
grad
.
numpy
().
astype
(
'float32'
)
==
expected_grad
).
all
(),
True
)
def
test_dim2_offset1
(
self
):
expected_np
=
np
.
array
(
[[
2
,
1
,
2
],
[
2
,
2
,
1
],
[
2
,
2
,
2
],
[
2
,
2
,
2
]]).
astype
(
'float32'
)
expected_grad
=
np
.
array
(
[[
1
,
0
,
1
],
[
1
,
1
,
0
],
[
1
,
1
,
1
],
[
1
,
1
,
1
]]).
astype
(
'float32'
)
for
idx
,
p
in
enumerate
(
self
.
places
):
if
idx
==
0
:
paddle
.
set_device
(
'cpu'
)
else
:
paddle
.
set_device
(
'gpu'
)
for
dtype
in
self
.
typelist
:
v
=
paddle
.
ones
((
2
,
),
dtype
=
dtype
)
var
=
(
np
.
random
.
random
()
+
1
)
x
=
paddle
.
ones
((
4
,
3
),
dtype
=
dtype
)
x
.
stop_gradient
=
False
y
=
x
*
2
ny
=
y
.
fill_diagonal_tensor
(
v
,
offset
=
1
,
dim1
=
0
,
dim2
=
1
)
loss
=
ny
.
sum
()
loss
.
backward
()
self
.
assertEqual
(
(
ny
.
numpy
().
astype
(
'float32'
)
==
expected_np
).
all
(),
True
)
self
.
assertEqual
(
(
y
.
grad
.
numpy
().
astype
(
'float32'
)
==
expected_grad
).
all
(),
True
)
def
test_dim4
(
self
):
expected_np
=
np
.
array
(
[[[[
0
,
3
],
[
2
,
2
],
[
2
,
2
]],
[[
2
,
2
],
[
1
,
4
],
[
2
,
2
]],
[[
2
,
2
],
[
2
,
2
],
[
2
,
5
]],
[[
2
,
2
],
[
2
,
2
],
[
2
,
2
]]],
[[[
6
,
9
],
[
2
,
2
],
[
2
,
2
]],
[[
2
,
2
],
[
7
,
10
],
[
2
,
2
]],
[[
2
,
2
],
[
2
,
2
],
[
8
,
11
]],
[[
2
,
2
],
[
2
,
2
],
[
2
,
2
]]]]).
astype
(
'float32'
)
expected_grad
=
np
.
array
(
[[[[
0
,
0
],
[
1
,
1
],
[
1
,
1
]],
[[
1
,
1
],
[
0
,
0
],
[
1
,
1
]],
[[
1
,
1
],
[
1
,
1
],
[
0
,
0
]],
[[
1
,
1
],
[
1
,
1
],
[
1
,
1
]]],
[[[
0
,
0
],
[
1
,
1
],
[
1
,
1
]],
[[
1
,
1
],
[
0
,
0
],
[
1
,
1
]],
[[
1
,
1
],
[
1
,
1
],
[
0
,
0
]],
[[
1
,
1
],
[
1
,
1
],
[
1
,
1
]]]]).
astype
(
'float32'
)
for
idx
,
p
in
enumerate
(
self
.
places
):
if
idx
==
0
:
paddle
.
set_device
(
'cpu'
)
else
:
paddle
.
set_device
(
'gpu'
)
for
dtype
in
self
.
typelist
:
v
=
paddle
.
to_tensor
(
np
.
arange
(
12
).
reshape
(
2
,
2
,
3
),
dtype
=
dtype
)
var
=
(
np
.
random
.
random
()
+
1
)
x
=
paddle
.
ones
((
2
,
4
,
3
,
2
),
dtype
=
dtype
)
x
.
stop_gradient
=
False
y
=
x
*
2
ny
=
y
.
fill_diagonal_tensor
(
v
,
offset
=
0
,
dim1
=
1
,
dim2
=
2
)
loss
=
ny
.
sum
()
loss
.
backward
()
self
.
assertEqual
(
(
ny
.
numpy
().
