提交 97556119 编写于 作者: D dengkaipeng

add unittest for nearest_neighbor_interp_op

上级 a24691a2
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. /* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License"); Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License. you may not use this file except in compliance with the License.
You may obtain a copy of the License at You may obtain a copy of the License at
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. /* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License"); Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License. you may not use this file except in compliance with the License.
You may obtain a copy of the License at You may obtain a copy of the License at
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. /* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License"); Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License. you may not use this file except in compliance with the License.
You may obtain a copy of the License at You may obtain a copy of the License at
...@@ -37,12 +37,12 @@ class NearestNeighborInterpKernel : public framework::OpKernel<T> { ...@@ -37,12 +37,12 @@ class NearestNeighborInterpKernel : public framework::OpKernel<T> {
out_w = out_size_data[1]; out_w = out_size_data[1];
} }
const int in_n = input->dims()[0]; const int n = input->dims()[0];
const int in_c = input->dims()[1]; const int c = input->dims()[1];
const int in_h = input->dims()[2]; const int in_h = input->dims()[2];
const int in_w = input->dims()[3]; const int in_w = input->dims()[3];
output->mutable_data<T>({in_n, in_c, out_h, out_w}, ctx.GetPlace()); output->mutable_data<T>({n, c, out_h, out_w}, ctx.GetPlace());
auto& device_ctx = auto& device_ctx =
ctx.template device_context<platform::CPUDeviceContext>(); ctx.template device_context<platform::CPUDeviceContext>();
math::SetConstant<platform::CPUDeviceContext, T> zero; math::SetConstant<platform::CPUDeviceContext, T> zero;
...@@ -61,11 +61,11 @@ class NearestNeighborInterpKernel : public framework::OpKernel<T> { ...@@ -61,11 +61,11 @@ class NearestNeighborInterpKernel : public framework::OpKernel<T> {
auto input_t = EigenTensor<T, 4>::From(*input); auto input_t = EigenTensor<T, 4>::From(*input);
auto output_t = EigenTensor<T, 4>::From(*output); auto output_t = EigenTensor<T, 4>::From(*output);
for (int k = 0; k < out_h; k++) { // loop for images for (int k = 0; k < out_h; k++) { // loop for images
int in_k = static_cast<int>(round(ratio_h * k));
for (int l = 0; l < out_w; l++) { for (int l = 0; l < out_w; l++) {
int in_k = static_cast<int>(round(ratio_h * k));
int in_l = static_cast<int>(round(ratio_w * l)); int in_l = static_cast<int>(round(ratio_w * l));
for (int i = 0; i < in_n; i++) { // loop for batches for (int i = 0; i < n; i++) { // loop for batches
for (int j = 0; j < in_c; j++) { // loop for channels for (int j = 0; j < c; j++) { // loop for channels
output_t(i, j, k, l) = input_t(i, j, in_k, in_l); output_t(i, j, k, l) = input_t(i, j, in_k, in_l);
} }
} }
...@@ -78,6 +78,7 @@ template <typename T> ...@@ -78,6 +78,7 @@ template <typename T>
class NearestNeighborInterpGradKernel : public framework::OpKernel<T> { class NearestNeighborInterpGradKernel : public framework::OpKernel<T> {
public: public:
void Compute(const framework::ExecutionContext& ctx) const override { void Compute(const framework::ExecutionContext& ctx) const override {
auto* input = ctx.Input<Tensor>("X");
auto* input_grad = ctx.Output<Tensor>(framework::GradVarName("X")); auto* input_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
auto* output_grad = ctx.Input<Tensor>(framework::GradVarName("Out")); auto* output_grad = ctx.Input<Tensor>(framework::GradVarName("Out"));
...@@ -90,11 +91,12 @@ class NearestNeighborInterpGradKernel : public framework::OpKernel<T> { ...@@ -90,11 +91,12 @@ class NearestNeighborInterpGradKernel : public framework::OpKernel<T> {
out_w = out_size_data[1]; out_w = out_size_data[1];
} }
const int in_n = input_grad->dims()[0]; const int n = input->dims()[0];
const int in_c = input_grad->dims()[1]; const int c = input->dims()[1];
const int in_h = input_grad->dims()[2]; const int in_h = input->dims()[2];
const int in_w = input_grad->dims()[3]; const int in_w = input->dims()[3];
input_grad->mutable_data<T>({n, c, in_h, in_w}, ctx.GetPlace());
auto& device_ctx = auto& device_ctx =
ctx.template device_context<platform::CPUDeviceContext>(); ctx.template device_context<platform::CPUDeviceContext>();
math::SetConstant<platform::CPUDeviceContext, T> zero; math::SetConstant<platform::CPUDeviceContext, T> zero;
