Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
94eea16e
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
94eea16e
编写于
4月 03, 2018
作者:
T
typhoonzero
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix sendrecv port bind
上级
3fd92662
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
233 addition
and
163 deletion
+233
-163
paddle/fluid/operators/detail/grpc_server.cc
paddle/fluid/operators/detail/grpc_server.cc
+7
-2
paddle/fluid/operators/detail/grpc_server.h
paddle/fluid/operators/detail/grpc_server.h
+3
-0
paddle/fluid/operators/listen_and_serv_op.cc
paddle/fluid/operators/listen_and_serv_op.cc
+116
-156
paddle/fluid/operators/listen_and_serv_op.h
paddle/fluid/operators/listen_and_serv_op.h
+85
-0
paddle/fluid/operators/send_recv_op_test.cc
paddle/fluid/operators/send_recv_op_test.cc
+22
-5
未找到文件。
paddle/fluid/operators/detail/grpc_server.cc
浏览文件 @
94eea16e
...
...
@@ -186,7 +186,8 @@ void AsyncGRPCServer::WaitClientGet(int count) {
void
AsyncGRPCServer
::
RunSyncUpdate
()
{
::
grpc
::
ServerBuilder
builder
;
builder
.
AddListeningPort
(
address_
,
::
grpc
::
InsecureServerCredentials
());
builder
.
AddListeningPort
(
address_
,
::
grpc
::
InsecureServerCredentials
(),
&
selected_port_
);
builder
.
SetMaxSendMessageSize
(
std
::
numeric_limits
<
int
>::
max
());
builder
.
SetMaxReceiveMessageSize
(
std
::
numeric_limits
<
int
>::
max
());
builder
.
RegisterService
(
&
service_
);
...
...
@@ -196,7 +197,8 @@ void AsyncGRPCServer::RunSyncUpdate() {
cq_prefetch_
=
builder
.
AddCompletionQueue
();
server_
=
builder
.
BuildAndStart
();
LOG
(
INFO
)
<<
"Server listening on "
<<
address_
<<
std
::
endl
;
LOG
(
INFO
)
<<
"Server listening on "
<<
address_
<<
" selected port: "
<<
selected_port_
;
std
::
function
<
void
()
>
send_register
=
std
::
bind
(
&
AsyncGRPCServer
::
TryToRegisterNewSendOne
,
this
);
...
...
@@ -242,6 +244,9 @@ void AsyncGRPCServer::TryToRegisterNewSendOne() {
VLOG
(
3
)
<<
"shutdown, do not TryToRegisterNewSendOne"
;
return
;
}
while
(
scope_
==
nullptr
)
{
sleep
(
0.01
);
}
RequestSend
*
send
=
new
RequestSend
(
&
service_
,
cq_send_
.
get
(),
scope_
,
&
var_recv_queue_
,
dev_ctx_
);
VLOG
(
4
)
<<
"Create RequestSend status:"
<<
send
->
Status
();
...
...
paddle/fluid/operators/detail/grpc_server.h
浏览文件 @
94eea16e
...
...
@@ -62,6 +62,8 @@ class AsyncGRPCServer final {
void
SetExecutor
(
framework
::
Executor
*
executor
)
{
executor_
=
executor
;
}
int
GetSelectedPort
()
{
return
selected_port_
;
}
const
ReceivedMessage
Get
()
{
return
this
->
var_recv_queue_
.
Pop
();
}
void
Push
(
const
std
::
string
&
msg_name
)
{
...
...
@@ -109,6 +111,7 @@ class AsyncGRPCServer final {
int
prefetch_blk_id_
;
framework
::
ProgramDesc
*
program_
;
framework
::
Executor
*
executor_
;
int
selected_port_
;
};
};
// namespace detail
...
...
paddle/fluid/operators/listen_and_serv_op.cc
浏览文件 @
94eea16e
...
...
