Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
98411745
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
98411745
编写于
9月 09, 2017
作者:
Y
yangyaming
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Finish modified huber loss op.
上级
3a49bae0
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
134 addition
and
48 deletion
+134
-48
paddle/operators/modified_huber_loss_op.cc
paddle/operators/modified_huber_loss_op.cc
+19
-7
paddle/operators/modified_huber_loss_op.cu
paddle/operators/modified_huber_loss_op.cu
+43
-6
paddle/operators/modified_huber_loss_op.h
paddle/operators/modified_huber_loss_op.h
+17
-35
python/paddle/v2/framework/tests/test_modified_huber_loss_op.py
.../paddle/v2/framework/tests/test_modified_huber_loss_op.py
+55
-0
未找到文件。
paddle/operators/modified_huber_loss_op.cc
浏览文件 @
98411745
...
...
@@ -45,11 +45,25 @@ class ModifiedHuberLossOpMaker : public framework::OpProtoAndCheckerMaker {
ModifiedHuberLossOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
""
);
AddInput
(
"Y"
,
""
);
AddOutput
(
"intermediate_val"
,
""
).
AsIntermediate
();
AddOutput
(
"Out"
,
""
);
AddComment
(
""
);
AddInput
(
"X"
,
"Input value of ModifiedHuberLossOp."
);
AddInput
(
"Y"
,
"Target labels of ModifiedHuberLossOp."
);
AddOutput
(
"intermediate_val"
,
"Variable to save intermediate result which will be reused in "
"backward processing."
)
.
AsIntermediate
();
AddOutput
(
"Out"
,
"Classification loss for input X."
);
AddComment
(
R"DOC(
Modified huber loss is used in binary classification problem. Dimensions of
input X and target Y are both (N, 1) and so is the dimension of output loss.
Since target Y is not differentiable, cacluating gradient for Y is illegal.
The formulation of modified huber loss is:
L(y, f(x)) = max(0, 1 - yf(x))^2 for yf(x) >= -1,
-4yf(x) otherwise.
Make sure the values of target label Y are in {0, 1} here. The operator will
scale values of Y to {-1, +1} when computing loss and gradients.
)DOC"
);
}
};
...
...
@@ -64,7 +78,6 @@ class ModifiedHuberLossGradOp : public framework::OperatorWithKernel {
auto
*
intermediate_val
=
context
.
Input
<
Tensor
>
(
"intermediate_val"
);
auto
*
out_grad
=
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
x_grad
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
y_grad
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
PADDLE_ENFORCE_NOT_NULL
(
x
,
"Input X must not be null."
);
PADDLE_ENFORCE_NOT_NULL
(
y
,
"Target Y must not be null."
);
...
...
@@ -80,7 +93,6 @@ class ModifiedHuberLossGradOp : public framework::OperatorWithKernel {
"Dimension of Out gradient and X must be the same (N*1)."
);
if
(
x_grad
)
x_grad
->
Resize
(
x
->
dims
());
if
(
y_grad
)
y_grad
->
Resize
(
y
->
dims
());
}
};
...
...
paddle/operators/modified_huber_loss_op.cu
浏览文件 @
98411745
...
...
@@ -9,24 +9,61 @@
See the License for the specific language governing permissions and
limitations under the License. */
#include <thrust/device_ptr.h>
#include <thrust/device_vector.h>
#include <thrust/for_each.h>
#include <thrust/tuple.h>
#include "paddle/framework/op_registry.h"
#include "paddle/operators/modified_huber_loss_op.h"
#include "paddle/platform/hostdevice.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
struct
ModifiedHuberLossBackward
{
template
<
typename
Tuple
>
HOSTDEVICE
void
operator
()(
Tuple
t
)
const
{
auto
inter_val
=
thrust
::
get
<
1
>
(
t
);
auto
y_val
=
thrust
::
get
<
2
>
(
t
);
auto
out_grad
=
thrust
::
get
<
3
>
(
t
);
if
(
inter_val
<
-
1
)
{
thrust
::
get
<
0
>
(
t
)
=
-
4
*
(
2
*
y_val
-
1
)
*
out_grad
;
}
else
if
(
inter_val
<
1
)
{
thrust
::
get
<
0
>
(
t
)
=
-
2
*
(
1
-
inter_val
)
*
(
2
*
y_val
-
1
)
*
out_grad
;
}
else
{
thrust
::
get
<
0
>
(
t
)
=
0
;
}
}
};
template
<
typename
T
>
class
ModifiedHuberLossGradGPUKernel
:
public
framework
::
OpKernel
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
// auto* in0 = context.Input<Tensor>("X");
// auto* in1 = context.Input<Tensor>("Y");
// auto* in2 = context.Input<Tensor>("intermediate_val");
// auto* in3 = context.Input<Tensor>(framework::GradVarName("Out"));
// auto* out0 = context.Output<Tensor>(framework::GradVarName("X"));
// auto* out1 = context.Output<Tensor>(framework::GradVarName("X"));
auto
*
in0
=
context
.
