Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
94e442d4
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
94e442d4
编写于
10月 19, 2017
作者:
T
tensor-tang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add cpp file of MKLDNNLayer
上级
9e38dafa
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
379 addition
and
334 deletion
+379
-334
paddle/gserver/layers/MKLDNNLayer.cpp
paddle/gserver/layers/MKLDNNLayer.cpp
+327
-0
paddle/gserver/layers/MKLDNNLayer.h
paddle/gserver/layers/MKLDNNLayer.h
+52
-334
未找到文件。
paddle/gserver/layers/MKLDNNLayer.cpp
0 → 100644
浏览文件 @
94e442d4
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "MKLDNNLayer.h"
using
namespace
mkldnn
;
// NOLINT
typedef
memory
::
format
format
;
namespace
paddle
{
bool
MKLDNNLayer
::
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
)
{
CHECK
(
FLAGS_use_mkldnn
)
<<
"MkldnnLayers only support use_mkldnn."
<<
"Please set WITH_MKLDNN=ON "
<<
"and set use_mkldnn=True"
;
CHECK
(
!
useGpu_
)
<<
"Do not support GPU yet"
;
// set device id before Layer::init
setDevice
(
MKLDNN_DEVICE
);
// change param device to MKLDNN device
setParamsDevice
(
MKLDNN_DEVICE
,
parameterMap
);
if
(
!
Layer
::
init
(
layerMap
,
parameterMap
))
{
return
false
;
}
setOutputMap
();
checkCPUOutputsNumber
();
stream_
.
reset
(
new
MKLDNNStream
());
engine_
=
CPUEngine
::
Instance
().
getEngine
();
return
true
;
}
void
MKLDNNLayer
::
forward
(
PassType
passType
)
{
passType_
=
passType
;
{
REGISTER_TIMER_INFO
(
"mkldnn_FwdTimer"
,
getName
().
c_str
());
CHECK
(
!
inputLayers_
.
empty
());
copySeqInfoToOutputs
();
size_t
elemenCnt
=
inputLayers_
[
0
]
->
getOutputValue
()
->
getElementCnt
();
if
(
inputElemenCnt_
!=
elemenCnt
)
{
VLOG
(
MKLDNN_BASE
)
<<
getName
()
<<
" reset mkldnn forward"
;
// reset when input total sizes changed, not only the batchsize
inputElemenCnt_
=
elemenCnt
;
pipelineFwd_
.
clear
();
reshape
(
bs_
,
ic_
,
ih_
,
iw_
,
oc_
,
oh_
,
ow_
);
// all cpu device output grad or value share output's
shareCPUDevice
();
resetFwd
(
pipelineFwd_
,
inVal_
,
wgtVal_
,
biasVal_
,
outVal_
);
// MKLDNNLayer output value should be MKLDNNMatrix
// so external output value is necessary.
// then external input value is not necessary,
// since input may be mkldnn internal buffer.
CHECK
(
extOutVal_
)
<<
"external output value is necessary"
;
output_
.
value
=
std
::
dynamic_pointer_cast
<
Matrix
>
(
extOutVal_
);
CHECK
(
inVal_
&&
outVal_
)
<<
"internal memories are necessary"
;
if
(
cvtInVal_
)
{
pipelineFwd_
.
insert
(
pipelineFwd_
.
begin
(),
*
cvtInVal_
);
}
if
(
cvtOutVal_
)
{
pipelineFwd_
.
push_back
(
*
cvtOutVal_
);
}
convertWeightsFromPaddle
();
printSizeInfo
();
printValueFormat
();
needResetBwd_
=
true
;
}
if
(
inputLayers_
[
0
]
->
getType
()
==
"data"
)
{
// Update input value data when input layer is "data" type,
// since the input value data address might be changed.
