提交 987a32da 编写于 作者: L Liu Yiqun

Merge branch 'develop' into core_inference_fix_run

# Fluid 分布式版本使用指南
本篇文章将说明如何在PaddlePaddle Fluid版本下进行分布式训练的配置和执行,以及将单机训练脚本改造成支持集群训练的版本
## 准备工作
* 可用的集群
包含一个或多个计算节点的集群,每一个节点都能够执行PaddlePaddle的训练任务且拥有唯一的IP地址,集群内的所有计算节点可以通过网络相互通信。
* 安装PaddlePaddle Fluid with Distribution版本
所有的计算节点上均需要按照分布式版本的PaddlePaddle, 在用于GPU等设备的机器上还需要额外安装好相应的驱动程序和CUDA的库。
**注意:**当前对外提供的PaddlePaddle版本并不支持分布式,需要通过源码重新编译。编译和安装方法参见[编译和安装指南](http://www.paddlepaddle.org/docs/develop/documentation/en/getstarted/build_and_install/index_en.html)。
cmake编译命令中需要将WITH_DISTRIBUTE设置为ON,下面是一个cmake编译指令示例:
``` bash
cmake .. -DWITH_DOC=OFF -DWITH_GPU=OFF -DWITH_DISTRIBUTE=ON -DWITH_SWIG_PY=ON -DWITH_PYTHON=ON
```
## 更新训练脚本
这里,我们以[Deep Learing 101](http://www.paddlepaddle.org/docs/develop/book/01.fit_a_line/index.html)课程中的第一章 fit a line 为例,描述如何将单机训练脚本改造成支持集群训练的版本。
### 单机训练脚本示例
```python
import paddle.v2 as paddle
import paddle.fluid as fluid
x = fluid.layers.data(name='x', shape=[13], dtype='float32')
y_predict = fluid.layers.fc(input=x, size=1, act=None)
y = fluid.layers.data(name='y', shape=[1], dtype='float32')
cost = fluid.layers.square_error_cost(input=y_predict, label=y)
avg_cost = fluid.layers.mean(x=cost)
sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
sgd_optimizer.minimize(avg_cost)
BATCH_SIZE = 20
train_reader = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.uci_housing.train(), buf_size=500),
batch_size=BATCH_SIZE)
place = fluid.CPUPlace()
feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
PASS_NUM = 100
for pass_id in range(PASS_NUM):
fluid.io.save_persistables(exe, "./fit_a_line.model/")
fluid.io.load_persistables(exe, "./fit_a_line.model/")
for data in train_reader():
avg_loss_value, = exe.run(fluid.default_main_program(),
feed=feeder.feed(data),
fetch_list=[avg_cost])
if avg_loss_value[0] < 10.0:
exit(0) # if avg cost less than 10.0, we think our code is good.
exit(1)
```
我们创建了一个简单的全连接神经网络程序,并且通过Fluid的Executor执行了100次迭代,现在我们需要将该单机版本的程序更新为分布式版本的程序。
### 介绍Parameter Server
在非分布式版本的训练脚本中,只存在Trainer一种角色,它不仅处理常规的计算任务,也处理参数相关的计算、保存和优化任务。在分布式版本的训练过程中,由于存在多个Trainer节点进行同样的数据计算任务,因此需要有一个中心化的节点来统一处理参数相关的保存和分配。在PaddlePaddle中,我们称这样的节点为[Parameter Server](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/fluid/design/dist_train/parameter_server.md)
**因此,在分布式的Fluid环境中,我们有两个角色需要创建,分别是Parameter Server和Trainer。**
### 分布式训练
Fliud专门提供了工具[Distributed Transpiler](https://github.com/PaddlePaddle/Paddle/blob/ba65d54d9d3b41cd3c5171b00f476d4e60133ddb/doc/fluid/design/dist_train/distributed_architecture.md#distributed-transpiler)用于将单机版的训练程序转换为分布式版本的训练程序。工具背后的理念是找出程序的优化算子和梯度参数,将他们分隔为两部分,通过send/recv 操作算子进行连接,优化算子和梯度参数可以在优化器的minimize函数的返回值中获取到。
```python
optimize_ops, params_grads = sgd_optimizer.minimize(avg_cost)
```
将Distributed Transpiler、优化算子和梯度函数放在一个代码中如下:
```python
... #define the program, cost, and create sgd optimizer
optimize_ops, params_grads = sgd_optimizer.minimize(avg_cost) #get optimize OPs and gradient parameters
t = fluid.DistributeTranspiler() # create the transpiler instance
# slice the program into 2 pieces with optimizer_ops and gradient parameters list, as well as pserver_endpoints, which is a comma separated list of [IP:PORT] and number of trainers
t.transpile(optimize_ops, params_grads, pservers=pserver_endpoints, trainers=2)
... #create executor
# in pserver, run this
#current_endpoint here means current pserver IP:PORT you wish to run on
pserver_prog = t.get_pserver_program(current_endpoint)
pserver_startup = t.get_startup_program(current_endpoint, pserver_prog)
exe.run(pserver_startup)
exe.run(pserver_prog)
# in trainer, run this
... # define data reader
exe.run(fluid.default_startup_program())
for pass_id in range(100):
for data in train_reader():
exe.run(t.get_trainer_program())
```
### 分布式训练脚本运行说明
分布式任务的运行需要将表格中说明的多个参数进行赋值:
| 参数名 | 值类型 | 说明 | 示例 |
|:-------------|:------|:---------------------------------------|:-------------|
| trainer_id | int | 当前训练节点的ID,训练节点ID编号为0 - n-1, n为trainers的值 | 0/1/2/3 |
| pservers | str | parameter server 列表 | 127.0.0.1:6710,127.0.0.1:6711 |
| trainers | int | 训练节点的总个数,>0的数字 | 4 |
| server_endpoint | str | 当前所起的服务节点的IP:PORT | 127.0.0.1:8789 |
| training_role | str | 节点角色, TRAINER/PSERVER | PSERVER |
**注意:** ```training_role```是用来区分当前所起服务的角色的,用于训练程序中,用户可根据需要自行定义,其他参数为fluid.DistributeTranspiler的transpile函数所需要,需要在调用函数前进行定义,样例如下:
```python
t = fluid.DistributeTranspiler()
t.transpile(
optimize_ops,
params_grads,
trainer_id,
pservers=pserver,
trainers=trainers)
if training_role == "PSERVER":
pserver_prog = t.get_pserver_program(server_endpoint)
pserver_startup = t.get_startup_program(server_endpoint, pserver_prog)
```
### Demo
完整的demo代码位于Fluid的test目录下的[book](https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/fluid/tests/book/test_fit_a_line.py)中。
第一步,进入demo代码所在目录:
```bash
cd /paddle/python/paddle/fluid/tests/book
```
第二步,启动Parameter Server:
```bash
PADDLE_INIT_PORT=6174 PADDLE_INIT_PSERVERS=192.168.1.2 TRAINERS=2 POD_IP=192.168.1.2 PADDLE_INIT_TRAINER_ID=1 TRAINING_ROLE=PSERVER python test_fit_a_line.py
```
执行命令后请等待出现提示: ```Server listening on 192.168.1.2:6174 ```, 表示Paramter Server已经正常启动。
第三步,启动Trainer:
```bash
PADDLE_INIT_PORT=6174 PADDLE_INIT_PSERVERS=192.168.1.3 TRAINERS=2 POD_IP=192.168.1.3 PADDLE_INIT_TRAINER_ID=1 TRAINING_ROLE=TRAINER python test_fit_a_line.py
```
由于我们定义的Trainer的数量是2个,因此需要在另外一个计算节点上再启动一个Trainer。
现在我们就启动了一个包含一个Parameter Server和两个Trainer的分布式训练任务。
FAQ
====
This document provides answers to some of the frequently asked questions about PaddlePaddle. If you have a question that is not covered here, please go to `PaddlePaddle Community <https://github.com/PaddlePaddle/Paddle/issues>`_ , to find an answer or submit new `issue <https://github.com/PaddlePaddle/Paddle/issues/new>`_ , we will reply in time.