@@ -12,185 +12,145 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <stdint.h>
#include <ostream>
#include <thread>
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/threadpool.h"
#include "paddle/fluid/operators/detail/grpc_server.h"
#include "paddle/fluid/operators/listen_and_serv_op.h"
namespace
paddle
{
namespace
operators
{
constexpr
char
kOptimizeBlock
[]
=
"OptimizeBlock"
;
void
RunServer
(
std
::
shared_ptr
<
detail
::
AsyncGRPCServer
>
service
)
{
service
->
RunSyncUpdate
();
VLOG
(
4
)
<<
"RunServer thread end"
;
}
static
void
CreateTensorFromMessageType
(
framework
::
Variable
*
var
,
sendrecv
::
VarType
var_type
)
{
if
(
var_type
==
sendrecv
::
VarType
::
LOD_TENSOR
)
{
var
->
GetMutable
<
framework
::
LoDTensor
>
();
}
else
if
(
var_type
==
sendrecv
::
VarType
::
SELECTED_ROWS
)
{
var
->
GetMutable
<
framework
::
SelectedRows
>
();
}
else
{
PADDLE_THROW
(
"VariableMessage type %d is not in "
"[LoDTensor, SelectedRows]"
,
var_type
);
}
ListenAndServOp
::
ListenAndServOp
(
const
std
::
string
&
type
,
const
framework
::
VariableNameMap
&
inputs
,
const
framework
::
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
)
:
OperatorBase
(
type
,
inputs
,
outputs
,
attrs
)
{}
int
ListenAndServOp
::
GetSelectedPort
()
{
return
rpc_service_
->
GetSelectedPort
();
}
static
void
ParallelExecuteBlocks
(
const
std
::
vector
<
size_t
>
&
parallel_blkids
,
framework
::
Executor
*
executor
,
framework
::
ProgramDesc
*
program
,
framework
::
Scope
*
scope
)
{
std
::
vector
<
std
::
future
<
void
>>
fs
;
for
(
size_t
idx
:
parallel_blkids
)
{
fs
.
push_back
(
framework
::
Async
([
&
executor
,
&
program
,
&
scope
,
idx
]()
{
int
run_block
=
idx
;
// thread local
try
{
executor
->
Run
(
*
program
,
scope
,
run_block
,
false
,
false
);
}
catch
(
std
::
exception
&
e
)
{
LOG
(
ERROR
)
<<
"run sub program error "
<<
e
.
what
();
}
}));
}
for
(
size_t
i
=
0
;
i
<
fs
.
size
();
++
i
)
fs
[
i
].
wait
();
void
ListenAndServOp
::
Stop
()
{
rpc_service_
->
Push
(
LISTEN_TERMINATE_MESSAGE
);
server_thread_
->
join
();
}
class
ListenAndServOp
:
public
framework
::
OperatorBase
{
public:
ListenAndServOp
(
const
std
::
string
&
type
,
const
framework
::
VariableNameMap
&
inputs
,
const
framework
::
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
)
:
OperatorBase
(
type
,
inputs
,
outputs
,
attrs
)
{
if
(
!
rpc_service_
)
{
std
::
string
endpoint
=
Attr
<
std
::
string
>
(
"endpoint"
);
rpc_service_
.
reset
(
new
detail
::
AsyncGRPCServer
(
endpoint
));
server_thread_
.
reset
(
new
std
::
thread
(
RunServer
,
rpc_service_
));
}
}
void
ListenAndServOp
::
RunImpl
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
dev_place
)
const
{
platform
::
DeviceContextPool
&
pool
=
platform
::
DeviceContextPool
::
Instance
();
auto
&
dev_ctx
=
*
pool
.
Get
(
dev_place
);
framework
::
Scope
&
recv_scope
=
scope
.
NewScope
();
LOG
(
INFO
)
<<
"created recv scope: "
<<
&
recv_scope
;
void
Stop
()
override
{
rpc_service_
->
Push
(
LISTEN_TERMINATE_MESSAGE
);
server_thread_
->
join
(
);
if
(
!
rpc_service_
)
{
std
::
string
endpoint
=
Attr
<
std
::
string
>
(
"endpoint"
);
rpc_service_
.
reset
(
new
detail
::
AsyncGRPCServer
(
endpoint
)
);
}
void
RunImpl
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
dev_place
)
const
override
{
platform
::
DeviceContextPool
&
pool
=
platform
::
DeviceContextPool
::
Instance
();
auto
&
dev_ctx
=
*
pool
.
Get
(
dev_place
);
framework
::
Scope
&
recv_scope
=
scope
.