CHECK
(
extInVal_
);
extInVal_
->
setData
(
getInputValue
(
0
,
CPU_DEVICE
)
->
getData
());
}
if
(
!
outputOnlyMKLDNN_
)
{
clearGrads
();
}
stream_
->
submit
(
pipelineFwd_
);
}
{
REGISTER_TIMER_INFO
(
"FwActTimer"
,
getName
().
c_str
());
forwardActivation
();
}
}
void
MKLDNNLayer
::
backward
(
const
UpdateCallback
&
callback
)
{
if
(
needResetBwd_
)
{
VLOG
(
MKLDNN_BASE
)
<<
getName
()
<<
" reset mkldnn backward"
;
pipelineBwd_
.
clear
();
pipelineMergeGrad_
.
clear
();
mergeGrad_
=
nullptr
;
resetBwd
(
pipelineBwd_
,
inGrad_
,
wgtGrad_
,
biasGrad_
,
outGrad_
);
// external output grad is not necessary
// since output may be mkldnn internal buffer or merge them directly.
CHECK
(
outGrad_
)
<<
"internal output grad is necessary"
;
if
(
cvtOutGrad_
)
{
pipelineBwd_
.
insert
(
pipelineBwd_
.
begin
(),
*
cvtOutGrad_
);
}
if
(
cvtInGrad_
)
{
pipelineBwd_
.
push_back
(
*
cvtInGrad_
);
}
printGradFormat
();
needResetBwd_
=
false
;
}
// merge grad must before backward activation
if
(
mergeGrad_
)
{
REGISTER_TIMER_INFO
(
"MergeBpGrad"
,
getName
().
c_str
());
stream_
->
submit
(
pipelineMergeGrad_
);
}
{
REGISTER_TIMER_INFO
(
"BpActTimer"
,
getName
().
c_str
());
backwardActivation
();
}
{
REGISTER_TIMER_INFO
(
"mkldnn_bwdTimer"
,
getName
().
c_str
());
stream_
->
submit
(
pipelineBwd_
);
}
{
REGISTER_TIMER_INFO
(
"WeightUpdate"
,
getName
().
c_str
());
updateWeights
(
callback
);
}
}
void
MKLDNNLayer
::
reshapeInput
(
int
&
batchsize
,
int
&
height
,
int
&
width
)
{
const
Argument
&
input
=
inputLayers_
[
0
]
->
getOutput
();
batchsize
=
input
.
getBatchSize
();
int
h
=
input
.
getFrameHeight
();
int
w
=
input
.
getFrameWidth
();
if
(
h
!=
0
)
{
height
=
h
;
}
if
(
w
!=
0
)
{
width
=
w
;
}
}
void
MKLDNNLayer
::
reshapeOutput
(
size_t
height
,
size_t
width
)
{
output_
.
setFrameHeight
(
height
);
output_
.
setFrameWidth
(
width
);
for
(
size_t
i
=
0
;
i
<
outputOtherDevice_
.
size
();
i
++
)
{
outputOtherDevice_
[
i
].
setFrameHeight
(
height
);
outputOtherDevice_
[
i
].
setFrameWidth
(
width
);
}
}
void
MKLDNNLayer
::
resetWithMatrix
(
MKLDNNMatrixPtr
&
dnn
,
const
MatrixPtr
&
mat
,
memory
::
primitive_desc
pd
)
{
dnn
=
nullptr
;
if
(
mat
==
nullptr
)
{
return
;
}
dnn
=
MKLDNNMatrix
::
create
(
pd
,
mat
);
}
void
MKLDNNLayer
::
resetInValue
(
MKLDNNMatrixPtr
&
in
,
const
std
::
shared_ptr
<
memory
::
primitive_desc
>&
intPD
)
{
cvtInVal_
=
nullptr
;
extInVal_
=
nullptr
;
in
=
nullptr
;
CHECK_GT
(
bs_
*
ic_
*
ih_
*
iw_
,
0
);
auto
extPD
=
MKLDNNMatrix
::
createPrimitiveDesc
(
{
bs_
,
ic_
,
ih_
,
iw_
},
format
::
nchw
,
engine_
);
const
MatrixPtr
&
inMat
=
inputLayers_
[
0
]
->
getOutputValue
();
in
=
std
::
dynamic_pointer_cast
<
MKLDNNMatrix
>
(
inMat
);
CHECK_EQ
(
inputIsOnlyMKLDNN
(),
in
!=
nullptr
);
if
(
in
==
nullptr
||
in
->
getFormat
()
==
format
::
nc
)
{
in
=
MKLDNNMatrix
::
create
(
extPD
,
inMat
);
}
extInVal_
=
isPaddleFormat
(
in
->
getFormat
())
?