.. toctree::
:maxdepth: 1
......
......@@ -613,3 +613,14 @@ REGISTER_OP(swish, ops::ActivationOp, ops::SwishOpMaker, swish_grad,
ops::grad_functor<double>>);
FOR_EACH_KERNEL_FUNCTOR(REGISTER_ACTIVATION_CPU_KERNEL);
REGISTER_OP_CPU_KERNEL(relu,
ops::ActivationKernel<paddle::platform::CPUDeviceContext,
ops::ReluFunctor<float>>,
ops::ActivationKernel<paddle::platform::CPUDeviceContext,
ops::ReluFunctor<double>>);
REGISTER_OP_CPU_KERNEL(
relu_grad, ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
ops::ReluGradFunctor<float>>,
ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
ops::ReluGradFunctor<double>>);
......@@ -14,6 +14,7 @@ limitations under the License. */
#define EIGEN_USE_GPU
#include "paddle/fluid/operators/activation_op.h"
#include "paddle/fluid/platform/float16.h"
namespace ops = paddle::operators;
......@@ -31,3 +32,16 @@ namespace ops = paddle::operators;
ops::grad_functor<double>>);
FOR_EACH_KERNEL_FUNCTOR(REGISTER_ACTIVATION_CUDA_KERNEL);
REGISTER_OP_CUDA_KERNEL(
relu, ops::ActivationKernel<paddle::platform::CUDADeviceContext,
ops::ReluFunctor<float>>,
ops::ActivationKernel<paddle::platform::CUDADeviceContext,
ops::ReluFunctor<double>>,
ops::ActivationKernel<paddle::platform::CUDADeviceContext,
ops::ReluFunctor<paddle::platform::float16>>);
REGISTER_OP_CUDA_KERNEL(
relu_grad, ops::ActivationGradKernel<paddle::platform::CUDADeviceContext,
ops::ReluGradFunctor<float>>,
ops::ActivationGradKernel<paddle::platform::CUDADeviceContext,
ops::ReluGradFunctor<double>>);
......@@ -772,7 +772,6 @@ struct SwishGradFunctor : public BaseActivationFunctor<T> {
__macro(sigmoid, SigmoidFunctor, SigmoidGradFunctor); \
__macro(logsigmoid, LogSigmoidFunctor, LogSigmoidGradFunctor); \
__macro(exp, ExpFunctor, ExpGradFunctor); \
__macro(relu, ReluFunctor, ReluGradFunctor); \
__macro(tanh, TanhFunctor, TanhGradFunctor); \
__macro(softshrink, SoftShrinkFunctor, SoftShrinkGradFunctor); \
__macro(sqrt, SqrtFunctor, SqrtGradFunctor); \
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/average_accumulates_op.h"
namespace paddle {
namespace operators {
template <>
void GetAccumulators<paddle::platform::CPUDeviceContext>(
const framework::ExecutionContext& ctx, int64_t& num_updates_,
int64_t& num_accumulates_, int64_t& old_num_accumulates_) {
auto* in_old_num_accumulates = ctx.Input<Tensor>("in_old_num_accumulates");
auto* in_num_accumulates = ctx.Input<Tensor>("in_num_accumulates");
auto* in_num_updates = ctx.Input<Tensor>("in_num_updates");
old_num_accumulates_ = in_old_num_accumulates->data<int64_t>()[0];
num_accumulates_ = in_num_accumulates->data<int64_t>()[0];
num_updates_ = in_num_updates->data<int64_t>()[0];
}
template <>
void SetAccumulators<paddle::platform::CPUDeviceContext>(
const framework::ExecutionContext& ctx, int64_t num_updates_,
int64_t num_accumulates_, int64_t old_num_accumulates_) {
auto* out_old_num_accumulates = ctx.Output<Tensor>("out_old_num_accumulates");
auto* out_num_accumulates = ctx.Output<Tensor>("out_num_accumulates");
auto* out_num_updates = ctx.Output<Tensor>("out_num_updates");
out_old_num_accumulates->data<int64_t>()[0] = old_num_accumulates_;
out_num_accumulates->data<int64_t>()[0] = num_accumulates_;
out_num_updates->data<int64_t>()[0] = num_updates_;
}
class AverageAccumulatesOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(
ctx->HasInput("param"),
"Input (param) of average_accumulates op should not be null.");
PADDLE_ENFORCE(
ctx->HasInput("in_sum_1"),
"Input (sum_1) of average_accumulates op should not be null.");
PADDLE_ENFORCE(
ctx->HasInput("in_sum_2"),
"Input (sum_2) of average_accumulates op should not be null.");
PADDLE_ENFORCE(
ctx->HasInput("in_sum_3"),
"Input (sum_3) of average_accumulates op should not be null.");
PADDLE_ENFORCE(
ctx->HasInput("in_num_accumulates"),
"Input (in_num_accumulates) of average_accumulates op should "
"not be null.");
PADDLE_ENFORCE(ctx->HasInput("in_old_num_accumulates"),
"Input (old_num_accumulates) of average_accumulates op "
"should not be null.");
PADDLE_ENFORCE(
ctx->HasInput("in_num_updates"),
