Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
98ab2433
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2305
Star
20932
Fork
5423
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
98ab2433
编写于
12月 09, 2022
作者:
Z
Zhang Jun
提交者:
GitHub
12月 09, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[inference][trt] upgrade prelu op (#48528)
* add prelu
上级
c1cadcca
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
81 addition
and
44 deletion
+81
-44
paddle/fluid/inference/tensorrt/convert/prelu_op.cc
paddle/fluid/inference/tensorrt/convert/prelu_op.cc
+75
-38
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_prelu.py
...id/tests/unittests/ir/inference/test_trt_convert_prelu.py
+6
-6
未找到文件。
paddle/fluid/inference/tensorrt/convert/prelu_op.cc
浏览文件 @
98ab2433
...
...
@@ -31,8 +31,8 @@ class PReluOpConverter : public OpConverter {
framework
::
OpDesc
op_desc
(
op
,
nullptr
);
// Declare inputs
size_t
input_num
=
op_desc
.
Input
(
"X"
).
size
();
auto
*
input
=
engine_
->
GetITensor
(
op_desc
.
Input
(
"X"
)[
0
]);
auto
input_dims
=
input
->
getDimensions
();
// Get attrs
std
::
string
mode
=
PADDLE_GET_CONST
(
std
::
string
,
op_desc
.
GetAttr
(
"mode"
));
std
::
string
data_format
=
"NCHW"
;
...
...
@@ -40,50 +40,87 @@ class PReluOpConverter : public OpConverter {
data_format
=
PADDLE_GET_CONST
(
std
::
string
,
op_desc
.
GetAttr
(
"data_format"
));
}
auto
*
alpha_var
=
scope
.
FindVar
(
op_desc
.
Input
(
"Alpha"
)[
0
]);
auto
*
alpha_tensor
=
alpha_var
->
GetMutable
<
phi
::
DenseTensor
>
();
auto
alpha_weight
=
engine_
->
GetFp32TrtWeight
(
op_desc
.
Input
(
"Alpha"
)[
0
],
*
alpha_tensor
);
auto
*
alpha_var
=
scope
.
FindVar
(
op_desc
.
Input
(
"Alpha"
)[
0
]);
auto
*
alpha_weight
=
alpha_var
->
GetMutable
<
phi
::
DenseTensor
>
();
auto
w_dims
=
alpha_weight
->
dims
();
auto
alpha_data
=
engine_
->
GetFp32TrtWeight
(
op_desc
.
Input
(
"Alpha"
)[
0
],
*
alpha_weight
);
platform
::
CPUPlace
cpu_place
;
nvinfer1
::
Dims
trt_w_dims
;
trt_w_dims
.
nbDims
=
w_dims
.
size
();
for
(
int
i
=
0
;
i
<
trt_w_dims
.
nbDims
;
i
++
)
{
trt_w_dims
.
d
[
i
]
=
w_dims
[
i
];
}
nvinfer1
::
ILayer
*
layer
=
nullptr
;
if
(
engine_
->
with_dynamic_shape
())
{
plugin
::
PReluPluginDynamic
*
plugin
=
new
plugin
::
PReluPluginDynamic
(
static_cast
<
const
float
*>
(
alpha_weight
.
get
().
values
),
alpha_tensor
->
numel
(),
mode
,
data_format
);
layer
=
engine_
->
AddDynamicPlugin
(
&
input
,
input_num
,
plugin
);
}
else
{
#if IS_TRT_VERSION_GE(7000)
nvinfer1
::
Dims
dims
;
dims
.
nbDims
=
0
;
// jump batch dim
for
(
int
i
=
1
;
i
<
alpha_tensor
->
dims
().
size
();
i
++
)
{
dims
.
d
[
dims
.
nbDims
++
]
=
alpha_tensor
->
dims
()[
i
];
}
for
(;
dims
.
nbDims
<
input
->
getDimensions
().
nbDims
;
dims
.
nbDims
++
)
{
dims
.
d
[
dims
.
nbDims
]
=
1
;
// The `element` or `channel` mode contains the batch using static shape.
if
((
mode
==
"element"
||
mode
==
"channel"
)
&&
!
engine_
->
with_dynamic_shape
()
&&
(
trt_w_dims
.
nbDims
-
1
==
input_dims
.
nbDims
))
{
trt_w_dims
.
nbDims
--
;
for
(
int
i
=
0
;
i
<
trt_w_dims
.
nbDims
;
i
++
)
{
trt_w_dims
.
d
[
i
]
=
trt_w_dims
.
d
[
i
+
1
];
}
}
auto
alpha_layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Constant
,
dims
,
alpha_weight
.
get
());
auto
alpha_layer_output
=
alpha_layer
->
getOutput
(
0
);
layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
ParametricReLU
,
*
input
,
*
alpha_layer_output
);
#else
plugin
::
PReluPlugin
*
plugin
=
new
plugin
::
PReluPlugin
(
static_cast
<
const
float
*>
(
alpha_weight
.