in
:
nullptr
;
if
(
in
->
getFormat
()
==
format
::
nc
)
{
CHECK
(
ih_
==
1
&&
iw_
==
1
);
}
if
(
nullptr
==
intPD
||
in
->
getPrimitiveDesc
()
==
*
intPD
)
{
return
;
}
// need create reorder
in
=
MKLDNNMatrix
::
create
(
*
intPD
);
extInVal_
=
extInVal_
?
extInVal_
:
MKLDNNMatrix
::
create
(
extPD
,
inMat
);
cvtInVal_
=
MKLDNNMatrix
::
createReorder
(
extInVal_
,
in
);
CHECK
(
cvtInVal_
)
<<
"should not be emptry"
;
}
void
MKLDNNLayer
::
resetOutValue
(
MKLDNNMatrixPtr
&
out
,
memory
::
primitive_desc
intPD
)
{
cvtOutVal_
=
nullptr
;
out
=
MKLDNNMatrix
::
create
(
intPD
,
output_
.
value
);
extOutVal_
=
out
;
if
(
outputIsOnlyMKLDNN
()
||
isPaddleFormat
(
extOutVal_
->
getFormat
()))
{
return
;
}
// need create reorder
CHECK_GT
(
bs_
*
oc_
*
oh_
*
ow_
,
0
);
extOutVal_
=
MKLDNNMatrix
::
create
(
memory
::
dims
{
bs_
,
oc_
,
oh_
,
ow_
},
format
::
nchw
,
engine_
,
output_
.
value
);
out
=
MKLDNNMatrix
::
create
(
intPD
);
cvtOutVal_
=
MKLDNNMatrix
::
createReorder
(
out
,
extOutVal_
);
CHECK
(
cvtOutVal_
)
<<
"should not be empty"
;
}
void
MKLDNNLayer
::
resetInGrad
(
MKLDNNMatrixPtr
&
in
,
memory
::
primitive_desc
intPD
)
{
cvtInGrad_
=
nullptr
;
extInGrad_
=
nullptr
;
in
=
nullptr
;
LayerPtr
&
input
=
inputLayers_
[
0
];
if
(
input
->
getOutputGrad
()
==
nullptr
)
{
// no need input grad
return
;
}
CHECK
(
inputIsOnlyMKLDNN
()
||
input
->
getOutputMapSize
()
<=
1
)
<<
"only support input is MKLDNN layer or only have one output layer"
;
// when input is a mkldnn branch node,
// this layer will save input grad to a internal buffer,
// and the mkldnn input layer will merge them to actual prev->output_.grad
const
MatrixPtr
&
inMat
=
input
->
getOutputMapSize
()
<=
1
?
input
->
getOutputGrad
()
:
nullptr
;
in
=
MKLDNNMatrix
::
create
(
intPD
,
inMat
);
Argument
&
arg
=
input
->
getOutput
(
this
->
getName
());
arg
.
grad
=
std
::
dynamic_pointer_cast
<
Matrix
>
(
in
);
CHECK
(
inVal_
!=
nullptr
&&
inVal_
->
getPrimitiveDesc
()
==
intPD
)
<<
"should have internal input value and primitive desc must equal"
;
if
(
inputIsOnlyMKLDNN
())
{
return
;
}
extInGrad_
=
in
;
if
(
isPaddleFormat
(
extInGrad_
->
getFormat
()))
{
return
;
}
// need create reorder
CHECK
(
extInVal_
!=
nullptr
&&
isPaddleFormat
(
extInVal_
->
getFormat
()))
<<
"should have external input value and the format must be nchw(nc)"
;
extInGrad_
=
MKLDNNMatrix
::
create
(
extInVal_
->
getPrimitiveDesc
(),
inMat
);
CHECK
(
inVal_
!=
nullptr
&&
inVal_
->
getPrimitiveDesc
()
==
intPD
)
<<
"should have internal input value and primitive desc must equal"
;
in
=
MKLDNNMatrix
::
create
(
intPD
);
cvtInGrad_
=
MKLDNNMatrix
::
createReorder
(
in
,
extInGrad_
);
CHECK
(
cvtInGrad_
);
}
void
MKLDNNLayer
::
resetOutGrad
(
MKLDNNMatrixPtr
&
out
,
memory
::
primitive_desc
intPD
)
{
cvtOutGrad_
=
nullptr
;
extOutGrad_
=
nullptr
;
out
=
nullptr
;
MatrixPtr
&
outMat
=
output_
.
