Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
9774f965
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
未验证
提交
9774f965
编写于
4月 21, 2022
作者:
Z
Zhangjingyu06
提交者:
GitHub
4月 21, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
modify batch_norm and batch_norm_grad. *test=kunlun (#41976)
上级
c3b0b680
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
101 addition
and
75 deletion
+101
-75
paddle/fluid/operators/batch_norm_op_xpu.cc
paddle/fluid/operators/batch_norm_op_xpu.cc
+101
-75
未找到文件。
paddle/fluid/operators/batch_norm_op_xpu.cc
浏览文件 @
9774f965
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
...
...
@@ -38,15 +37,25 @@ class BatchNormXPUKernel : public framework::OpKernel<T> {
bool
global_stats
=
test_mode
||
use_global_stats
;
const
auto
&
data_layout_str
=
ctx
.
Attr
<
std
::
string
>
(
"data_layout"
);
const
auto
data_layout
=
framework
::
StringToDataLayout
(
data_layout_str
);
PADDLE_ENFORCE_EQ
(
data_layout_str
==
"NCHW"
||
data_layout_str
==
"NHWC"
,
true
,
platform
::
errors
::
InvalidArgument
(
"The 'data_layout' attribute must be NCHW or NHWC. "
"But recevived 'data_layout' is [%s]."
,
data_layout_str
));
const
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
const
auto
&
x_dims
=
x
->
dims
();
int
temp
=
x_dims
[
3
];
temp
=
(
x_dims
.
size
()
!=
4
)
?
1
:
temp
;
bool
is_nchw
=
(
data_layout
==
DataLayout
::
kNCHW
);
const
int
N
=
x_dims
[
0
];
const
int
C
=
is_nchw
?
x_dims
[
1
]
:
temp
;
const
int
H
=
is_nchw
?
x_dims
[
2
]
:
x_dims
[
1
];
const
int
W
=
is_nchw
?
temp
:
x_dims
[
2
];
PADDLE_ENFORCE_EQ
(
x_dims
.
size
()
>=
2
&&
x_dims
.
size
()
<=
5
,
true
,
platform
::
errors
::
InvalidArgument
(
"The size of input's dimensions should be between 2 and 5"
"But received: the size of input's dimensions is [%d]"
,
x_dims
.
size
()));
int
N
,
C
,
H
,
W
,
D
;
ExtractNCWHD
(
x_dims
,
data_layout
,
&
N
,
&
C
,
&
H
,
&
W
,
&
D
);
const
auto
*
scale
=
ctx
.
Input
<
Tensor
>
(
"Scale"
);
const
auto
*
bias
=
ctx
.
Input
<
Tensor
>
(
"Bias"
);
const
auto
*
x_data
=
x
->
data
<
T
>
();
...
...
@@ -67,6 +76,7 @@ class BatchNormXPUKernel : public framework::OpKernel<T> {
saved_variance
->
mutable_data
<
float
>
(
ctx
.
GetPlace
());
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
bool
is_nchw
=
data_layout_str
==
"NCHW"
;
if
(
!
global_stats
)
{
auto
*
mean_out_data
=
mean_out
->
data
<
float
>
();
...
...
@@ -83,35 +93,29 @@ class BatchNormXPUKernel : public framework::OpKernel<T> {
&
mom_cpu
);
momentum
=
mom_tensor
->
data
<
float
>
()[
0
];
}
if
(
C
==
1
)
{
int
r
=
xpu
::
batch_norm
<
T
>
(
dev_ctx
.
x_context
(),
x_data
,
y_data
,
N
,
1
,
H
,
W
,
epsilon
,
momentum
,
scale_data
,
bias_data
,
saved_mean_data
,
saved_variance_data
,
mean_out_data
,
variance_out_data
,
true
);
PADDLE_ENFORCE_EQ
(
r
,
xpu
::
Error_t
::
SUCCESS
,
platform
::
errors
::
External
(
"The batch_norm XPU API return wrong value[%d %s]"
,
r
,
XPUAPIErrorMsg
[
r
]));
}
else
{
int
r
=
xpu
::
batch_norm
<
T
>
(
dev_ctx
.
