An operator can have different kernel implementations, and each operator will have a map to store the related kernels. Fluid uses `OpKernelType` as a key to identify a unique Kernel. Before an operator runs, an certain kernel must be chosen by a key of `OpKernelType`. Currently, `OpKernelType` is defined as follows:
An operator can have different kernel implementations, and each operator will have a map to store the related kernels. Fluid uses `OpKernelType` as a key to identify a unique kernel. Before an operator runs, a certain type of kernel must be chosen via a key of `OpKernelType`. Currently, `OpKernelType` is defined as follows:
```cpp
```cpp
structOpKernelType{
structOpKernelType{
...
@@ -10,13 +10,13 @@ struct OpKernelType {
...
@@ -10,13 +10,13 @@ struct OpKernelType {
```
```
For more details, please refer to [codes](https://github.com/PaddlePaddle/Paddle/blob/2d5ec16bc8a09fb8e0f62c89b116b0cd1d333907/paddle/framework/operator.h#L348-L374) in github.
For more details, please refer to [codes](https://github.com/PaddlePaddle/Paddle/blob/2d5ec16bc8a09fb8e0f62c89b116b0cd1d333907/paddle/framework/operator.h#L348-L374) in github.
It contains two keys, `Place` and `DataType`. And these two keys will be hashed to a unique key to represent a certain type of kernel. However, these two keys are not enough. We need a more complete representation of `OpKernelType`.
It contains two keys, `Place` and `DataType`. And these two keys will be hashed to a unique key to represent a certain type of kernel. However, these two keys do not provide enough information. We need a more complete representation of `OpKernelType`.
We often implement a kernel of an operator with some computing library in certain device(place). Please remind that computing library and device are not one-to-one corresponding. A device can have a lot of computing libraries and a computing library can also support several devices.
We often implement a kernel of an operator with some computing library on certain device(place). Please note that computing library and device do not have a one-to-one correspondence. A device can have a lot of computing libraries and a computing library can also support different devices.
For example, Eigen library can support Nvidia GPU/AMD GPU/CPU. And MKLDNN library can support Intel CPU/Intel FPGA. Both `Place` and `Library` should be a key of `OpKernelType`.
For example, Eigen library supports Nvidia GPU/AMD GPU/CPU and MKLDNN library supports Intel CPU/Intel FPGA. Both `Place` and `Library` should be a key of `OpKernelType`.
It's obvious that different DataTypes, like fp64/fp32/int8 will have different kernels. But the data layout of a Tensor will also lead to different implementation. Please refer to the batch norm operator [kernels](https://github.com/PaddlePaddle/Paddle/blob/a948fac4d0ad7e0412d373b8aabeb711c2899563/paddle/operators/batch_norm_op.cc#L180-L209). Data Layout should also be taken into consideration.
Different DataTypes, such as fp64/fp32/int8, will obviously have different kernels. But different data layout of a Tensor will also lead to different implementations. Please refer to the batch norm operator [kernels](https://github.com/PaddlePaddle/Paddle/blob/a948fac4d0ad7e0412d373b8aabeb711c2899563/paddle/operators/batch_norm_op.cc#L180-L209) as an example. Data layout should also be taken into consideration.
`Place`is to represent the device memory where data is locating.
`Place`represents the device memory where data is located.
### Library
### Library
...
@@ -52,10 +52,10 @@ One operator kernel is usually implemented based on one library. `Library` is de
...
@@ -52,10 +52,10 @@ One operator kernel is usually implemented based on one library. `Library` is de
enumLibrary{Plain,MKLDNN,CUDNN};
enumLibrary{Plain,MKLDNN,CUDNN};
```
```
We use `Plain` enumerator to represent default library. Since most operators in Fluid are implemented based on `Eigen` library, we take `Eigen` library as the `Plain` enumerator.
We use `Plain` enumerator to represent default library. Since most operators in Fluid are implemented based on the `Eigen` library, we take `Eigen` library as the `Plain` enumerator.
A library usually has a corresponding `DeviceContext` which contains some handles needed by computation. Fluid now have two default DeviceContexts in CPU and CUDA, `CPUDeviceContext` and `CUDADeviceContext`. `CPUDeviceContext` contains a Eigen library handle and `CDUADeviceContext` contains a Eigen library handle and cuBLAS handle.
A library usually has a corresponding `DeviceContext` which contains some handles needed for computation. Fluid now has two default DeviceContexts for CPU and CUDA, namely, `CPUDeviceContext` and `CUDADeviceContext`. `CPUDeviceContext` contains an Eigen library handle and `CDUADeviceContext` contains an Eigen library handle and a cuBLAS handle.
If we want to support new Library, a new enumerator need to be added to `Library` and a new corresponding `LibraryDeviceContext` will be created.
If we want to support new library, a new enumerator need to be added to `Library` and a corresponding new `LibraryDeviceContext` need to be created.
### DataType
### DataType
...
@@ -67,15 +67,15 @@ If we want to support new Library, a new enumerator need to be added to `Library
...
@@ -67,15 +67,15 @@ If we want to support new Library, a new enumerator need to be added to `Library
Actually, a Tensor is a view of a block of memory. Besides a pointer to the memory, we also have to get some other descriptions of this block of memory, such as shape(ddim), stride, and layout.
Actually, a Tensor is a view of a block of memory. Besides a pointer to the memory, we also have to get some other descriptions of this block of memory, such as shape(ddim), stride, and layout.
Different layout leads to different implementation of operator kernel. There are mainly 4 principles we have to follow to support layout in our fluid framework.
Different layout leads to different implementation of the operator kernel. There are mainly 4 principles we have to follow to support layout in our Fluid framework.
- We take layout as a data member of Tensor. Layout is actually a enum variable. If fluid is built with MKLDNN, then, the memory format in MKLDNN will be added into this enum variable too.
- We take layout as a data member of Tensor. Layout is actually a enum variable. If Fluid is built with MKLDNN, then the memory format in MKLDNN will also be added into this enum variable.
- Users have to set layout for input data. And some operators like fill_constant/random, also have to set layout of generating data. Of course, we can have some default layout, like NCHW.
- Users have to set layout for input data. And some operators like fill_constant/random, also have to set layout for generating data. Of course, we can have some default layout, like NCHW.
- The inference of Layout is at run-time, not compile-time.
- The inference of Layout is at run-time, not at compile-time.
- Every operator have to implement different kernels for different layouts. Let's take MKLDNN as an example, if we want to implement a MKLDNN convolution operator, we have to realize all the kernels for different layout, list at [here](http://01org.github.io/mkl-dnn/structmkldnn_1_1memory.html). And we will have a special macro to do registering kernels for MKLDNN operators.
- Every operator has to implement different kernels for different layouts. Let's take MKLDNN as an example. If we want to implement an MKLDNN convolution operator, we have to implement all the kernels for different layouts, which are listed [here](http://01org.github.io/mkl-dnn/structmkldnn_1_1memory.html). And we will have a special macro to register kernels for MKLDNN operators.