grad
;
out
=
MKLDNNMatrix
::
create
(
intPD
,
outMat
);
resetMergeGrad
(
out
);
if
(
outputIsOnlyMKLDNN
())
{
return
;
}
CHECK_LE
(
outputMap_
.
size
(),
1U
)
<<
"do not support mixed with cpu device"
;
extOutGrad_
=
out
;
if
(
isPaddleFormat
(
extOutGrad_
->
getFormat
()))
{
return
;
}
// need create reorder
CHECK
(
extOutVal_
!=
nullptr
&&
isPaddleFormat
(
extOutVal_
->
getFormat
()))
<<
"should have external output value and the format must be nchw(nc)"
;
extOutGrad_
=
MKLDNNMatrix
::
create
(
extOutVal_
->
getPrimitiveDesc
(),
outMat
);
CHECK
(
outVal_
!=
nullptr
&&
outVal_
->
getPrimitiveDesc
()
==
intPD
)
<<
"should have internal output value and primitive desc must equal"
;
out
=
MKLDNNMatrix
::
create
(
intPD
);
cvtOutGrad_
=
MKLDNNMatrix
::
createReorder
(
extOutGrad_
,
out
);
CHECK
(
cvtOutGrad_
);
}
void
MKLDNNLayer
::
resetMergeGrad
(
MKLDNNMatrixPtr
&
out
)
{
mergeGrad_
=
nullptr
;
pipelineMergeGrad_
.
clear
();
if
(
outputMap_
.
size
()
<=
1
||
!
outputIsOnlyMKLDNN
())
{
// do not merge when output is not all MKLDNN or only one output
return
;
}
CHECK
(
out
)
<<
"should have reset internal ouput grad"
;
std
::
vector
<
double
>
scales
(
outputMap_
.
size
(),
1.0
);
std
::
vector
<
memory
::
primitive_desc
>
srcPDs
;
std
::
vector
<
primitive
::
at
>
srcs
;
for
(
auto
it
=
outputMap_
.
begin
();
it
!=
outputMap_
.
end
();
++
it
)
{
MKLDNNMatrixPtr
src
=
std
::
dynamic_pointer_cast
<
MKLDNNMatrix
>
(
it
->
second
->
grad
);
VLOG
(
MKLDNN_BASE
)
<<
getName
()
<<
" has output grad "
<<
it
->
first
;
CHECK
(
src
)
<<
"should be MKLDNNMatrix"
;
auto
srcDims
=
src
->
getDims
();
auto
dstDims
=
out
->
getDims
();
CHECK_EQ
(
srcDims
.
size
(),
dstDims
.
size
());
for
(
size_t
i
=
0
;
i
<
srcDims
.
size
();
++
i
)
{
CHECK_EQ
(
srcDims
[
i
],
dstDims
[
i
]);
}
srcPDs
.
push_back
(
src
->
getPrimitiveDesc
());
srcs
.
push_back
(
*
src
);
}
// TODO(TJ): remove me when mkldnn sum support different formats
for
(
size_t
i
=
1
;
i
<
srcPDs
.
size
();
++
i
)
{
CHECK
(
srcPDs
[
0
]
==
srcPDs
[
i
]);
}
tmpOutGrad_
=
out
;
tmpCvt_
=
nullptr
;
if
(
out
->
getPrimitiveDesc
()
!=
srcPDs
[
0
])
{
tmpOutGrad_
=
MKLDNNMatrix
::
create
(
srcPDs
[
0
]);
tmpCvt_
=
MKLDNNMatrix
::
createReorder
(
tmpOutGrad_
,
out
);
CHECK
(
tmpCvt_
);
pipelineMergeGrad_
.
push_back
(
*
tmpCvt_
);
}
auto
sumPD
=
sum
::
primitive_desc
(
tmpOutGrad_
->
getMemoryDesc
(),
scales
,
srcPDs
);
mergeGrad_
.
reset
(
new
sum
(
sumPD
,
srcs
,
*
tmpOutGrad_
));
pipelineMergeGrad_
.
insert
(
pipelineMergeGrad_
.
begin
(),
*
mergeGrad_
);
}
}
// namespace paddle
paddle/gserver/layers/MKLDNNLayer.h
浏览文件 @
94e442d4
...