x_context
(),
x_data
,
y_data
,
N
,
C
,
H
,
W
,
epsilon
,
momentum
,
scale_data
,
bias_data
,
saved_mean_data
,
saved_variance_data
,
mean_out_data
,
variance_out_data
,
is_nchw
);
PADDLE_ENFORCE_EQ
(
r
,
xpu
::
Error_t
::
SUCCESS
,
platform
::
errors
::
External
(
"The batch_norm XPU API return wrong value[%d %s]"
,
r
,
XPUAPIErrorMsg
[
r
]));
}
int
r
=
xpu
::
batch_norm
<
T
>
(
dev_ctx
.
x_context
(),
x_data
,
y_data
,
N
,
C
,
H
,
W
,
epsilon
,
momentum
,
scale_data
,
bias_data
,
saved_mean_data
,
saved_variance_data
,
mean_out_data
,
variance_out_data
,
is_nchw
);
PADDLE_ENFORCE_EQ
(
r
,
xpu
::
Error_t
::
SUCCESS
,
platform
::
errors
::
External
(
"The batch_norm XPU API return wrong value[%d %s]"
,
r
,
XPUAPIErrorMsg
[
r
]));
}
else
{
PADDLE_ENFORCE_EQ
(
data_layout_str
==
"NCHW"
,
true
,
platform
::
errors
::
InvalidArgument
(
"The batch_norm_infer 'data_layout' attribute must be NCHW. "
"But recevived 'data_layout' is [%s]."
,
data_layout_str
));
const
auto
*
mean
=
ctx
.
Input
<
Tensor
>
(
"Mean"
);
const
auto
*
variance
=
ctx
.
Input
<
Tensor
>
(
"Variance"
);
const
auto
*
mean_data
=
mean
->
data
<
float
>
();
const
auto
*
variance_data
=
variance
->
data
<
float
>
();
int
r
=
xpu
::
batch_norm_infer
(
dev_ctx
.
x_context
(),
x_data
,
y_data
,
N
,
C
,
H
,
W
,
epsilon
,
scale_data
,
bias_data
,
mean_data
,
variance_data
,
true
);
mean_data
,
variance_data
,
is_nchw
);
PADDLE_ENFORCE_EQ
(
r
,
xpu
::
Error_t
::
SUCCESS
,
platform
::
errors
::
External
(
...
...
@@ -172,6 +176,13 @@ class BatchNormGradXPUKernel : public framework::OpKernel<T> {
const
float
epsilon
=
ctx
.
Attr
<
float
>
(
"epsilon"
);
const
auto
data_layout
=
framework
::
StringToDataLayout
(
data_layout_str
);
PADDLE_ENFORCE_EQ
(
data_layout_str
==
"NCHW"
||
data_layout_str
==
"NHWC"
,
true
,
platform
::
errors
::
InvalidArgument
(
"The 'data_layout' attribute must be NCHW or NHWC. "
"But recevived 'data_layout' is [%s]."
,
data_layout_str
));
auto
*
d_x
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
d_scale
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Scale"
));
auto
*
d_bias
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Bias"
));
...
...
@@ -204,13 +215,15 @@ class BatchNormGradXPUKernel : public framework::OpKernel<T> {
}
const
auto
&
x_dims
=
x
->
dims
();
int
temp
=
x_dims
[
3
];
temp
=
(
x_dims
.
size
()
!=
4
)
?