"Input (num_updates) of average_accumulates op should not be null.");
PADDLE_ENFORCE(
ctx->HasOutput("out_sum_1"),
"Output (sum_1) of average_accumulates op should not be null.");
PADDLE_ENFORCE(
ctx->HasOutput("out_sum_2"),
"Output (sum_2) of average_accumulates op should not be null.");
PADDLE_ENFORCE(
ctx->HasOutput("out_sum_3"),
"Output (sum_3) of average_accumulates op should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("out_num_accumulates"),
"Output (num_accumulates) of average_accumulates op should "
"not be null.");
PADDLE_ENFORCE(ctx->HasOutput("out_old_num_accumulates"),
"Output (old_num_accumulates) of average_accumulates op "
"should not be null.");
PADDLE_ENFORCE(
ctx->HasOutput("out_num_updates"),
"Output (num_updates) of average_accumulates op should not be null.");
auto in_dim = ctx->GetInputDim("param");
ctx->SetOutputDim("out_sum_1", in_dim);
ctx->SetOutputDim("out_sum_2", in_dim);
ctx->SetOutputDim("out_sum_3", in_dim);
ctx->SetOutputDim("out_num_accumulates", {1});
ctx->SetOutputDim("out_old_num_accumulates", {1});
ctx->SetOutputDim("out_num_updates", {1});
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
return framework::OpKernelType(
framework::ToDataType(ctx.Input<Tensor>("param")->type()),
ctx.GetPlace());
}
};
class AverageAccumulatesOpMaker : public framework::OpProtoAndCheckerMaker {
public:
AverageAccumulatesOpMaker(OpProto* proto, OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("param", "(Tensor), The parameter to be accumulated.");
AddInput("in_sum_1",
"(Tensor), A tensor used to store the parameter "
"sums with the same shape as input(param).");
AddInput("in_sum_2",
"(Tensor), A auxiliary tensor to help "
"accumulating sums of parameter values with the same shape as "
"input(param). It is used to avoid loss of precision due to too "
"many sums.");
AddInput("in_sum_3",
"(Tensor), A auxiliary tensor to help "
"accumulating sums of parameter values with the same shape as "
"input(param).");
AddInput("in_num_accumulates",
"(Tensor<int64_t>), The accumulating times of current window with "
"shape [1].");
AddInput(
"in_old_num_accumulates",
"(Tensor<int64_t>), The accumulating times of previous window with "
"shape [1].");
AddInput("in_num_updates",
"(Tensor<int64_t>), The total number of batches used by trainning "
"before this batch with shape [1].");
AddOutput("out_sum_1",
"(Tensor), A tensor used to store the "
"parameter sums with the same shape as input(param).");
AddOutput("out_sum_2",
"(Tensor), A auxiliary tensor to help "
"accumulating sums of parameter values with the same shape as "
"input(param). It is used to avoid loss of precision due to too "
"many sums.");
AddOutput("out_sum_3",
"(Tensor), A auxiliary tensor to help "
"accumulating sums of parameter values with the same shape as "
"input(param).");
AddOutput(
"out_num_accumulates",
"(Tensor<int64_t>), The accumulating times of current window with "
"shape [1].");
AddOutput(
"out_old_num_accumulates",
"(Tensor<int64_t>) The accumulating times of previous window with "
"shape [1].");
AddOutput(
"out_num_updates",
"(Tensor<int64_t>), The total number of batches used by trainning "
"before this batch with shape [1].");
AddAttr<float>("average_window",
"(float, default 0) "
"The rate of average window size relative to num_updates.")
.SetDefault(0);
AddAttr<int64_t>("max_average_window",
"(int64_t) "
"Maximum size of average window. It suggests that the "
"number of mini-batches "
"in one pass is appropriate value to set.");
AddAttr<int64_t>("min_average_window",
"(int64_t, default 10000L) "
"Minimu size of average window.")
.SetDefault(10000L);
AddComment(R"DOC(
AverageAccumulates Operator.
Accumulate the sum of parameter whtin sliding window. The size of sliding window is
determined by 'average_window', 'max_average_window' and 'min_average_window'.
Memory was shared by Input(in_sum_1) and Output(out_sum_1) which acts as an accumulator 'sum_1'.
'sum_2', 'sum_3', 'num_accumulates', 'old_num_accumulates' and 'num_updates' were the same as 'sum_1'.
All the accumulators were inited to zero before training.
