Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
98a165bf
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
98a165bf
编写于
6月 21, 2023
作者:
X
xinxinZi
提交者:
GitHub
6月 21, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add delete_xpu_unnecessary_cast_op_pass (#54663)
上级
127e9f4c
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
453 addition
and
0 deletion
+453
-0
paddle/fluid/framework/ir/CMakeLists.txt
paddle/fluid/framework/ir/CMakeLists.txt
+5
-0
paddle/fluid/framework/ir/pass.cc
paddle/fluid/framework/ir/pass.cc
+1
-0
paddle/fluid/framework/ir/xpu/xpu_delete_cast_op_pass.cc
paddle/fluid/framework/ir/xpu/xpu_delete_cast_op_pass.cc
+257
-0
paddle/fluid/framework/ir/xpu/xpu_delete_cast_op_pass.h
paddle/fluid/framework/ir/xpu/xpu_delete_cast_op_pass.h
+70
-0
paddle/fluid/framework/ir/xpu/xpu_delete_cast_op_pass_test.cc
...le/fluid/framework/ir/xpu/xpu_delete_cast_op_pass_test.cc
+119
-0
paddle/fluid/inference/api/paddle_pass_builder.cc
paddle/fluid/inference/api/paddle_pass_builder.cc
+1
-0
未找到文件。
paddle/fluid/framework/ir/CMakeLists.txt
浏览文件 @
98a165bf
...
...
@@ -258,6 +258,7 @@ if(WITH_XPU)
xpu DEPS
${
XPU_PASS_DEPS
}
)
pass_library
(
add_activation_xpu_fuse_pass inference DIR xpu DEPS
${
XPU_PASS_DEPS
}
)
pass_library
(
xpu_delete_cast_op_pass inference DIR xpu DEPS
${
XPU_PASS_DEPS
}
)
pass_library
(
fold_interp_outsize_fuse_pass inference DIR xpu DEPS
${
XPU_PASS_DEPS
}
)
pass_library
(
fold_two_squeeze2_fuse_pass inference DIR xpu DEPS
...
...
@@ -548,6 +549,10 @@ if(WITH_XPU)
test_multi_encoder_xpu_adaptive_seqlen_fuse_pass
SRCS xpu/multi_encoder_xpu_adaptive_seqlen_fuse_pass_test.cc
DEPS multi_encoder_xpu_adaptive_seqlen_fuse_pass
)
cc_test
(
test_xpu_delete_cast_op_pass
SRCS xpu/xpu_delete_cast_op_pass_test.cc
DEPS xpu_delete_cast_op_pass
)
cc_test
(
test_fold_interp_outsize_fuse_pass
SRCS xpu/fold_interp_outsize_fuse_pass_test.cc
...
...
paddle/fluid/framework/ir/pass.cc
100644 → 100755
浏览文件 @
98a165bf
...
...
@@ -67,6 +67,7 @@ static const std::vector<std::string> xpu_support_subgraph_passes = {
"one_beam_size_fuse_pass"
,
"stack_fuse_pass"
,
"fused_multi_transformer_xpu_pass"
,
"xpu_delete_cast_op_pass"
,
"fc_xpu_fuse_pass"
,
"link_xpu_op_max_pass"
,
};
...
...