...@@ -113,11 +115,11 @@ class NearestNeighborInterpGradKernel : public framework::OpKernel<T> { ...@@ -113,11 +115,11 @@ class NearestNeighborInterpGradKernel : public framework::OpKernel<T> {
auto input_grad_t = EigenTensor<T, 4>::From(*input_grad); auto input_grad_t = EigenTensor<T, 4>::From(*input_grad);
auto output_grad_t = EigenTensor<T, 4>::From(*output_grad); auto output_grad_t = EigenTensor<T, 4>::From(*output_grad);
for (int k = 0; k < out_h; k++) { // loop for images for (int k = 0; k < out_h; k++) { // loop for images
int in_k = static_cast<int>(round(ratio_h * k));
for (int l = 0; l < out_w; l++) { for (int l = 0; l < out_w; l++) {
int in_k = static_cast<int>(round(ratio_h * k));
int in_l = static_cast<int>(round(ratio_w * l)); int in_l = static_cast<int>(round(ratio_w * l));
for (int i = 0; i < in_n; i++) { // loop for batches for (int i = 0; i < n; i++) { // loop for batches
for (int j = 0; j < in_c; j++) { // loop for channels for (int j = 0; j < c; j++) { // loop for channels
input_grad_t(i, j, in_k, in_l) += output_grad_t(i, j, k, l); input_grad_t(i, j, in_k, in_l) += output_grad_t(i, j, k, l);
} }
} }
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
from op_test import OpTest
import paddle.fluid.core as core
def nearest_neighbor_interp_np(X, out_h, out_w, out_size=None):
"""nearest neighbor interpolation implement in shape [N, C, H, W]"""
if out_size is not None:
out_h = out_size[0]
out_w = out_size[1]
n, c, in_h, in_w = X.shape
ratio_h = ratio_w = 0.0
if out_h > 1:
ratio_h = (in_h - 1.0) / (out_h - 1.0)
if out_w > 1:
ratio_w = (in_w - 1.0) / (out_w - 1.0)
out = np.zeros((n, c, out_h, out_w))
for i in range(out_h):
in_i = int(round(ratio_h * i))
for j in range(out_w):
in_j = int(round(ratio_w * j))
out[:, :, i, j] = X[:, :, in_i, in_j]
return out.astype(X.dtype)
class TestBilinearInterpOp(OpTest):
def setUp(self):
self.out_size = None
self.init_test_case()
self.op_type = "nearest_neighbor_interp"
input_np = np.random.random(self.input_shape).astype("float32")
output_np = nearest_neighbor_interp_np(input_np, self.out_h, self.out_w,
self.out_size)
self.inputs = {'X': input_np}
if self.out_size is not None:
self.inputs['OutSize'] = self.out_size
self.attrs = {'out_h': self.out_h, 'out_w': self.out_w}
self.outputs = {'Out': output_np}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(['X'], 'Out', in_place=True)
def init_test_case(self):
self.input_shape = [2, 3, 4, 4]
self.out_h = 2
self.out_w = 2
self.out_size = np.array([3, 3]).astype("int32")
class TestCase1(TestBilinearInterpOp):
def init_test_case(self):
self.input_shape = [4, 1, 7, 8]
self.out_h = 1
self.out_w = 1
class TestCase2(TestBilinearInterpOp):
def init_test_case(self):
self.input_shape = [3, 3, 9, 6]
self.out_h = 12
self.out_w = 12
class TestCase3(TestBilinearInterpOp):
def init_test_case(self):
self.input_shape = [1, 1, 128, 64]
self.out_h = 64
self.out_w = 128
class TestCase4(TestBilinearInterpOp):
def init_test_case(self):
self.input_shape = [4, 1, 7, 8]
self.out_h = 1
self.out_w = 1
self.out_size = np.array([2, 2]).astype("int32")
class TestCase5(TestBilinearInterpOp):
def init_test_case(self):
self.input_shape = [3, 3, 9, 6]
self.out_h = 12
self.out_w = 12
self.out_size = np.array([11, 11]).astype("int32")
class TestCase6(TestBilinearInterpOp):
def init_test_case(self):
self.input_shape = [1, 1, 128, 64]
self.out_h = 64
self.out_w = 128
self.out_size = np.array([65, 129]).astype("int32")
class TestBilinearInterpOpUint8(OpTest):
def setUp(self):
self.out_size = None
self.init_test_case()
self.op_type = "nearest_neighbor_interp"
input_np = np.random.randint(
low=0, high=256, size=self.input_shape).astype("uint8")
output_np = nearest_neighbor_interp_np(input_np, self.out_h, self.out_w,
self.out_size)
self.inputs = {'X': input_np}
if self.out_size is not None:
self.inputs['OutSize'] = self.out_size
self.attrs = {'out_h': self.out_h, 'out_w': self.out_w}
self.outputs = {'Out': output_np}
def test_check_output(self):
self.check_output_with_place(place=core.CPUPlace(), atol=1)
def init_test_case(self):
self.input_shape = [1, 3, 9, 6]
self.out_h = 10
self.out_w = 9
class TestCase1Uint8(TestBilinearInterpOpUint8):
def init_test_case(self):
self.input_shape = [2, 3, 128, 64]
self.out_h = 120
self.out_w = 50
class TestCase2Uint8(TestBilinearInterpOpUint8):
def init_test_case(self):
self.input_shape = [4, 1, 7, 8]
self.out_h = 5
self.out_w = 13
self.out_size = np.array([6, 15]).astype("int32")
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册