NewScope
();
// FIXME(Yancey1989): initialize rpc server with lazy mode.
rpc_service_
->
SetScope
(
&
recv_scope
);
rpc_service_
->
SetDevCtx
(
&
dev_ctx
);
auto
ins
=
Inputs
(
"X"
);
auto
fan_in
=
Attr
<
int
>
(
"Fanin"
);
auto
*
block
=
Attr
<
framework
::
BlockDesc
*>
(
kOptimizeBlock
);
auto
*
program
=
block
->
Program
();
int
num_blocks
=
program
->
Size
();
PADDLE_ENFORCE_GE
(
num_blocks
,
2
,
"server program should have at least 2 blocks"
);
framework
::
Executor
executor
(
dev_place
);
// TODO(qiao) set proper fields for table lookup and update
rpc_service_
->
SetExecutor
(
&
executor
);
rpc_service_
->
SetPrefetchBlkdId
(
0
);
rpc_service_
->
SetProgram
(
program
);
// TODO(typhoonzero): change this to a while_op for every cluster-batch.
bool
exit_flag
=
false
;
// Record received sparse variables, so that
// we could reset those after execute optimize program
std
::
vector
<
framework
::
Variable
*>
sparse_vars
;
while
(
!
exit_flag
)
{
// Get from multiple trainers, we don't care about the order in which
// the gradients arrives, just add suffix 0~n and merge the gradient.
rpc_service_
->
SetCond
(
0
);
size_t
recv_var_cnt
=
0
;
int
batch_barrier
=
0
;
while
(
batch_barrier
!=
fan_in
)
{
const
detail
::
ReceivedMessage
v
=
rpc_service_
->
Get
();
auto
recv_var_name
=
v
.
first
;
if
(
recv_var_name
==
LISTEN_TERMINATE_MESSAGE
)
{
LOG
(
INFO
)
<<
"received terminate message and exit"
;
exit_flag
=
true
;
break
;
}
else
if
(
recv_var_name
==
BATCH_BARRIER_MESSAGE
)
{
VLOG
(
3
)
<<
"recv batch barrier message"
;
batch_barrier
++
;
continue
;
}
else
{
VLOG
(
3
)
<<
"received grad: "
<<
recv_var_name
;
recv_var_cnt
++
;
auto
var
=
v
.
second
->
GetVar
();
if
(
var
==
nullptr
)
{
LOG
(
ERROR
)
<<
"Can not find server side var: "
<<
recv_var_name
;
PADDLE_THROW
(
"Can not find server side var"
);
}
if
(
var
->
IsType
<
framework
::
SelectedRows
>
())
{
sparse_vars
.
push_back
(
var
);
}
}
}
if
(
exit_flag
)
{
rpc_service_
->
SetCond
(
1
);
rpc_service_
->
ShutDown
();
auto
ins
=
Inputs
(
"X"
);
auto
fan_in
=
Attr
<
int
>
(
"Fanin"
);
auto
*
block
=
Attr
<
framework
::
BlockDesc
*>
(
kOptimizeBlock
);
auto
*
program
=
block
->
Program
();
size_t
num_blocks
=
program
->
Size
();
PADDLE_ENFORCE_GE
(
num_blocks
,
2
,
"server program should have at least 2 blocks"
);
framework
::
Executor
executor
(
dev_place
);
// FIXME(Yancey1989): initialize rpc server with lazy mode.
rpc_service_
->
SetScope
(
&
recv_scope
);
rpc_service_
->
SetDevCtx
(
&
dev_ctx
);
// TODO(qiao) set proper fields for table lookup and update
rpc_service_
->
SetExecutor
(
&
executor
);
rpc_service_
->
SetPrefetchBlkdId
(
0
);
rpc_service_
->
SetProgram
(
program
);
// start the server listening after all member initialized.
server_thread_
.
reset
(
new
std
::
thread
(
RunServer
,
rpc_service_
));
// FIXME(typhoonzero): do we need to wait until the server port is ready?
sleep
(
5
);
// TODO(typhoonzero): change this to a while_op for every cluster-batch.
bool
exit_flag
=
false
;
// Record received sparse variables, so that
// we could reset those after execute optimize program
std
::
vector
<
framework
::
Variable
*>
sparse_vars
;
while
(
!
exit_flag
)
{
// Get from multiple trainers, we don't care about the order in which
// the gradients arrives, just add suffix 0~n and merge the gradient.
rpc_service_
->
SetCond
(
0
);
size_t
recv_var_cnt
=
0
;
int
batch_barrier
=
0
;
while
(
batch_barrier
!=
fan_in
)
{
const
detail
::
ReceivedMessage
v
=
rpc_service_
->
Get
();
auto
recv_var_name
=
v
.
first
;
if
(
recv_var_name
==
LISTEN_TERMINATE_MESSAGE
)
{
LOG
(
INFO
)
<<
"received terminate message and exit"
;
exit_flag
=
true
;
break
;
}
// NOTE: if is_gpu_place, CUDA kernels are laugched by multiple threads
// and this will still work.