paddle/fluid/framework/ir/xpu/xpu_delete_cast_op_pass.cc
0 → 100644
浏览文件 @
98a165bf
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/ir/xpu/xpu_delete_cast_op_pass.h"
#include <string>
#include "glog/logging.h"
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
#include "paddle/fluid/framework/ir/xpu/pass_utils.h"
#include "paddle/fluid/framework/op_version_registry.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/phi/kernels/cast_kernel.h"
namespace
phi
{
class
DenseTensor
;
}
// namespace phi
namespace
paddle
{
namespace
framework
{
class
Scope
;
}
// namespace framework
}
// namespace paddle
namespace
paddle
{
namespace
framework
{
namespace
ir
{
namespace
patterns
{
struct
CastSoftmaxPattern
:
public
PatternBase
{
CastSoftmaxPattern
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
);
// declare operator node's name
PATTERN_DECL_NODE
(
cast0
);
PATTERN_DECL_NODE
(
softmax
);
PATTERN_DECL_NODE
(
cast1
);
// declare variable node's name
PATTERN_DECL_NODE
(
cast0_in
);
PATTERN_DECL_NODE
(
cast0_out
);
PATTERN_DECL_NODE
(
softmax_out
);
PATTERN_DECL_NODE
(
cast1_out
);
};
CastSoftmaxPattern
::
CastSoftmaxPattern
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
)
:
PatternBase
(
pattern
,
name_scope
,
name_scope
)
{
auto
*
cast0_in
=
pattern
->
NewNode
(
cast0_in_repr
())
->
assert_is_op_input
(
"cast"
,
"X"
);
auto
*
cast0
=
pattern
->
NewNode
(
cast0_repr
())
->
assert_is_op
(
"cast"
)
->
assert_more
([](
Node
*
node
)
{
auto
*
op_desc
=
node
->
Op
();
auto
in_dtype
=
op_desc
->
GetAttrIfExists
<
int
>
(
"in_dtype"
);
auto
out_dtype
=
op_desc
->
GetAttrIfExists
<
int
>
(
"out_dtype"
);
return
in_dtype
==
static_cast
<
int
>
(
proto
::
VarType
::
FP16
)
&&
out_dtype
==
static_cast
<
int
>
(
proto
::
VarType
::
FP32
);
});
auto
*
cast0_out
=
pattern
->
NewNode
(
cast0_out_repr
())
->
assert_is_op_output
(
"cast"
,
"Out"
)
->
assert_is_op_input
(
"softmax"
,
"X"
)
->
assert_has_n_outputs
(
1
);
auto
*
softmax
=
pattern
->
NewNode
(
softmax_repr
())
->
assert_is_op
(
"softmax"
);
auto
*
softmax_out
=
pattern
->
NewNode
(
softmax_out_repr
())
->
assert_is_op_output
(
"softmax"
,
"Out"
)
->
assert_is_op_input
(
"cast"
,
"X"
)
->
assert_has_n_outputs
(
1
);
auto
*
cast1
=
pattern
->
NewNode
(
cast1_repr
())
->
assert_is_op
(
"cast"
)
->
assert_more
([](
Node
*
node
)
{
auto
*
op_desc
=
node
->
Op
();
auto
in_dtype
=
op_desc
->
GetAttrIfExists
<
int
>
(
"in_dtype"
);
auto
out_dtype
=
op_desc
->
GetAttrIfExists
<
int
>
(
"out_dtype"
);
return
in_dtype
==
static_cast
<
int
>
(
proto
::
VarType
::
FP32
)
&&
out_dtype
==
static_cast
<
int
>
(
proto
::
VarType
::
FP16
);
});
auto
*
cast1_out
=
pattern
->
NewNode
(
cast1_out_repr
())
->
assert_is_op_output
(
"cast"
,
"Out"
);
cast0
->
LinksFrom
({
cast0_in
}).
LinksTo
({
cast0_out
});
softmax
->
LinksFrom
({
cast0_out
}).
LinksTo
({
softmax_out
});
cast1
->
LinksFrom
({
softmax_out
}).
LinksTo
({
cast1_out
});
}
}
// namespace patterns
int
XpuDeleteCastOpPass
::
ApplyCastSoftmaxPass
(
ir
::
Graph
*
graph
)
const
{
GraphPatternDetector
gpd
;
patterns
::
CastSoftmaxPattern
pattern
(
gpd
.