Input
<
Tensor
>
(
"Y"
);
auto
*
in1
=
context
.
Input
<
Tensor
>
(
"intermediate_val"
);
auto
*
in2
=
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
out0
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
if
(
out0
)
{
auto
counts
=
framework
::
product
(
in1
->
dims
());
auto
y_ptr
=
thrust
::
device_pointer_cast
(
in0
->
data
<
T
>
());
auto
inter_val_ptr
=
thrust
::
device_pointer_cast
(
in1
->
data
<
T
>
());
auto
out_grad_ptr
=
thrust
::
device_pointer_cast
(
in2
->
data
<
T
>
());
thrust
::
device_ptr
<
T
>
x_grad_ptr
(
out0
->
mutable_data
<
T
>
(
context
.
GetPlace
()));
auto
iter_begin
=
thrust
::
make_zip_iterator
(
thrust
::
make_tuple
(
x_grad_ptr
,
inter_val_ptr
,
y_ptr
,
out_grad_ptr
));
auto
iter_end
=
thrust
::
make_zip_iterator
(
thrust
::
make_tuple
(
x_grad_ptr
+
counts
,
inter_val_ptr
+
counts
,
y_ptr
+
counts
,
out_grad_ptr
+
counts
));
thrust
::
for_each
(
iter_begin
,
iter_end
,
ModifiedHuberLossBackward
());
}
}
};
...
...
paddle/operators/modified_huber_loss_op.h
浏览文件 @
98411745
...
...
@@ -74,49 +74,31 @@ class ModifiedHuberLossKernel : public framework::OpKernel {
}
};
// Use thrust lib to unify cpu and gpu
// CPU backward kernel
template
<
typename
T
>
class
ModifiedHuberLossGradCPUKernel
:
public
framework
::
OpKernel
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
in0
=
context
.
Input
<
Tensor
>
(
"X"
);
auto
*
in1
=
context
.
Input
<
Tensor
>
(
"Y"
);
auto
*
in2
=
context
.
Input
<
Tensor
>
(
"intermediate_val"
);
auto
*
in3
=
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
in0
=
context
.
Input
<
Tensor
>
(
"Y"
);
auto
*
in1
=
context
.
Input
<
Tensor
>
(
"intermediate_val"
);
auto
*
in2
=
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
out0
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
out1
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
// loop inter_val (x<-1) (x<1) otherwise
const
T
*
p_inter_val
=
in2
->
data
<
T
>
();
const
T
*
p_out_grad
=
in3
->
data
<
T
>
();
size_t
counts
=
static_cast
<
size_t
>
(
framework
::
product
(
in2
->
dims
()));
if
(
out0
)
{
T
*
p_x_grad
=
out0
->
mutable_data
<
T
>
(
context
.
GetPlace
());
const
T
*
p_y
=
in1
->
data
<
T
>
();
ModifiedHuberLossBackward
(
p_inter_val
,
p_y
,
p_out_grad
,
p_x_grad
,
counts
);
}
if
(
out1
)
{
T
*
p_y_grad
=
out1
->
mutable_data
<
T
>
(
context
.