@@ -119,119 +119,9 @@ public:
...
@@ -119,119 +119,9 @@ public:
~
MKLDNNLayer
()
{}
~
MKLDNNLayer
()
{}
virtual
bool
init
(
const
LayerMap
&
layerMap
,
virtual
bool
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
);
const
ParameterMap
&
parameterMap
)
{
void
forward
(
PassType
passType
)
override
;
CHECK
(
FLAGS_use_mkldnn
)
<<
"MkldnnLayers only support use_mkldnn."
void
backward
(
const
UpdateCallback
&
callback
)
override
;
<<
"Please set WITH_MKLDNN=ON "
<<
"and set use_mkldnn=True"
;
CHECK
(
!
useGpu_
)
<<
"Do not support GPU yet"
;
// set device id before Layer::init
setDevice
(
MKLDNN_DEVICE
);
// change param device to MKLDNN device
setParamsDevice
(
MKLDNN_DEVICE
,
parameterMap
);
if
(
!
Layer
::
init
(
layerMap
,
parameterMap
))
{
return
false
;
}
setOutputMap
();
checkCPUOutputsNumber
();
stream_
.
reset
(
new
MKLDNNStream
());
engine_
=
CPUEngine
::
Instance
().
getEngine
();
return
true
;
}
void
forward
(
PassType
passType
)
override
{
passType_
=
passType
;
{
REGISTER_TIMER_INFO
(
"mkldnn_FwdTimer"
,
getName
().
c_str
());
CHECK
(
!
inputLayers_
.
empty
());
copySeqInfoToOutputs
();
size_t
elemenCnt
=
inputLayers_
[
0
]
->
getOutputValue
()
->
getElementCnt
();
if
(
inputElemenCnt_
!=
elemenCnt
)
{
VLOG
(
MKLDNN_BASE
)
<<
getName
()
<<
" reset mkldnn forward"
;
// reset when input total sizes changed, not only the batchsize
inputElemenCnt_
=
elemenCnt
;
pipelineFwd_
.
clear
();
reshape
(
bs_
,
ic_
,
ih_
,
iw_
,
oc_
,
oh_
,
ow_
);
// all cpu device output grad or value share output's
shareCPUDevice
();
resetFwd
(
pipelineFwd_
,
inVal_
,
wgtVal_
,
biasVal_
,
outVal_
);
// MKLDNNLayer output value should be MKLDNNMatrix
// so external output value is necessary.
// then external input value is not necessary,
// since input may be mkldnn internal buffer.
CHECK
(
extOutVal_
)
<<
"external output value is necessary"
;
output_
.
value
=
std
::
dynamic_pointer_cast
<
Matrix
>
(
extOutVal_
);
CHECK
(
inVal_
&&
outVal_
)
<<
"internal memories are necessary"
;
if
(
cvtInVal_
)
{
pipelineFwd_
.
insert
(
pipelineFwd_
.
begin
(),
*
cvtInVal_
);
}
if
(
cvtOutVal_
)
{
pipelineFwd_
.
push_back
(
*
cvtOutVal_
);
}
convertWeightsFromPaddle
();
printValueFormat
();
needResetBwd_
=
true
;
}
if
(
inputLayers_
[
0
]
->
getType
()
==
"data"
)
{
// Update input value data when input layer is "data" type,
// since the input value data address might be changed.
CHECK
(
extInVal_
);
extInVal_
->
setData
(
getInputValue
(
0
,
CPU_DEVICE
)
->
getData
());
}
if
(
!
outputOnlyMKLDNN_
)
{
clearGrads
();
}
stream_
->
submit
(
pipelineFwd_
);
}
{
REGISTER_TIMER_INFO
(
"FwActTimer"
,
getName
().
c_str
());
forwardActivation
();
}
}
void
backward
(
const
UpdateCallback
&
callback
)
override
{
if
(
needResetBwd_
)
{
VLOG
(
MKLDNN_BASE
)
<<
getName
()
<<
" reset mkldnn backward"
;
pipelineBwd_
.
clear
();
pipelineMergeGrad_
.
clear
();
mergeGrad_
=
nullptr
;
resetBwd
(
pipelineBwd_
,
inGrad_
,
wgtGrad_
,
biasGrad_
,
outGrad_
);
// external output grad is not necessary
// since output may be mkldnn internal buffer or merge them directly.