astype
(
'float32'
)
==
expected_np
).
all
(),
True
)
self
.
assertEqual
(
(
y
.
grad
.
numpy
().
astype
(
'float32'
)
==
expected_grad
).
all
(),
True
)
def
test_largedim
(
self
):
if
len
(
self
.
places
)
>
1
:
bsdim
=
1024
fsdim
=
128
paddle
.
set_device
(
'gpu'
)
for
dtype
in
self
.
typelist
:
v
=
paddle
.
arange
(
bsdim
*
fsdim
,
dtype
=
dtype
).
reshape
((
bsdim
,
fsdim
))
y
=
paddle
.
ones
((
bsdim
,
fsdim
,
fsdim
),
dtype
=
dtype
)
y
.
stop_gradient
=
False
y
=
y
*
2
ny
=
y
.
fill_diagonal_tensor
(
v
,
offset
=
0
,
dim1
=
1
,
dim2
=
2
)
loss
=
ny
.
sum
()
loss
.
backward
()
expected_pred
=
v
-
2
expected_pred
=
F
.
diag_embed
(
expected_pred
)
+
2
expected_grad
=
paddle
.
ones
(
v
.
shape
,
dtype
=
dtype
)
-
2
expected_grad
=
F
.
diag_embed
(
expected_grad
)
+
1
self
.
assertEqual
((
ny
==
expected_pred
).
all
(),
True
)
self
.
assertEqual
((
y
.
grad
==
expected_grad
).
all
(),
True
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_tensor_fill_diagonal_tensor_.py
0 → 100644
浏览文件 @
98d047d7
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
paddle.fluid
as
fluid
import
paddle.nn.functional
as
F
import
unittest
import
numpy
as
np
import
six
import
paddle
class
TensorFillDiagTensor_Test
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
typelist
=
[
'float32'
,
'float64'
,
'int32'
,
'int64'
]
self
.
places
=
[
fluid
.
CPUPlace
()]
if
fluid
.
core
.
is_compiled_with_cuda
():
self
.
places
.
append
(
fluid
.
CUDAPlace
(
0
))
def
test_dim2
(
self
):
expected_np
=
np
.
array
(
[[
1
,
2
,
2
],
[
2
,
1
,
2
],
[
2
,
2
,
1
],
[
2
,
2
,
2
]]).
astype
(
'float32'
)
expected_grad
=
np
.
array
(
[[
0
,
1
,
1
],
[
1
,
0
,
1
],
[
1
,
1
,
0
],
[
1
,
1
,
1
]]).
astype
(
'float32'
)
for
idx
,
p
in
enumerate
(
self
.
places
):
if
idx
==
0
:
paddle
.
set_device
(
'cpu'
)
else
:
paddle
.
set_device
(
'gpu'
)
for
dtype
in
self
.
typelist
:
v
=
paddle
.
ones
((
3
,
),
dtype
=
dtype
)
var
=
(
np
.
random
.
random
()
+
1
)
x
=
paddle
.
ones
((
4
,
3
),
dtype
=
dtype
)
x
.
stop_gradient
=
False
y
=
x
*
2
y
.
fill_diagonal_tensor_
(
v
,
offset
=
0
,
dim1
=
0
,
dim2
=
1
)
loss
=
y
.
sum
()
loss
.
backward
()
self
.
assertEqual
(
(
y
.
numpy
().
astype
(
'float32'
)
==
expected_np
).
all
(),
True
)
self
.
assertEqual
(
(
y
.
grad
.
numpy
().
astype
(
'float32'
)
==
expected_grad
).
all
(),
True
)
def
test_dim2_offset_1
(
self
):
expected_np
=
np
.
array
(
[[
2
,
2
,
2
],
[
1
,
2
,
2
],
[
2
,
1
,
2
],
[
2
,
2
,
1
]]).
astype
(
'float32'
)
expected_grad
=
np
.
array
(
[[
1
,
1
,
1
],
[
0
,
1
,
1
],
[
1
,
0
,
1
],
[
1
,
1
,
0
]]).