get
().
values
),
alpha_tensor
->
numel
(),
mode
,
data_format
);
layer
=
engine_
->
AddPlugin
(
&
input
,
input_num
,
plugin
);
#endif
nvinfer1
::
ITensor
*
alpha_tensor
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Constant
,
trt_w_dims
,
alpha_data
.
get
())
->
getOutput
(
0
);
auto
alpha_dims
=
alpha_tensor
->
getDimensions
();
nvinfer1
::
ITensor
*
real_alpha_tensor
=
alpha_tensor
;
if
(
alpha_dims
.
nbDims
!=
input_dims
.
nbDims
)
{
auto
*
reshape_layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Shuffle
,
*
alpha_tensor
);
int
c
=
alpha_dims
.
d
[
0
];
if
(
engine_
->
with_dynamic_shape
())
{
std
::
vector
<
nvinfer1
::
ITensor
*>
itensors
;
auto
*
n_tensor
=
Add1DConstantLayer
(
1
);
auto
*
c_tensor
=
Add1DConstantLayer
(
c
);
nvinfer1
::
ITensor
*
hw_tensor
=
nullptr
;
nvinfer1
::
ITensor
*
shape_tensor
=
nullptr
;
if
(
input_dims
.
nbDims
-
2
>
0
)
{
hw_tensor
=
Add1DConstantLayer
(
std
::
vector
<
int32_t
>
(
input_dims
.
nbDims
-
2
,
1
));
}
if
(
data_format
==
"NCHW"
)
{
if
(
hw_tensor
!=
nullptr
)
{
shape_tensor
=
Concat
(
std
::
vector
<
nvinfer1
::
ITensor
*>
{
n_tensor
,
c_tensor
,
hw_tensor
});
}
else
{
shape_tensor
=
Concat
(
std
::
vector
<
nvinfer1
::
ITensor
*>
{
n_tensor
,
c_tensor
});
}
}
else
{
if
(
hw_tensor
!=
nullptr
)
{
shape_tensor
=
Concat
(
std
::
vector
<
nvinfer1
::
ITensor
*>
{
n_tensor
,
hw_tensor
,
c_tensor
});
}
else
{
shape_tensor
=
Concat
(
std
::
vector
<
nvinfer1
::
ITensor
*>
{
n_tensor
,
c_tensor
});
}
}
reshape_layer
->
setInput
(
1
,
*
shape_tensor
);
}
else
{
nvinfer1
::
Dims
reshape_dim
;
reshape_dim
.
nbDims
=
input_dims
.
nbDims
;
std
::
fill
(
reshape_dim
.
d
,
reshape_dim
.
d
+
input_dims
.
nbDims
,
1
);
if
(
data_format
==
"NCHW"
)
{
reshape_dim
.
d
[
0
]
=
c
;
}
else
if
(
data_format
==
"NHWC"
)
{
reshape_dim
.
d
[
input_dims
.
nbDims
-
1
]
=
c
;
}
reshape_layer
->
setReshapeDimensions
(
reshape_dim
);
}
real_alpha_tensor
=
reshape_layer
->
getOutput
(
0
);
}
nvinfer1
::
ILayer
*
layer
=
nullptr
;
layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
ParametricReLU
,
*
input
,
*
real_alpha_tensor
);
auto
output_name
=
op_desc
.
Output
(
"Out"
)[
0
];
RreplenishLayerAndOutput
(
layer
,
"prelu"
,
{
output_name
},
test_mode
);
}
...
...
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_prelu.py
浏览文件 @
98ab2433
...
...
@@ -49,22 +49,22 @@ class TrtConvertPreluTest(TrtLayerAutoScanTest):
if
dim1
!=
0
:
shape
.
append
(
dim1
)
if
dim2
!=
0
:
shape
.
append
(
1
)
shape
.
append
(
dim2
)
if
dim3
!=
0
:
shape
.
append
(
1
)
return
np
.
random
.
random
(
size
=
shape
).
astype
(
np
.
float32
)
shape
.
append
(
dim3
)
return
np
.
random
.
random
(
size
=
shape
[
1
]
).
astype
(
np
.
float32
)
elif
(
attrs
[
0
][
"mode"
]
==
"channel"
and
attrs
[
0
][
"data_format"
]
==
"NHWC"
):
shape
=
[
1
]
if
dim1
!=
0
:
shape
.
append
(
1
)
shape
.
append
(
dim
1
)
if
dim2
!=
0
:
shape
.
append
(
1
)
shape
.
append
(
dim2
)
if
dim3
!=
0
:
shape
.
append
(
dim3
)
return
np
.
random
.
random
(
size
=
shape
).
astype
(
np
.
float32
)
return
np
.
random
.
random
(
size
=
shape
[
-
1
]
).
astype
(
np
.
float32
)
elif
attrs
[
0
][
"mode"
]
==
"element"
:
shape
=
[
1
]
if
dim1
!=
0
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录