CHECK
(
outGrad_
)
<<
"internal output grad is necessary"
;
if
(
cvtOutGrad_
)
{
pipelineBwd_
.
insert
(
pipelineBwd_
.
begin
(),
*
cvtOutGrad_
);
}
if
(
cvtInGrad_
)
{
pipelineBwd_
.
push_back
(
*
cvtInGrad_
);
}
printGradFormat
();
needResetBwd_
=
false
;
}
// merge grad must before backward activation
if
(
mergeGrad_
)
{
REGISTER_TIMER_INFO
(
"MergeBpGrad"
,
getName
().
c_str
());
stream_
->
submit
(
pipelineMergeGrad_
);
}
{
REGISTER_TIMER_INFO
(
"BpActTimer"
,
getName
().
c_str
());
backwardActivation
();
}
{
REGISTER_TIMER_INFO
(
"mkldnn_bwdTimer"
,
getName
().
c_str
());
stream_
->
submit
(
pipelineBwd_
);
}
{
REGISTER_TIMER_INFO
(
"WeightUpdate"
,
getName
().
c_str
());
updateWeights
(
callback
);
}
}
/**
/**
* reshape the input image sizes
* reshape the input image sizes
...
@@ -287,30 +177,12 @@ protected:
...
@@ -287,30 +177,12 @@ protected:
/**
/**
* reshape the input image sizes and input batchsize
* reshape the input image sizes and input batchsize
*/
*/
virtual
void
reshapeInput
(
int
&
batchsize
,
int
&
height
,
int
&
width
)
{
void
reshapeInput
(
int
&
batchsize
,
int
&
height
,
int
&
width
);
const
Argument
&
input
=
inputLayers_
[
0
]
->
getOutput
();
batchsize
=
input
.
getBatchSize
();
int
h
=
input
.
getFrameHeight
();
int
w
=
input
.
getFrameWidth
();
if
(
h
!=
0
)
{
height
=
h
;
}
if
(
w
!=
0
)
{
width
=
w
;
}
}
/**
/**
* reshape output image sizes
* reshape output image sizes
*/
*/
virtual
void
reshapeOutput
(
size_t
height
,
size_t
width
)
{
void
reshapeOutput
(
size_t
height
,
size_t
width
);
output_
.
setFrameHeight
(
height
);
output_
.
setFrameWidth
(
width
);
for
(
size_t
i
=
0
;
i
<
outputOtherDevice_
.
size
();
i
++
)
{
outputOtherDevice_
[
i
].
setFrameHeight
(
height
);
outputOtherDevice_
[
i
].
setFrameWidth
(
width
);
}
}
/**
/**
* reset MKLDNNMatrix from Matrix and internal primitive desc.
* reset MKLDNNMatrix from Matrix and internal primitive desc.
...
@@ -318,13 +190,7 @@ protected:
...
@@ -318,13 +190,7 @@ protected:
*/
*/
void
resetWithMatrix
(
MKLDNNMatrixPtr
&
dnn
,
void
resetWithMatrix
(
MKLDNNMatrixPtr
&
dnn
,
const
MatrixPtr
&
mat
,
const
MatrixPtr
&
mat
,
mkldnn
::
memory
::
primitive_desc
pd
)
{
mkldnn
::
memory
::
primitive_desc
pd
);
dnn
=
nullptr
;
if
(
mat
==
nullptr
)
{
return
;
}
dnn
=
MKLDNNMatrix
::
create
(
pd
,
mat
);
}
/**
/**
* reset input value from input MKLDNNMatrix and internal primitive desc.
* reset input value from input MKLDNNMatrix and internal primitive desc.
...
@@ -332,99 +198,20 @@ protected:
...