astype
(
'float32'
)
for
idx
,
p
in
enumerate
(
self
.
places
):
if
idx
==
0
:
paddle
.
set_device
(
'cpu'
)
else
:
paddle
.
set_device
(
'gpu'
)
for
dtype
in
self
.
typelist
:
v
=
paddle
.
ones
((
3
,
),
dtype
=
dtype
)
var
=
(
np
.
random
.
random
()
+
1
)
x
=
paddle
.
ones
((
4
,
3
),
dtype
=
dtype
)
x
.
stop_gradient
=
False
y
=
x
*
2
y
.
fill_diagonal_tensor_
(
v
,
offset
=-
1
,
dim1
=
0
,
dim2
=
1
)
loss
=
y
.
sum
()
loss
.
backward
()
self
.
assertEqual
(
(
y
.
numpy
().
astype
(
'float32'
)
==
expected_np
).
all
(),
True
)
self
.
assertEqual
(
(
y
.
grad
.
numpy
().
astype
(
'float32'
)
==
expected_grad
).
all
(),
True
)
def
test_dim2_offset1
(
self
):
expected_np
=
np
.
array
(
[[
2
,
1
,
2
],
[
2
,
2
,
1
],
[
2
,
2
,
2
],
[
2
,
2
,
2
]]).
astype
(
'float32'
)
expected_grad
=
np
.
array
(
[[
1
,
0
,
1
],
[
1
,
1
,
0
],
[
1
,
1
,
1
],
[
1
,
1
,
1
]]).
astype
(
'float32'
)
for
idx
,
p
in
enumerate
(
self
.
places
):
if
idx
==
0
:
paddle
.
set_device
(
'cpu'
)
else
:
paddle
.
set_device
(
'gpu'
)
for
dtype
in
self
.
typelist
:
v
=
paddle
.
ones
((
2
,
),
dtype
=
dtype
)
var
=
(
np
.
random
.
random
()
+
1
)
x
=
paddle
.
ones
((
4
,
3
),
dtype
=
dtype
)
x
.
stop_gradient
=
False
y
=
x
*
2
y
.
fill_diagonal_tensor_
(
v
,
offset
=
1
,
dim1
=
0
,
dim2
=
1
)
loss
=
y
.
sum
()
loss
.
backward
()
self
.
assertEqual
(
(
y
.
numpy
().
astype
(
'float32'
)
==
expected_np
).
all
(),
True
)
self
.
assertEqual
(
(
y
.
grad
.
numpy
().
astype
(
'float32'
)
==
expected_grad
).
all
(),
True
)
def
test_dim4
(
self
):
expected_np
=
np
.
array
(
[[[[
0
,
3
],
[
2
,
2
],
[
2
,
2
]],
[[
2
,
2
],
[
1
,
4
],
[
2
,
2
]],
[[
2
,
2
],
[
2
,
2
],
[
2
,
5
]],
[[
2
,
2
],
[
2
,
2
],
[
2
,
2
]]],
[[[
6
,
9
],
[
2
,
2
],
[
2
,
2
]],
[[
2
,
2
],
[
7
,
10
],
[
2
,
2
]],
[[
2
,
2
],
[
2
,
2
],
[
8
,
11
]],
[[
2
,
2
],
[
2
,
2
],
[
2
,
2
]]]]).
astype
(
'float32'
)
expected_grad
=
np
.
array
(
[[[[
0
,
0
],
[
1
,
1
],
[
1
,
1
]],
[[
1
,
1
],
[
0
,
0
],
[
1
,
1
]],
[[
1
,
1
],
[
1
,
1
],
[
0
,
0
]],
[[
1
,
1
],
[
1
,
1
],
[
1
,
1
]]],
[[[
0
,
0
],
[
1
,
1
],
[
1
,
1
]],
[[
1
,
1
],
[
0
,
0
],
[
1
,
1
]],
[[
1
,
1
],
[
1
,
1
],
[
0
,
0
]],
[[
1
,
1
],
[
1
,
1
],
[
1
,
1
]]]]).