1
:
temp
;
bool
is_nchw
=
(
data_layout
==
DataLayout
::
kNCHW
);
const
int
N
=
x_dims
[
0
];
const
int
C
=
is_nchw
?
x_dims
[
1
]
:
temp
;
const
int
H
=
is_nchw
?
x_dims
[
2
]
:
x_dims
[
1
];
const
int
W
=
is_nchw
?
temp
:
x_dims
[
2
];
PADDLE_ENFORCE_EQ
(
x_dims
.
size
()
>=
2
&&
x_dims
.
size
()
<=
5
,
true
,
platform
::
errors
::
InvalidArgument
(
"The size of input's dimensions should be between 2 and 5"
"But received: the size of input's dimensions is [%d]"
,
x_dims
.
size
()));
int
N
,
C
,
H
,
W
,
D
;
ExtractNCWHD
(
x_dims
,
data_layout
,
&
N
,
&
C
,
&
H
,
&
W
,
&
D
);
const
auto
*
x_data
=
x
->
data
<
T
>
();
const
auto
*
d_y_data
=
d_y
->
data
<
T
>
();
...
...
@@ -235,42 +248,45 @@ class BatchNormGradXPUKernel : public framework::OpKernel<T> {
"the size of scale's dimensions is [%d], the dimensions of scale "
"is [%s]."
,
scale
->
dims
().
size
(),
scale
->
dims
()));
PADDLE_ENFORCE_EQ
(
scale
->
dims
()[
0
],
C
,
platform
::
errors
::
InvalidArgument
(
"The first dimension of scale must equal to Channels[%d]. But "
"received: the first dimension of scale is [%d]"
,
C
,
scale
->
dims
()[
0
]));
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
xpu
::
ctx_guard
RAII_GUARD
(
dev_ctx
.
x_context
());
const
T
*
mean_data
=
nullptr
;
const
T
*
inv_var_data
=
nullptr
;
const
auto
*
batch_mean
=
ctx
.
Input
<
Tensor
>
(
"SavedMean"
);
const
auto
*
batch_inv_std
=
ctx
.
Input
<
Tensor
>
(
"SavedVariance"
);
const
auto
*
global_mean
=
ctx
.
Input
<
Tensor
>
(
"Mean"
);
const
auto
*
global_var
=
ctx
.
Input
<
Tensor
>
(
"Variance"
);
// TODO(guozibin): hadle the situation case of N * H * W = 1
if
(
!
use_global_stats
)
{
const
auto
*
saved_mean
=
ctx
.
Input
<
Tensor
>
(
"SavedMean"
);
// SavedVariance have been reverted in forward operator
const
auto
*
saved_inv_variance
=
ctx
.
Input
<
Tensor
>
(
"SavedVariance"
);
mean_data
=
saved_mean
->
data
<
float
>
();
inv_var_data
=
saved_inv_variance
->
data
<
float
>
();
}
else
{
const
auto
*
running_mean
=
ctx
.
Input
<
Tensor
>
(
"Mean"
);
const
auto
*
running_variance
=
ctx
.
Input
<
Tensor
>
(
"Variance"
);
mean_data
=
running_mean
->
data
<
float
>
();
inv_var_data
=
running_variance
->
data
<
float
>
();
float
*
running_inv_var_data
=
RAII_GUARD
.
alloc_l3_or_gm
<
float
>
(
running_variance
->
numel
());
float
*
epsilon_data
=
RAII_GUARD
.
alloc_l3_or_gm
<
float
>
(
1
);
int
r1
=
calculate_inv_var
(
dev_ctx
.
x_context
(),
inv_var_data
,
epsilon
,
C
,
epsilon_data
,
running_inv_var_data
);
PADDLE_ENFORCE_EQ
(
r1
,
XPU_SUCCESS
,
platform
::
errors
::
External
(
"XPU API(batch_norm_grad "
"calculate_inv_var function) "
"return wrong value[%d %s]"
,
r1
,
XPUAPIErrorMsg
[
r1
]));
inv_var_data
=
running_inv_var_data
;
}
if
(
is_inplace
)
{
float
*
global_inv_std_data
=
nullptr
;
if
(
use_global_stats
)
{
global_inv_std_data
=
RAII_GUARD
.
alloc_l3_or_gm
<
float
>
(
global_var
->
numel
());
float
*
epsilon_data
=
RAII_GUARD
.
alloc_l3_or_gm
<
float
>
(
1
);
int
r1
=
calculate_inv_var
(
dev_ctx
.