And for a mini-batch in training, accumulators were computed as below steps:
num_updates += 1
num_accumulates += 1
sum_1 += param
if num_updates % kMaxNumAccumulates == 0:
sum_2 += sum_1
sum_1 = 0
if num_accumulates >= min_average_window && num_accumulates >= min(max_average_window, num_updates * average_window):
sum_3 = sum_1 + sum_2
sum_1 = 0
sum_2 = 0
old_num_accumulates = num_accumulates
num_accumulates = 0
)DOC");
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(average_accumulates, ops::AverageAccumulatesOp,
ops::AverageAccumulatesOpMaker,
paddle::framework::EmptyGradOpMaker);
REGISTER_OP_CPU_KERNEL(
average_accumulates,
ops::AverageAccumulatesKernel<paddle::platform::CPUDeviceContext, float>,
ops::AverageAccumulatesKernel<paddle::platform::CPUDeviceContext, double>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/average_accumulates_op.h"
#include "paddle/fluid/platform/gpu_info.h"
namespace paddle {
namespace operators {
template <>
void GetAccumulators<paddle::platform::CUDADeviceContext>(
const framework::ExecutionContext& ctx, int64_t& num_updates_,
int64_t& num_accumulates_, int64_t& old_num_accumulates_) {
auto* in_old_num_accumulates = ctx.Input<Tensor>("in_old_num_accumulates");
auto* in_num_accumulates = ctx.Input<Tensor>("in_num_accumulates");
auto* in_num_updates = ctx.Input<Tensor>("in_num_updates");
auto stream = ctx.cuda_device_context().stream();
memory::Copy(platform::CPUPlace(), &old_num_accumulates_,
platform::CUDAPlace(), in_old_num_accumulates->data<int64_t>(),
sizeof(int64_t), stream);
memory::Copy(platform::CPUPlace(), &num_accumulates_, platform::CUDAPlace(),
in_num_accumulates->data<int64_t>(), sizeof(int64_t), stream);
memory::Copy(platform::CPUPlace(), &num_updates_, platform::CUDAPlace(),
in_num_updates->data<int64_t>(), sizeof(int64_t), stream);
}
template <>
void SetAccumulators<paddle::platform::CUDADeviceContext>(
const framework::ExecutionContext& ctx, int64_t num_updates_,
int64_t num_accumulates_, int64_t old_num_accumulates_) {
auto stream = ctx.cuda_device_context().stream();
auto* out_old_num_accumulates = ctx.Output<Tensor>("out_old_num_accumulates");
auto* out_num_accumulates = ctx.Output<Tensor>("out_num_accumulates");
auto* out_num_updates = ctx.Output<Tensor>("out_num_updates");
memory::Copy(platform::CUDAPlace(), out_old_num_accumulates->data<int64_t>(),
platform::CPUPlace(), &old_num_accumulates_, sizeof(int64_t),
stream);
memory::Copy(platform::CUDAPlace(), out_num_accumulates->data<int64_t>(),
platform::CPUPlace(), &num_accumulates_, sizeof(int64_t),
stream);
memory::Copy(platform::CUDAPlace(), out_num_updates->data<int64_t>(),
platform::CPUPlace(), &num_updates_, sizeof(int64_t), stream);
}
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
average_accumulates,
ops::AverageAccumulatesKernel<paddle::platform::CUDADeviceContext, float>,
ops::AverageAccumulatesKernel<paddle::platform::CUDADeviceContext, double>);
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <algorithm>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
template <typename T, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
template <typename DeviceContext>
void GetAccumulators(const framework::ExecutionContext& ctx,
int64_t& num_updates, int64_t& num_accumulates,
int64_t& old_num_accumulates);
template <typename DeviceContext>
void SetAccumulators(const framework::ExecutionContext& ctx,
int64_t num_updates, int64_t num_accumulates,
int64_t old_num_accumulates);
template <typename DeviceContext, typename T>
class AverageAccumulatesKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
// It is used to avoid loss of precision
static const int64_t kMaxNumAccumulates = 16384;
// Get accumulators from input
int64_t num_updates = 0;
int64_t num_accumulates = 0;
int64_t old_num_accumulates = 0;
GetAccumulators<DeviceContext>(ctx, num_updates, num_accumulates,
old_num_accumulates);
// Get attrs
float average_window = ctx.Attr<float>("average_window");
int64_t max_average_window = ctx.Attr<int64_t>("max_average_window");
int64_t min_average_window = ctx.Attr<int64_t>("min_average_window");
min_average_window =
std::min<int64_t>(min_average_window, max_average_window);
// Get inputs
auto* param = ctx.Input<Tensor>("param");
auto* in_sum_1 = ctx.Input<Tensor>("in_sum_1");
auto* in_sum_2 = ctx.Input<Tensor>("in_sum_2");
auto* in_sum_3 = ctx.Input<Tensor>("in_sum_3");
auto param_tensor = EigenVector<T>::Flatten(*param);
auto in_sum_1_tensor = EigenVector<T>::Flatten(*in_sum_1);
auto in_sum_2_tensor = EigenVector<T>::Flatten(*in_sum_2);
auto in_sum_3_tensor = EigenVector<T>::Flatten(*in_sum_3);
// Get outputs
auto* out_sum_1 = ctx.Output<Tensor>("out_sum_1");
auto* out_sum_2 = ctx.Output<Tensor>("out_sum_2");
auto* out_sum_3 = ctx.Output<Tensor>("out_sum_3");
auto out_sum_1_tensor = EigenVector<T>::Flatten(*out_sum_1);
auto out_sum_2_tensor = EigenVector<T>::Flatten(*out_sum_2);
auto out_sum_3_tensor = EigenVector<T>::Flatten(*out_sum_3);
// Compute
auto& place = *ctx.template device_context<DeviceContext>().eigen_device();
math::SetConstant<DeviceContext, T> constant_functor;
++num_updates;
++num_accumulates;
out_sum_1_tensor.device(place) = in_sum_1_tensor + param_tensor;
out_sum_2_tensor.device(place) = in_sum_2_tensor;
out_sum_3_tensor.device(place) = in_sum_3_tensor;
if (num_updates % kMaxNumAccumulates == 0) {
// Move the sum to a different buffer to avoid loss of precision due to
// too many sums.
out_sum_2_tensor.device(place) = in_sum_2_tensor + in_sum_1_tensor;
constant_functor(ctx.template device_context<DeviceContext>(), out_sum_1,
0.0);
}
if (num_accumulates >= min_average_window &&
num_accumulates >= std::min<int64_t>(max_average_window,
num_updates * average_window)) {
// Now the average window is too long, discard the old sum.
out_sum_3_tensor.device(place) = in_sum_1_tensor + in_sum_2_tensor;
constant_functor(ctx.template device_context<DeviceContext>(), out_sum_1,
0.0);
constant_functor(ctx.template device_context<DeviceContext>(), out_sum_2,
0.0);
old_num_accumulates = num_accumulates;
num_accumulates = 0;
}
// Set accumulators to output
SetAccumulators<DeviceContext>(ctx, num_updates, num_accumulates,
old_num_accumulates);
}
};
} // namespace operators
} // namespace paddle
......@@ -78,7 +78,7 @@ class CrossEntropyGradientOpKernel : public framework::OpKernel<T> {
for (int64_t i = 0; i < batch_size; ++i) {
PADDLE_ASSERT(label_data[i] >= 0 || label_data[i] < class_num);
int64_t index = i * class_num + label_data[i];
dx_data[index] = -dy_data[i] / x_data[index];
dx_data[index] = math::TolerableValue<T>()(-dy_data[i] / x_data[index]);
}
}
}
......