// The optimize blocks which have the same parent ID would run parallel
// TODO(Yancey1989): need to use ParallelExecutor for future
size_t
last_parent_blkid
=
program
->
Block
(
1
).
Parent
();
std
::
vector
<
size_t
>
parallel_blkids
;
parallel_blkids
.
push_back
(
1
);
double
ts
=
detail
::
GetTimestamp
();
for
(
size_t
blkid
=
2
;
blkid
<
num_blocks
;
++
blkid
)
{
if
(
program
->
Block
(
blkid
).
Parent
()
!=
last_parent_blkid
)
{
for
(
size_t
idx
:
parallel_blkids
)
VLOG
(
3
)
<<
idx
;
ParallelExecuteBlocks
(
parallel_blkids
,
&
executor
,
program
,
&
recv_scope
);
parallel_blkids
.
clear
();
last_parent_blkid
=
program
->
Block
(
blkid
).
Parent
();
}
else
if
(
recv_var_name
==
BATCH_BARRIER_MESSAGE
)
{
VLOG
(
3
)
<<
"recv batch barrier message"
;
batch_barrier
++
;
continue
;
}
else
{
VLOG
(
3
)
<<
"received grad: "
<<
recv_var_name
;
recv_var_cnt
++
;
auto
var
=
v
.
second
->
GetVar
();
if
(
var
==
nullptr
)
{
LOG
(
ERROR
)
<<
"Can not find server side var: "
<<
recv_var_name
;
PADDLE_THROW
(
"Can not find server side var"
);
}
if
(
var
->
IsType
<
framework
::
SelectedRows
>
())
{
sparse_vars
.
push_back
(
var
);
}
parallel_blkids
.
push_back
(
blkid
);
}
ParallelExecuteBlocks
(
parallel_blkids
,
&
executor
,
program
,
&
recv_scope
);
VLOG
(
3
)
<<
"run all blocks spent "
<<
detail
::
GetTimestamp
()
-
ts
<<
"(ms)"
;
// Reset the received sparse variables, the sum operator would not
// sum the input sparse variables which rows is empty at the next
// mini-batch.
// TODO(Yancey1989): move the reset action into an operator, we couldn't
// have any hide logic in the operator.
for
(
auto
&
var
:
sparse_vars
)
{
var
->
GetMutable
<
framework
::
SelectedRows
>
()
->
mutable_rows
()
->
clear
();
}
}
if
(
exit_flag
)
{
rpc_service_
->
SetCond
(
1
);
// FIXME(typhoonzero): use another condition to sync wait clients get.
rpc_service_
->
WaitClientGet
(
fan_in
);
sparse_vars
.
clear
();
}
// while(true)
}
rpc_service_
->
ShutDown
();
break
;
}
protected:
std
::
shared_ptr
<
detail
::
AsyncGRPCServer
>
rpc_service_
;
std
::
shared_ptr
<
std
::
thread
>
server_thread_
;
};
// NOTE: if is_gpu_place, CUDA kernels are laugched by multiple threads
// and this will still work.
// The optimize blocks which have the same parent ID would run parallel
// TODO(Yancey1989): need to use ParallelExecutor for future
int32_t
last_parent_blkid
=
program
->
Block
(
1
).
Parent
();
std
::
vector
<
size_t
>
parallel_blkids
;
parallel_blkids
.
push_back
(
1
);
double
ts
=
detail
::
GetTimestamp
();
for
(
size_t
blkid
=
2
;
blkid
<
num_blocks
;
++
blkid
)
{
if
(
program
->
Block
(
blkid
).
Parent
()
!=
last_parent_blkid
)
{
for
(
size_t
idx
:
parallel_blkids
)
VLOG
(
3
)
<<
idx
;
ParallelExecuteBlocks
(
parallel_blkids
,
&
executor
,
program
,
&
recv_scope
);
parallel_blkids
.
clear
();
last_parent_blkid
=
program
->
Block
(
blkid
).
Parent
();
}
parallel_blkids
.
push_back
(
blkid
);
}
ParallelExecuteBlocks
(
parallel_blkids
,
&
executor
,
program
,
&
recv_scope
);
VLOG
(
3
)
<<
"run all blocks spent "
<<
detail
::
GetTimestamp
()
-
ts
<<
"(ms)"
;
// Reset the received sparse variables, the sum operator would not
// sum the input sparse variables which rows is empty at the next
// mini-batch.