astype
(
'float32'
)
for
idx
,
p
in
enumerate
(
self
.
places
):
if
idx
==
0
:
paddle
.
set_device
(
'cpu'
)
else
:
paddle
.
set_device
(
'gpu'
)
for
dtype
in
self
.
typelist
:
v
=
paddle
.
to_tensor
(
np
.
arange
(
12
).
reshape
(
2
,
2
,
3
),
dtype
=
dtype
)
var
=
(
np
.
random
.
random
()
+
1
)
x
=
paddle
.
ones
((
2
,
4
,
3
,
2
),
dtype
=
dtype
)
x
.
stop_gradient
=
False
y
=
x
*
2
y
.
fill_diagonal_tensor_
(
v
,
offset
=
0
,
dim1
=
1
,
dim2
=
2
)
loss
=
y
.
sum
()
loss
.
backward
()
self
.
assertEqual
(
(
y
.
numpy
().
astype
(
'float32'
)
==
expected_np
).
all
(),
True
)
self
.
assertEqual
(
(
y
.
grad
.
numpy
().
astype
(
'float32'
)
==
expected_grad
).
all
(),
True
)
def
test_largedim
(
self
):
#large dim only test on gpu because the cpu version is too slow for ci test, and the memory is limited
if
len
(
self
.
places
)
>
1
:
bsdim
=
1024
fsdim
=
128
paddle
.
set_device
(
'gpu'
)
for
dtype
in
self
.
typelist
:
v
=
paddle
.
arange
(
bsdim
*
fsdim
,
dtype
=
dtype
).
reshape
((
bsdim
,
fsdim
))
y
=
paddle
.
ones
((
bsdim
,
fsdim
,
fsdim
),
dtype
=
dtype
)
y
.
stop_gradient
=
False
y
=
y
*
2
y
.
fill_diagonal_tensor_
(
v
,
offset
=
0
,
dim1
=
1
,
dim2
=
2
)
loss
=
y
.
sum
()
loss
.
backward
()
expected_pred
=
v
-
2
expected_pred
=
F
.
diag_embed
(
expected_pred
)
+
2
expected_grad
=
paddle
.
ones
(
v
.
shape
,
dtype
=
dtype
)
-
2
expected_grad
=
F
.
diag_embed
(
expected_grad
)
+
1
self
.
assertEqual
((
y
==
expected_pred
).
all
(),
True
)
self
.
assertEqual
((
y
.
grad
==
expected_grad
).
all
(),
True
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/tensor/manipulation.py
浏览文件 @
98d047d7
...
...
@@ -86,6 +86,112 @@ def fill_diagonal_(x, value, offset=0, wrap=False, name=None):
setattr
(
core
.
VarBase
,
'fill_diagonal_'
,
fill_diagonal_
)
def
_fill_diagonal_tensor_impl
(
x
,
y
,
offset
=
0
,
dim1
=
0
,
dim2
=
1
,
inplace
=
False
):
inshape
=
x
.
shape
assert
dim1
<
len
(
inshape
)
and
dim1
>=
-
len
(
inshape
),
(
'dim1 should between [-rank,rank) in fill_diagonal_tensor_'
)
assert
dim2
<
len
(
inshape
)
and
dim2
>=
-
len
(
inshape
),
(
'dim2 should between [-rank,rank) in fill_diagonal_tensor_'
)
assert
len
(
inshape
)
>=
2
,
(
'Tensor dims should >= 2 in fill_diagonal_tensor_'
)
dim1
%=
len
(
inshape
)
dim2
%=
len
(
inshape
)
predshape
=
[]
for
i
in
range
(
len
(
inshape
)):
if
i
!=
dim1
and
i
!=
dim2
:
predshape
.
append
(
inshape
[
i
])
diaglen
=
min
(
min
(
inshape
[
dim1
],
inshape
[
dim1
]
+
offset
),
min
(
inshape
[
dim2
],
inshape
[
dim2
]
-
offset
))
predshape
.