mutable_pattern
(),
name_scope_
);
int
found_subgraph_count
=
0
;
auto
handler
=
[
&
](
const
GraphPatternDetector
::
subgraph_t
&
subgraph
,
Graph
*
graph
)
{
VLOG
(
4
)
<<
"handle ApplyCastSoftmaxPass fuse"
;
GET_IR_NODE_FROM_SUBGRAPH
(
cast0
,
cast0
,
pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
softmax
,
softmax
,
pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
cast1
,
cast1
,
pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
cast0_in
,
cast0_in
,
pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
cast0_out
,
cast0_out
,
pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
softmax_out
,
softmax_out
,
pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
cast1_out
,
cast1_out
,
pattern
);
softmax
->
Op
()
->
RenameInput
(
cast0_out
->
Name
(),
cast0_in
->
Name
());
softmax
->
Op
()
->
RenameOutput
(
softmax_out
->
Name
(),
cast1_out
->
Name
());
IR_NODE_LINK_TO
(
cast0_in
,
softmax
);
IR_NODE_LINK_TO
(
softmax
,
cast1_out
);
std
::
unordered_set
<
const
Node
*>
delete_nodes
{
cast0
,
cast1
,
cast0_out
,
softmax_out
};
GraphSafeRemoveNodes
(
graph
,
delete_nodes
);
found_subgraph_count
++
;
};
gpd
(
graph
,
handler
);
return
found_subgraph_count
;
}
namespace
patterns
{
struct
CastLayerNormPattern
:
public
PatternBase
{
CastLayerNormPattern
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
);
// declare operator node's name
PATTERN_DECL_NODE
(
cast0
);
PATTERN_DECL_NODE
(
layer_norm
);
PATTERN_DECL_NODE
(
cast1
);
// declare variable node's name
PATTERN_DECL_NODE
(
cast0_in
);
PATTERN_DECL_NODE
(
cast0_out
);
PATTERN_DECL_NODE
(
layer_norm_out
);
PATTERN_DECL_NODE
(
cast1_out
);
};
CastLayerNormPattern
::
CastLayerNormPattern
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
)
:
PatternBase
(
pattern
,
name_scope
,
name_scope
)
{
auto
*
cast0_in
=
pattern
->
NewNode
(
cast0_in_repr
())
->
assert_is_op_input
(
"cast"
,
"X"
);
auto
*
cast0
=
pattern
->
NewNode
(
cast0_repr
())
->
assert_is_op
(
"cast"
)
->
assert_more
([](
Node
*
node
)
{
auto
*
op_desc
=
node
->
Op
();
auto
in_dtype
=
op_desc
->
GetAttrIfExists
<
int
>
(
"in_dtype"
);
auto
out_dtype
=
op_desc
->
GetAttrIfExists
<
int
>
(
"out_dtype"
);
return
in_dtype
==
static_cast
<
int
>
(
proto
::
VarType
::
FP16
)
&&
out_dtype
==
static_cast
<
int
>
(
proto
::
VarType
::
FP32
);
});
auto
*
cast0_out
=
pattern
->
NewNode
(
cast0_out_repr
())
->
assert_is_op_output
(
"cast"
,
"Out"
)
->
assert_is_op_input
(
"layer_norm"
,
"X"
)
->
assert_has_n_outputs
(
1
);
auto
*
layer_norm
=
pattern
->
NewNode
(
layer_norm_repr
())
->
assert_is_op
(
"layer_norm"
);
auto
*
layer_norm_out
=
pattern
->
NewNode
(
layer_norm_out_repr
())
->
assert_is_op_output
(
"layer_norm"
,
"Y"
)
->
assert_is_op_input
(
"cast"
,
"X"
)
->
assert_has_n_outputs
(
1
);
auto
*
cast1
=
pattern
->
NewNode
(
cast1_repr
())
->
assert_is_op
(
"cast"
)
->
assert_more
([](
Node
*
node
)
{
auto
*
op_desc
=
node
->
Op
();
auto
in_dtype
=
op_desc
->
GetAttrIfExists
<
int
>
(
"in_dtype"
);
auto
out_dtype
=
op_desc
->
GetAttrIfExists
<
int
>
(
"out_dtype"
);
return
in_dtype
==
static_cast
<
int
>
(
proto
::
VarType
::
FP32
)
&&
out_dtype
==
static_cast
<
int
>
(
proto
::
VarType
::
FP16
);
});
auto
*
cast1_out
=
pattern
->
NewNode
(
cast1_out_repr
())
->
assert_is_op_output
(
"cast"
,
"Out"
);
cast0
->
LinksFrom
({
cast0_in
}).