......@@ -89,6 +89,7 @@ void SoftmaxGradCUDNNFunctor<T>::operator()(
XGrad->mutable_data<T>(context.GetPlace())));
}
template class SoftmaxCUDNNFunctor<platform::float16>;
template class SoftmaxCUDNNFunctor<float>;
template class SoftmaxCUDNNFunctor<double>;
template class SoftmaxGradCUDNNFunctor<float>;
......
......@@ -56,7 +56,9 @@ class SoftmaxGradCUDNNKernel : public framework::OpKernel<T> {
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_KERNEL(softmax, CUDNN, ::paddle::platform::CUDAPlace,
ops::SoftmaxCUDNNKernel<float>);
REGISTER_OP_KERNEL(softmax_grad, CUDNN, ::paddle::platform::CUDAPlace,
namespace plat = paddle::platform;
REGISTER_OP_KERNEL(softmax, CUDNN, plat::CUDAPlace,
ops::SoftmaxCUDNNKernel<float>,
ops::SoftmaxCUDNNKernel<plat::float16>);
REGISTER_OP_KERNEL(softmax_grad, CUDNN, plat::CUDAPlace,
ops::SoftmaxGradCUDNNKernel<float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "mkldnn.hpp"
#include "paddle/fluid/operators/softmax_op.h"
#include "paddle/fluid/platform/mkldnn_helper.h"
#include <iostream>
namespace paddle {
namespace operators {
using paddle::framework::Tensor;
using paddle::platform::MKLDNNDeviceContext;
using paddle::platform::MKLDNNMemDesc;
using mkldnn::memory; // Note: paddle has also "memory" namespace
using mkldnn::primitive;
using mkldnn::softmax_forward;
using mkldnn::prop_kind;
using mkldnn::stream;
template <typename T>
class SoftmaxMKLDNNKernel : public paddle::framework::OpKernel<T> {
public:
void Compute(const paddle::framework::ExecutionContext& ctx) const override {
PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
"It must use CPUPlace.");
auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
auto mkldnn_engine = dev_ctx.GetEngine();
const Tensor* input = ctx.Input<Tensor>("X");
Tensor* output = ctx.Output<Tensor>("Out");
PADDLE_ENFORCE(input->dims().size() == 2UL,
"The input of softmax op must be a 2D matrix.");
const T* input_data = input->data<T>();
// allocate memory for output
T* output_data = output->mutable_data<T>(ctx.GetPlace());
std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());
// MKL-DNN does support softmax over selected axis. Having 2D Tensor,
// we will make normalization after final eg. axis: 1
PADDLE_ENFORCE(((src_tz[0] == dst_tz[0]) && (src_tz[1] == dst_tz[1])),
"Softmax input and output dimensions should match");
// Same memory descriptor to be used for input and output
memory::dims softmax_tz = {src_tz[0], src_tz[1]};
// Currently only supports NC data format
// TODO(jczaja-intel): support more formats
auto softmax_md =
MKLDNNMemDesc({softmax_tz}, memory::f32, memory::format::nc);
// Normalization is made after innermost dimension eg. C out of NC
auto softmax_desc = softmax_forward::desc(prop_kind::forward_scoring,
softmax_md, 1 /*dim: C*/);
// create memory primitives
auto softmax_src_memory =
memory({softmax_md, mkldnn_engine}, (void*)input_data);
auto softmax_dst_memory =
memory({softmax_md, mkldnn_engine}, (void*)output_data);
auto softmax_prim_desc =
softmax_forward::primitive_desc(softmax_desc, mkldnn_engine);
auto softmax = softmax_forward(softmax_prim_desc, softmax_src_memory,
softmax_dst_memory);
std::vector<primitive> pipeline{softmax};
stream(stream::kind::eager).submit(pipeline).wait();
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_KERNEL(softmax, MKLDNN, ::paddle::platform::CPUPlace,
ops::SoftmaxMKLDNNKernel<float>);
......@@ -13,7 +13,13 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/softmax_op.h"
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/cudnn_helper.h"
#endif
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
namespace paddle {
namespace operators {
......@@ -38,26 +44,32 @@ class SoftmaxOp : public framework::OperatorWithKernel {
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
// choose cudnn kernel if the runtime supported.
bool use_cudnn = ctx.Attr<bool>("use_cudnn");
bool runtime_cudnn_support = false;
framework::LibraryType library_{framework::LibraryType::kPlain};
#ifdef PADDLE_WITH_CUDA
if (platform::is_gpu_place(ctx.GetPlace())) {
auto& dev_ctx =
ctx.template device_context<platform::CUDADeviceContext>();
runtime_cudnn_support = dev_ctx.cudnn_handle() != nullptr ? true : false;
if (platform::CanCUDNNBeUsed(ctx)) {
library_ = framework::LibraryType::kCUDNN;
}
#endif
framework::LibraryType library_ = framework::LibraryType::kPlain;
if (use_cudnn && runtime_cudnn_support) {
library_ = framework::LibraryType::kCUDNN;
#ifdef PADDLE_WITH_MKLDNN
if (library_ == framework::LibraryType::kPlain &&
platform::CanMKLDNNBeUsed(ctx)) {
library_ = framework::LibraryType::kMKLDNN;
}
#endif
auto input_data_type =
framework::ToDataType(ctx.Input<Tensor>("X")->type());
if (input_data_type == framework::proto::VarType::FP16) {
PADDLE_ENFORCE_EQ(library_, framework::LibraryType::kCUDNN,
"float16 can only be used when CUDNN is used");
}
std::string data_format = ctx.Attr<std::string>("data_format");
return framework::OpKernelType(
framework::ToDataType(ctx.Input<Tensor>("X")->type()), ctx.GetPlace(),
framework::StringToDataLayout(data_format), library_);
return framework::OpKernelType(input_data_type, ctx.GetPlace(),
framework::StringToDataLayout(data_format),
library_);
}
};
class SoftmaxOpMaker : public framework::OpProtoAndCheckerMaker {
public:
SoftmaxOpMaker(OpProto* proto, OpAttrChecker* op_checker)
......@@ -77,6 +89,9 @@ class SoftmaxOpMaker : public framework::OpProtoAndCheckerMaker {
"Defaults to \"NHWC\". Specify the data format of the output data, "
"the input will be transformed automatically. ")
.SetDefault("AnyLayout");
AddAttr<bool>("use_mkldnn",
"(bool, default false) Only used in mkldnn kernel")
.SetDefault(false);
AddComment(R"DOC(
Softmax Operator.