// TODO(Yancey1989): move the reset action into an operator, we couldn't
// have any hide logic in the operator.
for
(
auto
&
var
:
sparse_vars
)
{
var
->
GetMutable
<
framework
::
SelectedRows
>
()
->
mutable_rows
()
->
clear
();
}
rpc_service_
->
SetCond
(
1
);
// FIXME(typhoonzero): use another condition to sync wait clients get.
rpc_service_
->
WaitClientGet
(
fan_in
);
sparse_vars
.
clear
();
}
// while(true)
}
class
ListenAndServOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
...
...
paddle/fluid/operators/listen_and_serv_op.h
0 → 100644
浏览文件 @
94eea16e
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <stdint.h>
#include <ostream>
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/threadpool.h"
#include "paddle/fluid/operators/detail/grpc_server.h"
namespace
paddle
{
namespace
operators
{
constexpr
char
kOptimizeBlock
[]
=
"OptimizeBlock"
;
void
RunServer
(
std
::
shared_ptr
<
detail
::
AsyncGRPCServer
>
service
);
static
void
CreateTensorFromMessageType
(
framework
::
Variable
*
var
,
sendrecv
::
VarType
var_type
)
{
if
(
var_type
==
sendrecv
::
VarType
::
LOD_TENSOR
)
{
var
->
GetMutable
<
framework
::
LoDTensor
>
();
}
else
if
(
var_type
==
sendrecv
::
VarType
::
SELECTED_ROWS
)
{
var
->
GetMutable
<
framework
::
SelectedRows
>
();
}
else
{
PADDLE_THROW
(
"VariableMessage type %d is not in "
"[LoDTensor, SelectedRows]"
,
var_type
);
}
}
static
void
ParallelExecuteBlocks
(
const
std
::
vector
<
size_t
>
&
parallel_blkids
,
framework
::
Executor
*
executor
,
framework
::
ProgramDesc
*
program
,
framework
::
Scope
*
scope
)
{
std
::
vector
<
std
::
future
<
void
>>
fs
;
for
(
size_t
idx
:
parallel_blkids
)
{
fs
.
push_back
(
framework
::
Async
([
&
executor
,
&
program
,
&
scope
,
idx
]()
{
int
run_block
=
idx
;
// thread local
try
{
executor
->
Run
(
*
program
,
scope
,
run_block
,
false
,
false
);
}
catch
(
std
::
exception
&
e
)
{
LOG
(
ERROR
)
<<
"run sub program error "
<<
e
.
what
();
}
}));
}
for
(
size_t
i
=
0
;
i
<
fs
.
size
();
++
i
)
fs
[
i
].
wait
();
}
class
ListenAndServOp
:
public
framework
::
OperatorBase
{
public:
ListenAndServOp
(
const
std
::
string
&
type
,
const
framework
::
VariableNameMap
&
inputs
,
const
framework
::
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
);
int
GetSelectedPort
();
void
Stop
()
override
;
void
RunImpl
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
dev_place
)
const
override
;
protected:
mutable
std
::
shared_ptr
<
detail
::
AsyncGRPCServer
>
rpc_service_
;
mutable
std
::
shared_ptr
<
std
::
thread
>
server_thread_
;
};
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/send_recv_op_test.cc
浏览文件 @
94eea16e
...
...
@@ -20,6 +20,7 @@ limitations under the License. */
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/operators/listen_and_serv_op.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/selected_rows_functor.h"
#include "paddle/fluid/string/printf.h"
...
...
@@ -34,6 +35,7 @@ namespace m = paddle::operators::math;
// global for simplicity.
std
::
unique_ptr
<
f
::
OperatorBase
>
listen_and_serv_op
;
int
selected_port
;
void
InitTensorsInScope
(
f
::
Scope
&
scope
,
p
::
CPUPlace
&
place
)
{
p
::
CPUDeviceContext
ctx
(
place
);
...
...