LinksTo
({
cast0_out
});
layer_norm
->
LinksFrom
({
cast0_out
}).
LinksTo
({
layer_norm_out
});
cast1
->
LinksFrom
({
layer_norm_out
}).
LinksTo
({
cast1_out
});
}
}
// namespace patterns
int
XpuDeleteCastOpPass
::
ApplyCastLayerNormPass
(
ir
::
Graph
*
graph
)
const
{
GraphPatternDetector
gpd
;
patterns
::
CastLayerNormPattern
pattern
(
gpd
.
mutable_pattern
(),
name_scope_
);
int
found_subgraph_count
=
0
;
auto
handler
=
[
&
](
const
GraphPatternDetector
::
subgraph_t
&
subgraph
,
Graph
*
graph
)
{
VLOG
(
4
)
<<
"handle ApplyCastLayerNormPass fuse"
;
GET_IR_NODE_FROM_SUBGRAPH
(
cast0
,
cast0
,
pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
layer_norm
,
layer_norm
,
pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
cast1
,
cast1
,
pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
cast0_in
,
cast0_in
,
pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
cast0_out
,
cast0_out
,
pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
layer_norm_out
,
layer_norm_out
,
pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
cast1_out
,
cast1_out
,
pattern
);
layer_norm
->
Op
()
->
RenameInput
(
cast0_out
->
Name
(),
cast0_in
->
Name
());
layer_norm
->
Op
()
->
RenameOutput
(
layer_norm_out
->
Name
(),
cast1_out
->
Name
());
IR_NODE_LINK_TO
(
cast0_in
,
layer_norm
);
IR_NODE_LINK_TO
(
layer_norm
,
cast1_out
);
std
::
unordered_set
<
const
Node
*>
delete_nodes
{
cast0
,
cast1
,
cast0_out
,
layer_norm_out
};
GraphSafeRemoveNodes
(
graph
,
delete_nodes
);
found_subgraph_count
++
;
};
gpd
(
graph
,
handler
);
return
found_subgraph_count
;
}
void
XpuDeleteCastOpPass
::
ApplyImpl
(
ir
::
Graph
*
graph
)
const
{
PADDLE_ENFORCE_NOT_NULL
(
graph
,
platform
::
errors
::
PreconditionNotMet
(
"graph should not be null."
));
if
(
!
graph
->
IsMainGraph
())
{
VLOG
(
3
)
<<
"'xpu_delete_cast_op_pass' needs info in all "
"graphs, so it "
"should be applied in the main graph."
;
return
;
}
Init
(
name_scope_
,
graph
);
int
found_subgraph_count
=
ApplyCastSoftmaxPass
(
graph
);
for
(
size_t
i
=
0
;
i
<
graph
->
SubGraphsSize
();
i
++
)
{
found_subgraph_count
+=
ApplyCastSoftmaxPass
(
graph
->
GetSubGraph
(
i
));
}
if
(
found_subgraph_count
>
0
)
{
LOG
(
INFO
)
<<
"--- delete "
<<
found_subgraph_count
<<
" cast_softmax_cast subgraph"
;
}
found_subgraph_count
=
0
;
for
(
size_t
i
=
0
;
i
<
graph
->
SubGraphsSize
();
i
++
)
{
found_subgraph_count
+=
ApplyCastLayerNormPass
(
graph
->
GetSubGraph
(
i
));
}
if
(
found_subgraph_count
>
0
)
{
LOG
(
INFO
)
<<
"--- delete "
<<
found_subgraph_count
<<
" cast_layer_norm_cast subgraph"
;
}
}
}
// namespace ir
}
// namespace framework
}
// namespace paddle
REGISTER_PASS
(
xpu_delete_cast_op_pass
,
paddle
::
framework
::
ir
::
XpuDeleteCastOpPass
);
REGISTER_PASS_CAPABILITY
(
xpu_delete_cast_op_pass
)
.