@@ -332,99 +198,20 @@ protected:
*/
*/
void
resetInValue
(
void
resetInValue
(
MKLDNNMatrixPtr
&
in
,
MKLDNNMatrixPtr
&
in
,
const
std
::
shared_ptr
<
mkldnn
::
memory
::
primitive_desc
>&
intPD
=
nullptr
)
{
const
std
::
shared_ptr
<
mkldnn
::
memory
::
primitive_desc
>&
intPD
=
nullptr
);
cvtInVal_
=
nullptr
;
extInVal_
=
nullptr
;
in
=
nullptr
;
CHECK_GT
(
bs_
*
ic_
*
ih_
*
iw_
,
0
);
auto
extPD
=
MKLDNNMatrix
::
createPrimitiveDesc
(
{
bs_
,
ic_
,
ih_
,
iw_
},
mkldnn
::
memory
::
format
::
nchw
,
engine_
);
const
MatrixPtr
&
inMat
=
inputLayers_
[
0
]
->
getOutputValue
();
in
=
std
::
dynamic_pointer_cast
<
MKLDNNMatrix
>
(
inMat
);
CHECK_EQ
(
inputIsOnlyMKLDNN
(),
in
!=
nullptr
);
if
(
in
==
nullptr
||
in
->
getFormat
()
==
mkldnn
::
memory
::
format
::
nc
)
{
in
=
MKLDNNMatrix
::
create
(
extPD
,
inMat
);
}
extInVal_
=
isPaddleFormat
(
in
->
getFormat
())
?
in
:
nullptr
;
if
(
in
->
getFormat
()
==
mkldnn
::
memory
::
format
::
nc
)
{
CHECK
(
ih_
==
1
&&
iw_
==
1
);
}
if
(
nullptr
==
intPD
||
in
->
getPrimitiveDesc
()
==
*
intPD
)
{
return
;
}
// need create reorder
in
=
MKLDNNMatrix
::
create
(
*
intPD
);
extInVal_
=
extInVal_
?
extInVal_
:
MKLDNNMatrix
::
create
(
extPD
,
inMat
);
cvtInVal_
=
MKLDNNMatrix
::
createReorder
(
extInVal_
,
in
);
CHECK
(
cvtInVal_
)
<<
"should not be emptry"
;
}
/**
/**
* reset output value from internal primitive desc.
* reset output value from internal primitive desc.
* reset both internal and external buffer and create reorder if necessary.
* reset both internal and external buffer and create reorder if necessary.
*/
*/
void
resetOutValue
(
MKLDNNMatrixPtr
&
out
,
void
resetOutValue
(
MKLDNNMatrixPtr
&
out
,
mkldnn
::
memory
::
primitive_desc
intPD
)
{
mkldnn
::
memory
::
primitive_desc
intPD
);
cvtOutVal_
=
nullptr
;
out
=
MKLDNNMatrix
::
create
(
intPD
,
output_
.
value
);
extOutVal_
=
out
;
if
(
outputIsOnlyMKLDNN
()
||
isPaddleFormat
(
extOutVal_
->
getFormat
()))
{
return
;
}
// need create reorder
CHECK_GT
(
bs_
*
oc_
*
oh_
*
ow_
,
0
);
extOutVal_
=
MKLDNNMatrix
::
create
(
mkldnn
::
memory
::
dims
{
bs_
,
oc_
,
oh_
,
ow_
},
mkldnn
::
memory
::
format
::
nchw
,
engine_
,
output_
.
value
);
out
=
MKLDNNMatrix
::
create
(
intPD
);
cvtOutVal_
=
MKLDNNMatrix
::
createReorder
(
out
,
extOutVal_
);
CHECK
(
cvtOutVal_
)
<<
"should not be empty"
;
}
/**
/**
* reset input grad from internal primitive desc.
* reset input grad from internal primitive desc.
* reset both internal and external buffer and create reorder if necessary.
* reset both internal and external buffer and create reorder if necessary.