@@ -128,14 +130,16 @@ void StartServerNet(bool is_sparse) {
AddOp
(
"sum"
,
{{
"X"
,
{
"x0"
,
"x1"
}}},
{{
"Out"
,
{
"Out"
}}},
{},
optimize_block
);
f
::
AttributeMap
attrs
;
attrs
.
insert
({
"endpoint"
,
std
::
string
(
"127.0.0.1:
6174
"
)});
attrs
.
insert
({
"endpoint"
,
std
::
string
(
"127.0.0.1:
0
"
)});
attrs
.
insert
({
"Fanin"
,
1
});
attrs
.
insert
({
"ParamList"
,
std
::
vector
<
std
::
string
>
({
"Out"
})});
attrs
.
insert
({
"GradList"
,
std
::
vector
<
std
::
string
>
({
"x1"
})});
attrs
.
insert
({
"OptimizeBlock"
,
optimize_block
});
listen_and_serv_op
=
f
::
OpRegistry
::
CreateOp
(
"listen_and_serv"
,
{{
"X"
,
{
"x1"
}}},
{},
attrs
);
LOG
(
INFO
)
<<
"selected port before run "
<<
selected_port
;
listen_and_serv_op
->
Run
(
scope
,
place
);
LOG
(
INFO
)
<<
"server exit"
;
}
TEST
(
SendRecvOp
,
CPUDense
)
{
...
...
@@ -149,12 +153,19 @@ TEST(SendRecvOp, CPUDense) {
scope
.
Var
(
"RPC_CLIENT_VAR"
);
f
::
AttributeMap
attrs
;
attrs
.
insert
({
"endpoints"
,
std
::
vector
<
std
::
string
>
({
"127.0.0.1:6174"
})});
attrs
.
insert
({
"epmap"
,
std
::
vector
<
std
::
string
>
({
"127.0.0.1:6174"
})});
selected_port
=
static_cast
<
paddle
::
operators
::
ListenAndServOp
*>
(
listen_and_serv_op
.
get
())
->
GetSelectedPort
();
LOG
(
INFO
)
<<
"selected port "
<<
selected_port
;
std
::
string
endpoint
=
paddle
::
string
::
Sprintf
(
"127.0.0.1:%d"
,
selected_port
);
attrs
.
insert
({
"endpoints"
,
std
::
vector
<
std
::
string
>
({
endpoint
})});
attrs
.
insert
({
"epmap"
,
std
::
vector
<
std
::
string
>
({
endpoint
})});
auto
send_op
=
f
::
OpRegistry
::
CreateOp
(
"send"
,
{{
"X"
,
{
"x1"
}}},
{{
"Out"
,
{
"Out"
}},
{
"RPCClient"
,
{
"RPC_CLIENT_VAR"
}}},
attrs
);
LOG
(
INFO
)
<<
"before run "
<<
endpoint
;
send_op
->
Run
(
scope
,
place
);
LOG
(
INFO
)
<<
"end run"
;
auto
in_var
=
scope
.
Var
(
"x1"
);
auto
tensor
=
in_var
->
GetMutable
<
f
::
LoDTensor
>
();
...
...
@@ -167,6 +178,7 @@ TEST(SendRecvOp, CPUDense) {
for
(
int64_t
i
=
0
;
i
<
target
->
numel
();
++
i
)
{
EXPECT_EQ
(
expected
[
i
]
*
2
,
actual
[
i
]);
}
LOG
(
INFO
)
<<
"before stop"
;
listen_and_serv_op
->
Stop
();
server_thread
.
join
();
listen_and_serv_op
.
reset
(
nullptr
);
...
...
@@ -182,8 +194,13 @@ TEST(SendRecvOp, CPUSparse) {
InitSelectedRowsInScope
(
scope
,
place
);
scope
.
Var
(
"RPC_CLIENT_VAR"
);
f
::
AttributeMap
attrs
;
attrs
.
insert
({
"endpoints"
,
std
::
vector
<
std
::
string
>
({
"127.0.0.1:6174"
})});
attrs
.
insert
({
"epmap"
,
std
::
vector
<
std
::
string
>
({
"127.0.0.1:6174"
})});
selected_port
=
static_cast
<
paddle
::
operators
::
ListenAndServOp
*>
(
listen_and_serv_op
.
get
())
->
GetSelectedPort
();
LOG
(
INFO
)
<<
"selected port "
<<
selected_port
;
std
::
string
endpoint
=
paddle
::
string
::
Sprintf
(
"127.0.0.1:%d"
,
selected_port
);
attrs
.
insert
({
"endpoints"
,
std
::
vector
<
std
::
string
>
({
endpoint
})});
attrs
.
insert
({
"epmap"
,
std
::
vector
<
std
::
string
>
({
endpoint
})});
auto
send_op
=
f
::
OpRegistry
::
CreateOp
(
"send"
,
{{
"X"
,
{
"x1"
}}},
{{
"Out"
,
{
"Out"
}},
{
"RPCClient"
,
{
"RPC_CLIENT_VAR"
}}},
attrs
);
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录