AddCombination
(
paddle
::
framework
::
compatible
::
OpVersionComparatorCombination
().
EQ
(
"cast"
,
0
));
paddle/fluid/framework/ir/xpu/xpu_delete_cast_op_pass.h
0 → 100755
浏览文件 @
98a165bf
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <string>
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
#include "paddle/fluid/framework/ir/pass.h"
namespace
phi
{
class
DenseTensor
;
}
// namespace phi
namespace
paddle
{
namespace
framework
{
class
Scope
;
}
// namespace framework
}
// namespace paddle
namespace
paddle
{
namespace
framework
{
namespace
ir
{
class
XpuDeleteCastOpPass
:
public
FusePassBase
{
protected:
void
ApplyImpl
(
ir
::
Graph
*
graph
)
const
override
;
private:
/*
Origin subgraph:
cast(fp16->fp32)
|
softmax
|
cast(fp32->fp16)
Optimized subgraph:
softmax
*/
int
ApplyCastSoftmaxPass
(
ir
::
Graph
*
graph
)
const
;
/*
Origin subgraph:
cast(fp16->fp32)
|
layer_norm
|
cast(fp32->fp16)
Optimized subgraph:
layer_norm
*/
int
ApplyCastLayerNormPass
(
ir
::
Graph
*
graph
)
const
;
const
std
::
string
name_scope_
{
"xpu_delete_cast_op_pass"
};
};
}
// namespace ir
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/ir/xpu/xpu_delete_cast_op_pass_test.cc
0 → 100644
浏览文件 @
98a165bf
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <gtest/gtest.h>
#include "paddle/fluid/framework/ir/pass.h"
#include "paddle/fluid/framework/ir/pass_tester_helper.h"
namespace
paddle
{
namespace
framework
{
namespace
ir
{
VarDesc
*
Data
(
paddle
::
framework
::
BlockDesc
*
block
,
std
::
string
name
,
std
::
vector
<
int64_t
>
shape
=
{},
bool
is_persistable
=
false
,
proto
::
VarType
::
Type
data_type
=
proto
::
VarType
::
FP32
)
{
auto
*
var
=
block
->
Var
(
name
);
var
->
SetType
(
proto
::
VarType
::
LOD_TENSOR
);
var
->
SetDataType
(
data_type
);
var
->
SetShape
(
shape
);
var
->
SetPersistable
(
is_persistable
);
return
var
;
}
VarDesc
*
AddCast
(
BlockDesc
*
block
,
VarDesc
*
input
,
int
in_dtype
=
5
,
int
out_dtype
=
5
)
{
VarDesc
*
out
=
Data
(
block
,
input
->
Name
()
+
"_out"
);
OpDesc
*
op
=
block
->
AppendOp
();
op
->
SetType
(
"cast"
);
op
->
SetInput
(
"X"
,
{
input
->
Name
()});
op
->
SetOutput
(
"Out"
,
{
out
->
Name
()});
op
->
SetAttr
(
"in_dtype"
,
in_dtype
);
op
->
SetAttr
(
"out_dtype"
,
out_dtype
);
return
out
;
}
int
GetOpNum
(
Graph
*
graph
,
std
::
string
op_type
=
""
)
{
int
num_nodes
=
0
;
for
(
auto
*
node
:
graph
->
Nodes
())
{
if
(
node
->
IsOp
()
&&
node
->
Op
()
&&
(
node
->
Op
()
->
Type
()
==
op_type
||
op_type
.
empty
()))
{
num_nodes
++
;
}
}
return
num_nodes
;
}
TEST
(
ApplyCastSoftmaxPass
,
basic
)
{
paddle
::
framework
::
ProgramDesc
program
;
auto
*
block
=
program
.