GetPlace
());
const
T
*
p_x
=
in0
->
data
<
T
>
();
ModifiedHuberLossBackward
(
p_inter_val
,
p_x
,
p_out_grad
,
p_y_grad
,
counts
);
}
}
protected:
void
ModifiedHuberLossBackward
(
const
T
*
p_inter_data
,
const
T
*
p_in_data
,
const
T
*
p_in_grad
,
T
*
p_out_grad
,
size_t
counts
)
const
{
for
(
size_t
i
=
0
;
i
<
counts
;
++
i
)
{
if
(
p_inter_data
[
i
]
<
-
1
)
{
p_out_grad
[
i
]
=
-
4
*
p_in_data
[
i
]
*
p_in_grad
[
i
];
}
else
if
(
p_inter_data
[
i
]
<
1
)
{
p_out_grad
[
i
]
=
-
2
*
(
1
-
p_inter_data
[
i
])
*
p_in_data
[
i
]
*
p_in_grad
[
i
];
}
else
{
p_out_grad
[
i
]
=
0
;
const
T
*
y_ptr
=
in0
->
data
<
T
>
();
const
T
*
inter_val_ptr
=
in1
->
data
<
T
>
();
const
T
*
out_grad_ptr
=
in2
->
data
<
T
>
();
size_t
counts
=
static_cast
<
size_t
>
(
framework
::
product
(
in1
->
dims
()));
T
*
x_grad_ptr
=
out0
->
mutable_data
<
T
>
(
context
.
GetPlace
());
for
(
size_t
i
=
0
;
i
<
counts
;
++
i
)
{
if
(
inter_val_ptr
[
i
]
<
-
1
)
{
x_grad_ptr
[
i
]
=
-
4
*
(
2
*
y_ptr
[
i
]
-
1
)
*
out_grad_ptr
[
i
];
}
else
if
(
inter_val_ptr
[
i
]
<
1
)
{
x_grad_ptr
[
i
]
=
-
2
*
(
1
-
inter_val_ptr
[
i
])
*
(
2
*
y_ptr
[
i
]
-
1
)
*
out_grad_ptr
[
i
];
}
else
{
x_grad_ptr
[
i
]
=
0
;
}
}
}
}
...
...
python/paddle/v2/framework/tests/test_modified_huber_loss_op.py
0 → 100644
浏览文件 @
98411745
import
unittest
from
op_test_util
import
OpTestMeta
from
gradient_checker
import
GradientChecker
,
create_op
from
paddle.v2.framework.op
import
Operator
import
numpy
as
np
def
modified_huber_loss_forward
(
val
):
if
val
<
-
1
:
return
-
4
*
a
elif
val
<
1
:
return
(
1
-
val
)
*
(
1
-
val
)
else
:
return
0
class
TestModifiedHuberLossOp_f0
(
unittest
.
TestCase
):
__metaclass__
=
OpTestMeta
def
setUp
(
self
):
self
.
type
=
'modified_huber_loss'
samples_num
=
32
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
-
1
,
1.
,
(
samples_num
,
1
)).
astype
(
'float32'
),
'Y'
:
np
.
random
.
choice
([
0
,
1
],
samples_num
).
reshape
((
samples_num
,
1
))
}
product_res
=
self
.
inputs
[
'X'
]
*
(
2
*
self
.
inputs
[
'Y'
]
-
1
)
loss
=
np
.
vectorize
(
modified_huber_loss_forward
)(
product_res
)
self
.
outputs
=
{
'intermediate_val'
:
product_res
,
'Out'
:
loss
.
reshape
((
samples_num
,
1
))
}
class
TestModifiedHuberLossGradOp
(
GradientChecker
):
def
test_modified_huber_loss_b0
(
self
):
samples_num
=
10
inputs
=
{
'X'
:
np
.
random
.
uniform
(
-
1
,
1
,
(
samples_num
,
1
)).
astype
(
'float32'
),
'Y'
:
np
.
random
.
choice
([
0
,
1
],
samples_num
).
reshape
((
samples_num
,
1
))
}
op
=
Operator
(
"modified_huber_loss"
,
X
=
'X'
,
Y
=
'Y'
,
intermediate_val
=
'intermediate_val'
,
Out
=
'Out'
)
self
.
compare_grad
(
op
,
inputs
,
no_grad_set
=
set
([
'intermediate_val'
,
'Y'
]))
self
.
check_grad
(
op
,
inputs
,
set
([
"X"
]),
"Out"
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录