......@@ -119,19 +134,12 @@ class SoftmaxOpGrad : public framework::OperatorWithKernel {
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
// choose cudnn kernel if the runtime supported.
bool use_cudnn = ctx.Attr<bool>("use_cudnn");
bool runtime_cudnn_support = false;
framework::LibraryType library_{framework::LibraryType::kPlain};
#ifdef PADDLE_WITH_CUDA
if (platform::is_gpu_place(ctx.GetPlace())) {
auto& dev_ctx =
ctx.template device_context<platform::CUDADeviceContext>();
runtime_cudnn_support = dev_ctx.cudnn_handle() != nullptr ? true : false;
}
#endif
framework::LibraryType library_ = framework::LibraryType::kPlain;
if (use_cudnn && runtime_cudnn_support) {
if (platform::CanCUDNNBeUsed(ctx)) {
library_ = framework::LibraryType::kCUDNN;
}
#endif
std::string data_format = ctx.Attr<std::string>("data_format");
return framework::OpKernelType(
framework::ToDataType(ctx.Input<Tensor>("X")->type()), ctx.GetPlace(),
......
......@@ -10,43 +10,45 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/platform/device_context.h"
#include <unordered_set>
#include "paddle/fluid/memory/memory.h"
namespace paddle {
namespace platform {
DeviceContextPool* DeviceContextPool::pool = nullptr;
const platform::DeviceContext* DeviceContextPool::Get(
const platform::Place& place) {
platform::DeviceContext* DeviceContextPool::Get(const platform::Place& place) {
auto it = device_contexts_.find(place);
if (it == device_contexts_.end()) {
PADDLE_THROW(
"'Place' is not supported, Please re-compile with WITH_GPU "
"option");
}
return it->second;
return it->second.get();
}
DeviceContextPool::DeviceContextPool(
const std::vector<platform::Place>& places) {
PADDLE_ENFORCE_GT(places.size(), 0);
for (size_t i = 0; i < places.size(); i++) {
if (platform::is_cpu_place(places[i])) {
using PtrType = std::unique_ptr<DeviceContext>;
std::unordered_set<Place, PlaceHash> set;
for (auto& p : places) {
set.insert(p);
}
for (auto& p : set) {
if (platform::is_cpu_place(p)) {
#ifdef PADDLE_WITH_MKLDNN
device_contexts_.emplace(places[i],
new platform::MKLDNNDeviceContext(
boost::get<platform::CPUPlace>(places[i])));
device_contexts_.emplace(
p, PtrType(new MKLDNNDeviceContext(boost::get<CPUPlace>(p))));
#else
device_contexts_.emplace(places[i],
new platform::CPUDeviceContext(
boost::get<platform::CPUPlace>(places[i])));
device_contexts_.emplace(
p, PtrType(new CPUDeviceContext(boost::get<CPUPlace>(p))));
#endif
} else if (platform::is_gpu_place(places[i])) {
} else if (platform::is_gpu_place(p)) {
#ifdef PADDLE_WITH_CUDA
device_contexts_.emplace(places[i],
new platform::CUDADeviceContext(
boost::get<platform::CUDAPlace>(places[i])));
device_contexts_.emplace(
p, PtrType(new CUDADeviceContext(boost::get<CUDAPlace>(p))));
#else
PADDLE_THROW(
"'CUDAPlace' is not supported, Please re-compile with WITH_GPU "
......@@ -159,6 +161,7 @@ CUDADeviceContext::~CUDADeviceContext() {
Place CUDADeviceContext::GetPlace() const { return place_; }
void CUDADeviceContext::Wait() const {
std::lock_guard<std::mutex> guard(mutex_);
PADDLE_ENFORCE(cudaStreamSynchronize(stream_));
PADDLE_ENFORCE(cudaGetLastError());
}
......
......@@ -103,6 +103,7 @@ class CUDADeviceContext : public DeviceContext {
std::unique_ptr<Eigen::GpuDevice> eigen_device_;
std::unique_ptr<EigenCudaStreamDevice> eigen_stream_;
mutable std::mutex mutex_;
cudaStream_t stream_;
cudnnHandle_t cudnn_handle_;
cublasHandle_t cublas_handle_;
......@@ -159,7 +160,7 @@ class DeviceContextPool {
}
/*! \brief Return handle of single device context. */
const platform::DeviceContext* Get(const platform::Place& place);
platform::DeviceContext* Get(const platform::Place& place);
template <typename Place>
const typename DefaultDeviceContextType<Place>::TYPE* GetByPlace(
......@@ -172,19 +173,8 @@ class DeviceContextPool {
private:
static DeviceContextPool* pool;
constexpr static int LEFT_SHIFT = 8;
struct Hash {
std::hash<int> hash_;
size_t operator()(const platform::Place& place) const {
int pre_hash = place.which() << LEFT_SHIFT;
if (platform::is_gpu_place(place)) {
pre_hash += boost::get<platform::CUDAPlace>(place).GetDeviceId();
}
return hash_(pre_hash);
}
};
std::unordered_map<const platform::Place, const platform::DeviceContext*,
Hash>
std::unordered_map<const platform::Place,
std::unique_ptr<platform::DeviceContext>, PlaceHash>
device_contexts_;
DISABLE_COPY_AND_ASSIGN(DeviceContextPool);
};
......
......@@ -65,6 +65,18 @@ bool is_cpu_place(const Place &);
bool places_are_same_class(const Place &, const Place &);
bool is_same_place(const Place &, const Place &);
struct PlaceHash {
std::size_t operator()(const Place &p) const {
constexpr size_t num_dev_bits = 4;
std::hash<int> ihash;
size_t dev_id = 0;
if (is_gpu_place(p)) {
dev_id = boost::get<CUDAPlace>(p).device;
}
return ihash(dev_id << num_dev_bits | p.which());
}
};
std::ostream &operator<<(std::ostream &, const Place &);
template <typename Visitor>
......