MutableBlock
(
0
);
auto
*
cast0_in
=
Data
(
block
,
"cast0_in"
,
{
1
});
auto
*
cast0_out
=
AddCast
(
block
,
cast0_in
,
4
,
5
);
auto
*
softmax_out
=
Data
(
block
,
"softmax_out"
,
{
1
});
OpDesc
*
softmax
=
block
->
AppendOp
();
softmax
->
SetType
(
"softmax"
);
softmax
->
SetInput
(
"X"
,
{
cast0_out
->
Name
()});
softmax
->
SetOutput
(
"Out"
,
{
softmax_out
->
Name
()});
AddCast
(
block
,
softmax_out
,
5
,
4
);
std
::
unique_ptr
<
ir
::
Graph
>
graph
(
new
ir
::
Graph
(
program
));
auto
scope
=
new
Scope
();
graph
->
Set
(
"__param_scope__"
,
scope
);
auto
pass
=
PassRegistry
::
Instance
().
Get
(
"xpu_delete_cast_op_pass"
);
pass
->
Apply
(
graph
.
get
());
int
cast_num_in_graph
=
GetOpNum
(
graph
->
GetSubGraph
(
0
),
"cast"
);
PADDLE_ENFORCE_EQ
(
GetOpNum
(
graph
->
GetSubGraph
(
0
),
"cast"
),
0
,
platform
::
errors
::
PreconditionNotMet
(
"graph should have 0 cast after xpu_delete_cast_op_pass, "
"but actually has %d."
,
cast_num_in_graph
));
}
TEST
(
ApplyCastLayerNormPass
,
basic
)
{
paddle
::
framework
::
ProgramDesc
program
;
auto
*
block
=
program
.
MutableBlock
(
0
);
auto
*
cast0_in
=
Data
(
block
,
"cast0_in"
,
{
1
});
auto
*
cast0_out
=
AddCast
(
block
,
cast0_in
,
4
,
5
);
auto
*
layer_norm_out
=
Data
(
block
,
"layer_norm_out"
,
{
1
});
OpDesc
*
layer_norm
=
block
->
AppendOp
();
layer_norm
->
SetType
(
"layer_norm"
);
layer_norm
->
SetInput
(
"X"
,
{
cast0_out
->
Name
()});
layer_norm
->
SetOutput
(
"Y"
,
{
layer_norm_out
->
Name
()});
AddCast
(
block
,
layer_norm_out
,
5
,
4
);
std
::
unique_ptr
<
ir
::
Graph
>
graph
(
new
ir
::
Graph
(
program
));
auto
scope
=
new
Scope
();
graph
->
Set
(
"__param_scope__"
,
scope
);
auto
pass
=
PassRegistry
::
Instance
().
Get
(
"xpu_delete_cast_op_pass"
);
pass
->
Apply
(
graph
.
get
());
int
cast_num_in_graph
=
GetOpNum
(
graph
->
GetSubGraph
(
0
),
"cast"
);
PADDLE_ENFORCE_EQ
(
GetOpNum
(
graph
->
GetSubGraph
(
0
),
"cast"
),
0
,
platform
::
errors
::
PreconditionNotMet
(
"graph should have 0 cast after xpu_delete_cast_op_pass, "
"but actually has %d."
,
cast_num_in_graph
));
}
}
// namespace ir
}
// namespace framework
}
// namespace paddle
USE_PASS
(
xpu_delete_cast_op_pass
);
paddle/fluid/inference/api/paddle_pass_builder.cc
100644 → 100755
浏览文件 @
98a165bf
...
...
@@ -538,6 +538,7 @@ XpuPassStrategy::XpuPassStrategy() : PassStrategy({}) {
"link_xpu_op_max_pass"
,
"inplace_op_var_pass"
,
"delete_isolated_node_pass"
,
"xpu_delete_cast_op_pass"
,
});
use_xpu_
=
true
;
}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录