append
(
diaglen
)
assert
tuple
(
predshape
)
==
tuple
(
y
.
shape
),
(
"the y shape should be {}"
.
format
(
predshape
))
if
len
(
y
.
shape
)
==
1
:
y
=
y
.
reshape
([
1
,
-
1
])
if
inplace
:
return
core
.
ops
.
fill_diagonal_tensor_
(
x
,
y
,
'dim1'
,
dim1
,
'dim2'
,
dim2
,
'offset'
,
offset
)
return
core
.
ops
.
fill_diagonal_tensor
(
x
,
y
,
'dim1'
,
dim1
,
'dim2'
,
dim2
,
'offset'
,
offset
)
def
fill_diagonal_tensor_
(
x
,
y
,
offset
=
0
,
dim1
=
0
,
dim2
=
1
,
name
=
None
):
"""
**Notes**:
**This API is ONLY available in Dygraph mode**
This function fill the source Tensor y into the x Tensor's diagonal inplace.
Args:
x(Tensor): ``x`` is the original Tensor
y(Tensor): ``y`` is the Tensor to filled in x
dim1(int,optional): first dimension with respect to which to fill diagonal. Default: 0.
dim2(int,optional): second dimension with respect to which to fill diagonal. Default: 1.
offset(int,optional): the offset to the main diagonal. Default: 0 (main diagonal).
name(str,optional): Name for the operation (optional, default is None)
Returns:
Tensor: Tensor with diagonal filled with y.
Returns type:
list: dtype is same as x Tensor
Examples:
.. code-block:: python
import paddle
x = paddle.ones((4, 3)) * 2
y = paddle.ones((3,))
x.fill_diagonal_tensor_(y)
print(x.tolist()) #[[1.0, 2.0, 2.0], [2.0, 1.0, 2.0], [2.0, 2.0, 1.0], [2.0, 2.0, 2.0]]
"""
return
_fill_diagonal_tensor_impl
(
x
,
y
,
offset
=
offset
,
dim1
=
dim1
,
dim2
=
dim2
,
inplace
=
True
)
setattr
(
core
.
VarBase
,
'fill_diagonal_tensor_'
,
fill_diagonal_tensor_
)
def
fill_diagonal_tensor
(
x
,
y
,
offset
=
0
,
dim1
=
0
,
dim2
=
1
,
name
=
None
):
"""
This function fill the source Tensor y into the x Tensor's diagonal.
Args:
x(Tensor): ``x`` is the original Tensor
y(Tensor): ``y`` is the Tensor to filled in x
dim1(int,optional): first dimension with respect to which to fill diagonal. Default: 0.
dim2(int,optional): second dimension with respect to which to fill diagonal. Default: 1.
offset(int,optional): the offset to the main diagonal. Default: 0 (main diagonal).
name(str,optional): Name for the operation (optional, default is None)
Returns:
Tensor: Tensor with diagonal filled with y.
Returns type:
list: dtype is same as x Tensor
Examples:
.. code-block:: python
import paddle
x = paddle.ones((4, 3)) * 2
y = paddle.ones((3,))
nx = x.fill_diagonal_tensor(y)
print(nx.tolist()) #[[1.0, 2.0, 2.0], [2.0, 1.0, 2.0], [2.0, 2.0, 1.0], [2.0, 2.0, 2.0]]
"""
return
_fill_diagonal_tensor_impl
(
x
,
y
,
offset
=
offset
,
dim1
=
dim1
,
dim2
=
dim2
,
inplace
=
False
)
setattr
(
core
.
VarBase
,
'fill_diagonal_tensor'
,
fill_diagonal_tensor
)
@
dygraph_only
def
tolist
(
x
):
"""
...
...
tools/static_mode_white_list.py
浏览文件 @
98d047d7
...
...
@@ -721,5 +721,6 @@ STATIC_MODE_TESTING_LIST = [
'test_marker_op'
,
'test_c_embedding_op'
,
'test_class_center_sample_op'
,
'test_fill_diagonal_tensor_op'
,
'test_margin_cross_entropy_op'
,
]
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录