......@@ -131,7 +131,7 @@ def make_channel(dtype, capacity=0):
return channel
def channel_send(channel, value, copy=False):
def channel_send(channel, value, is_copy=False):
"""
Sends a value through a channel variable. Used by an unbuffered or buffered
channel to pass data from within or to a concurrent Go block, where
......@@ -141,8 +141,8 @@ def channel_send(channel, value, copy=False):
channel (Variable|Channel): Channel variable created using
`make_channel`.
value (Variable): Value to send to channel
copy (bool): Copy data while channel send. If False, then data
is moved. The input cannot be used after move.
is_copy (bool): Copy data while channel send. If False, then data
is moved. The input cannot be used after move. (default False)
Returns:
Variable: The boolean status on whether or not the channel
successfully sent the passed value.
......@@ -166,7 +166,7 @@ def channel_send(channel, value, copy=False):
X = value
if copy is True:
if is_copy is True:
copied_X = helper.create_variable(
name=unique_name.generate(value.name + '_copy'),
type=value.type,
......
......@@ -918,6 +918,24 @@ class Block(object):
name=v.name)
self.vars[new_p.name] = new_p
def clone_variable(self, var):
"""
Clone a variable into current block.
Args:
var: the variable to be cloned.
Returns:
The new variable cloned from 'var' in current block.
"""
assert isinstance(var, Variable)
return self.create_var(
name=var.name,
shape=var.shape,
dtype=var.dtype,
type=var.type,
lod_level=var.lod_level,
persistable=True)
class Program(object):
def __init__(self):
......@@ -960,14 +978,14 @@ class Program(object):
"""Clone the Program object
Set for_test to False when we want to clone the program for training.
Set for_test to True when we want to clone the program for testing.
Set for_test to True when we want to clone the program for testing.
Args:
for_test(bool): Some operators, such as batch_norm and drop_out ops,
behave differently in training and testing. If for_test is True,
the is_test attributes in these operators will be set to True for
testing purposes, otherwise, they remain unchanged.
testing purposes, otherwise, they remain unchanged.
Returns(Program):
The cloned Program object.
"""
......
......@@ -399,6 +399,9 @@ class LayerHelper(object):
if isinstance(act, basestring):
act = {'type': act}
tmp = self.create_tmp_variable(dtype=input_var.dtype)
if 'use_mkldnn' in self.kwargs:
act['use_mkldnn'] = self.kwargs.get('use_mkldnn')
act_type = act.pop('type')
self.append_op(
type=act_type,
......
......@@ -82,6 +82,7 @@ def fc(input,
num_flatten_dims=1,
param_attr=None,
bias_attr=None,
use_mkldnn=False,
act=None,
name=None):
"""
......@@ -163,8 +164,11 @@ def fc(input,
inputs={"X": input_var,
"Y": w},
outputs={"Out": tmp},
attrs={"x_num_col_dims": num_flatten_dims,
"y_num_col_dims": 1})
attrs={
"x_num_col_dims": num_flatten_dims,
"y_num_col_dims": 1,
'use_mkldnn': use_mkldnn
})
mul_results.append(tmp)
# sum
......
......@@ -69,6 +69,7 @@ __all__ = [
'gaussian_random_batch_size_like',
'cumsum',
'scatter',
'sum',
] + __activations__
for _OP in set(__all__):
......
......@@ -13,7 +13,7 @@
# limitations under the License.
from collections import defaultdict
from paddle.fluid.framework import Program
import framework
import layers
from backward import append_backward
......@@ -23,9 +23,11 @@ from initializer import Constant
from layer_helper import LayerHelper
from regularizer import append_regularization_ops
from clip import append_gradient_clip_ops, error_clip_callback
from contextlib import contextmanager
__all__ = [
'SGD', 'Momentum', 'Adagrad', 'Adam', 'Adamax', 'DecayedAdagrad', 'Adadelta'
'SGD', 'Momentum', 'Adagrad', 'Adam', 'Adamax', 'DecayedAdagrad',
'Adadelta', 'ModelAverage'
]
......@@ -121,7 +123,12 @@ class Optimizer(object):
"""
pass
def _add_accumulator(self, name, param, dtype=None, fill_value=0.0):
def _add_accumulator(self,
name,
param,
dtype=None,
fill_value=0.0,
shape=None):
"""Utility function to add an accumulator for a parameter
Args:
......@@ -135,17 +142,19 @@ class Optimizer(object):
param.name in self._accumulators[name]):
raise Exception("Accumulator {} already exists for parameter {}".
format(name, param.name))
if shape == None:
shape = param.shape
assert isinstance(self.helper, LayerHelper)
var = self.helper.create_global_variable(
name=unique_name.generate(name),
persistable=True,
dtype=dtype or param.dtype,
type=param.type,
shape=param.shape)
shape=shape)
self.helper.set_variable_initializer(
var, initializer=Constant(value=float(fill_value)))
self._accumulators[name][param.name] = var
return var
def _get_accumulator(self, name, param):
"""Utility function to fetch an accumulator for a parameter
......@@ -797,3 +806,143 @@ Adamax = AdamaxOptimizer
DecayedAdagrad = DecayedAdagradOptimizer
Adadelta = AdadeltaOptimizer
RMSProp = RMSPropOptimizer
class ModelAverage(Optimizer):
"""Accumulate the average of parameters whtin sliding window. The average
result will be saved in temporary variables which can be applied to
parameter variables of current model by calling 'apply()' method. And the
'restore()' method is used to restored the parameter values of current model.
The size of average window is determined by average_window_rate,
min_average_window, max_average_window and current update times.
Args:
params_grads: A list of parameter-grad variable pairs.
average_window_rate: The rate of average window.
min_average_window: The minimum size of average window.
max_average_window: The maximum size of average window.
Examples:
...
optimizer = fluid.optimizer.Momentum()
_, params_grads = optimizer.minimize(cost)
model_average = fluid.optimizer.ModelAverage(params_grads, 0.15,
min_average_window=10000,
max_average_window=20000)
for pass_id in range(args.pass_num):
for data in train_reader():
exe.run(fluid.default_main_program()...)
with model_average.apply(exe):
for data in test_reader():
exe.run(inference_program...)