x_context
(),
global_var
->
data
<
float
>
(),
epsilon
,
C
,
epsilon_data
,
global_inv_std_data
);
PADDLE_ENFORCE_EQ
(
r1
,
XPU_SUCCESS
,
platform
::
errors
::
External
(
"XPU API(batch_norm_grad "
"calculate_inv_var function) "
"return wrong value[%d %s]"
,
r1
,
XPUAPIErrorMsg
[
r1
]));
}
auto
px
=
*
x
;
auto
*
inv_std_data
=
use_global_stats
?
global_inv_std_data
:
batch_inv_std
->
data
<
float
>
();
auto
mean_data
=
use_global_stats
?
global_mean
->
data
<
float
>
()
:
batch_mean
->
data
<
float
>
();
int
r2
=
calculate_inv_BN_Y
(
dev_ctx
.
x_context
(),
px
.
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
scale
->
data
<
float
>
(),
bias
->
data
<
float
>
(),
mean_data
,
inv_
var
_data
,
N
,
scale
->
data
<
float
>
(),
bias
->
data
<
float
>
(),
mean_data
,
inv_
std
_data
,
N
,
C
,
H
*
W
,
x
->
data
<
T
>
());
PADDLE_ENFORCE_EQ
(
r2
,
XPU_SUCCESS
,
platform
::
errors
::
External
(
"XPU API(batch_norm_grad "
...
...
@@ -278,19 +294,29 @@ class BatchNormGradXPUKernel : public framework::OpKernel<T> {
"return wrong value[%d %s]"
,
r2
,
XPUAPIErrorMsg
[
r2
]));
}
if
(
!
d_x
)
{
d_x_data
=
RAII_GUARD
.
alloc_l3_or_gm
<
T
>
(
x
->
numel
());
}
if
(
!
d_scale
)
{
d_scale_data
=
RAII_GUARD
.
alloc_l3_or_gm
<
float
>
(
C
);
}
if
(
!
d_bias_data
)
{
d_bias_data
=
RAII_GUARD
.
alloc_l3_or_gm
<
float
>
(
C
);
}
int
r3
=
xpu
::
batch_norm_grad
<
T
>
(
dev_ctx
.
x_context
(),
x_data
,
d_y_data
,
d_x_data
,
N
,
C
,
H
,
W
,
scale_data
,
mean_data
,
inv_var_data
,
d_scale_data
,
d_bias_data
,
is_nchw
);
int
r3
;
bool
is_nchw
=
data_layout_str
==
"NCHW"
;
if
(
use_global_stats
)
{
r3
=
xpu
::
batch_norm_grad
<
T
>
(
dev_ctx
.
x_context
(),
x_data
,
d_y_data
,
d_x_data
,
N
,
C
,
H
,
W
,
scale_data
,
nullptr
,
nullptr
,
d_scale_data
,
d_bias_data
,
is_nchw
,
global_mean
->
data
<
float
>
(),
global_var
->
data
<
float
>
(),
epsilon
);
}
else
{
if
(
!
d_x
)
{
d_x_data
=
RAII_GUARD
.
alloc_l3_or_gm
<
T
>
(
x
->
numel
());
}
if
(
!
d_scale
)
{
d_scale_data
=
RAII_GUARD
.
alloc_l3_or_gm
<
float
>
(
C
);
}
if
(
!
d_bias_data
)
{
d_bias_data
=
RAII_GUARD
.
alloc_l3_or_gm
<
float
>
(
C
);
}
r3
=
xpu
::
batch_norm_grad
<
T
>
(
dev_ctx
.
x_context
(),
x_data
,
d_y_data
,
d_x_data
,
N
,
C
,
H
,
W
,
scale_data
,
batch_mean
->
data
<
float
>
(),
batch_inv_std
->
data
<
float
>
(),
d_scale_data
,
d_bias_data
,
is_nchw
);
}
PADDLE_ENFORCE_EQ
(
r3
,
XPU_SUCCESS
,
platform
::
errors
::
External
(
"XPU API(batch_norm_grad) return "
"wrong value[%d %s]"
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录