"""
def __init__(self,
params_grads,
average_window_rate,
min_average_window=10000,
max_average_window=10000,
**kwargs):
super(ModelAverage, self).__init__(0.0, **kwargs)
self.average_window = average_window_rate
self.min_average_window = min_average_window
self.max_average_window = max_average_window
self.params_grads = params_grads
for param, grad in self.params_grads:
if grad is not None:
self._append_average_accumulate_op(param)
self.apply_program = Program()
block = self.apply_program.global_block()
with program_guard(main_program=self.apply_program):
for param_grad in self.params_grads:
if param_grad[1] is not None:
self._add_average_apply_op(block, param_grad)
self.restore_program = Program()
block = self.restore_program.global_block()
with program_guard(main_program=self.restore_program):
for param_grad in self.params_grads:
if param_grad[1] is not None:
self._add_average_restore_op(block, param_grad)
def _add_average_apply_op(self, block, param_grad):
param = block.clone_variable(param_grad[0])
grad = block.clone_variable(param_grad[1])
sum_1 = block.clone_variable(self._get_accumulator('sum_1', param))
sum_2 = block.clone_variable(self._get_accumulator('sum_2', param))
sum_3 = block.clone_variable(self._get_accumulator('sum_3', param))
num_accumulates = block.clone_variable(
self._get_accumulator('num_accumulates', param))
old_num_accumulates = block.clone_variable(
self._get_accumulator('old_num_accumulates', param))
num_updates = block.clone_variable(
self._get_accumulator('num_updates', param))
# backup param value to grad
layers.assign(input=param, output=grad)
# param = (sum_1 + sum_2 + sum_3) / (num_accumulates + old_num_accumulates)
tmp = layers.sum(x=[num_accumulates, old_num_accumulates])
sum = layers.sum(x=[sum_1, sum_2, sum_3])
tmp = layers.cast(x=tmp, dtype='float32')
sum = layers.cast(x=sum, dtype='float32')
layers.elementwise_div(x=sum, y=tmp, out=param)
def _add_average_restore_op(self, block, param_grad):
param = block.clone_variable(param_grad[0])
grad = block.clone_variable(param_grad[1])
layers.assign(input=grad, output=param)
def _append_average_accumulate_op(self, param):
self.helper = LayerHelper("average_accumulate")
sum_1 = self._add_accumulator('sum_1', param)
sum_2 = self._add_accumulator('sum_2', param)
sum_3 = self._add_accumulator('sum_3', param)
num_accumulates = self._add_accumulator(
'num_accumulates', param, dtype='int64', shape=[1])
old_num_accumulates = self._add_accumulator(
'old_num_accumulates', param, dtype='int64', shape=[1])
num_updates = self._add_accumulator(
'num_updates', param, dtype='int64', shape=[1])
self.helper.append_op(
type='average_accumulates',
inputs={
"param": param,
"in_sum_1": sum_1,
"in_sum_2": sum_2,
"in_sum_3": sum_3,
"in_num_accumulates": num_accumulates,
"in_old_num_accumulates": old_num_accumulates,
"in_num_updates": num_updates
},
outputs={
"out_sum_1": sum_1,
"out_sum_2": sum_2,
"out_sum_3": sum_3,
"out_num_accumulates": num_accumulates,
"out_old_num_accumulates": old_num_accumulates,
"out_num_updates": num_updates,
},
attrs={
"average_window": self.average_window,
"min_average_window": self.min_average_window,
"max_average_window": self.max_average_window,
})
@contextmanager
def apply(self, executor, need_restore=True):
"""Apply average values to parameters of current model.
"""
executor.run(self.apply_program)
try:
yield
finally:
if need_restore:
self.restore(executor)
def restore(self, executor):
"""Restore parameter values of current model.
"""
executor.run(self.restore_program)
......@@ -14,6 +14,7 @@
import unittest
import numpy as np
import paddle.fluid.core as core
from op_test import OpTest
from scipy.special import expit
......@@ -212,18 +213,39 @@ class TestRound(OpTest):
class TestRelu(OpTest):
def setUp(self):
self.op_type = "relu"
x = np.random.uniform(-1, 1, [11, 17]).astype("float32")
self.dtype = np.float32
self.init_dtype()
x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
# The same reason with TestAbs
x[np.abs(x) < 0.005] = 0.02
self.inputs = {'X': x}
self.outputs = {'Out': np.maximum(self.inputs['X'], 0)}
out = np.maximum(x, 0)
self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
self.outputs = {'Out': out}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
if self.dtype == np.float16:
return
self.check_grad(['X'], 'Out', max_relative_error=0.007)
def init_dtype(self):
pass
class TestFP16Relu(TestRelu):
def init_dtype(self):
self.dtype = np.float16
def test_check_output(self):
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
if core.is_float16_supported(place):
self.check_output_with_place(place, atol=1e-3)
class TestBRelu(OpTest):
def setUp(self):
......
......@@ -29,15 +29,20 @@ class TestSoftmaxOp(OpTest):
def setUp(self):
self.op_type = "softmax"
self.use_cudnn = False
self.inputs = {
'X': np.random.uniform(0.1, 1, [10, 10]).astype("float32")
}
self.outputs = {
'Out': np.apply_along_axis(stable_softmax, 1, self.inputs['X'])
self.use_mkldnn = False
self.dtype = np.float32
self.init_kernel_type()
x = np.random.uniform(0.1, 1, [10, 10]).astype(self.dtype)
out = np.apply_along_axis(stable_softmax, 1, x)
self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
self.outputs = {'Out': out}
self.attrs = {
'use_cudnn': self.use_cudnn,
'use_mkldnn': self.use_mkldnn
}
self.attrs = {'use_cudnn': self.use_cudnn, }
def init_op_type(self):
def init_kernel_type(self):
pass
def test_check_output(self):
......@@ -48,6 +53,8 @@ class TestSoftmaxOp(OpTest):
self.check_output()
def test_check_grad(self):
if self.dtype == np.float16:
return
if self.use_cudnn:
place = core.CUDAPlace(0)
self.check_grad_with_place(
......@@ -57,8 +64,25 @@ class TestSoftmaxOp(OpTest):
class TestSoftmaxCUDNNOp(TestSoftmaxOp):
def init_op_type(self):
def init_kernel_type(self):
self.use_cudnn = True
class TestSoftmaxFP16CUDNNOp(TestSoftmaxOp):
def init_kernel_type(self):
self.use_cudnn = True
self.dtype = np.float16
def test_check_output(self):
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
if core.is_float16_supported(place):
self.check_output_with_place(place, atol=1e-3)
class TestSoftmaxMKLDNNOp(TestSoftmaxOp):
def init_kernel_type(self):
self.use_mkldnn = True
if __name__ == "__main__":
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册