*/
*/
void
resetInGrad
(
MKLDNNMatrixPtr
&
in
,
mkldnn
::
memory
::
primitive_desc
intPD
)
{
void
resetInGrad
(
MKLDNNMatrixPtr
&
in
,
mkldnn
::
memory
::
primitive_desc
intPD
);
cvtInGrad_
=
nullptr
;
extInGrad_
=
nullptr
;
in
=
nullptr
;
LayerPtr
&
input
=
inputLayers_
[
0
];
if
(
input
->
getOutputGrad
()
==
nullptr
)
{
// no need input grad
return
;
}
CHECK
(
inputIsOnlyMKLDNN
()
||
input
->
getOutputMapSize
()
<=
1
)
<<
"only support input is MKLDNN layer or only have one output layer"
;
// when input is a mkldnn branch node,
// this layer will save input grad to a internal buffer,
// and the mkldnn input layer will merge them to actual prev->output_.grad
const
MatrixPtr
&
inMat
=
input
->
getOutputMapSize
()
<=
1
?
input
->
getOutputGrad
()
:
nullptr
;
in
=
MKLDNNMatrix
::
create
(
intPD
,
inMat
);
Argument
&
arg
=
input
->
getOutput
(
this
->
getName
());
arg
.
grad
=
std
::
dynamic_pointer_cast
<
Matrix
>
(
in
);
CHECK
(
inVal_
!=
nullptr
&&
inVal_
->
getPrimitiveDesc
()
==
intPD
)
<<
"should have internal input value and primitive desc must equal"
;
if
(
inputIsOnlyMKLDNN
())
{
return
;
}
extInGrad_
=
in
;
if
(
isPaddleFormat
(
extInGrad_
->
getFormat
()))
{
return
;
}
// need create reorder
CHECK
(
extInVal_
!=
nullptr
&&
isPaddleFormat
(
extInVal_
->
getFormat
()))
<<
"should have external input value and the format must be nchw(nc)"
;
extInGrad_
=
MKLDNNMatrix
::
create
(
extInVal_
->
getPrimitiveDesc
(),
inMat
);
CHECK
(
inVal_
!=
nullptr
&&
inVal_
->
getPrimitiveDesc
()
==
intPD
)
<<
"should have internal input value and primitive desc must equal"
;
in
=
MKLDNNMatrix
::
create
(
intPD
);
cvtInGrad_
=
MKLDNNMatrix
::
createReorder
(
in
,
extInGrad_
);
CHECK
(
cvtInGrad_
);
}
/**
/**
* reset output grad from internal primitive desc.
* reset output grad from internal primitive desc.
...
@@ -434,81 +221,59 @@ protected:
...
@@ -434,81 +221,59 @@ protected:
* it could not be mixed with cpu device,
* it could not be mixed with cpu device,
* since it can not get memory desc from cpu device.
* since it can not get memory desc from cpu device.
*/
*/
void
resetOutGrad
(
MKLDNNMatrixPtr
&
out
,
void
resetOutGrad
(
MKLDNNMatrixPtr
&
out
,
mkldnn
::
memory
::
primitive_desc
intPD
);
mkldnn
::
memory
::
primitive_desc
intPD
)
{
cvtOutGrad_
=
nullptr
;
extOutGrad_
=
nullptr
;
out
=
nullptr
;
MatrixPtr
&
outMat
=
output_
.
grad
;
out
=
MKLDNNMatrix
::
create
(
intPD
,
outMat
);
resetMergeGrad
(
out
);
if
(
outputIsOnlyMKLDNN
())
{
return
;
}
CHECK_LE
(
outputMap_
.
size
(),
1U
)
<<
"do not support mixed with cpu device"
;
extOutGrad_
=
out
;
if
(
isPaddleFormat
(
extOutGrad_
->
getFormat
()))
{
return
;
}
// need create reorder
CHECK
(
extOutVal_
!=
nullptr
&&
isPaddleFormat
(
extOutVal_
->
getFormat
()))
<<
"should have external output value and the format must be nchw(nc)"
;
extOutGrad_
=
MKLDNNMatrix
::
create
(
extOutVal_
->
getPrimitiveDesc
(),
outMat
);
CHECK
(
outVal_
!=
nullptr
&&
outVal_
->
getPrimitiveDesc
()
==
intPD
)
<<
"should have internal output value and primitive desc must equal"
;
out
=
MKLDNNMatrix
::
create
(
intPD
);
cvtOutGrad_
=
MKLDNNMatrix
::
createReorder
(
extOutGrad_
,
out
);
CHECK
(
cvtOutGrad_
);
}
/**
/**
* reset the merge grad primitive if necessary.
* reset the merge grad primitive if necessary.
* note: do not support the grads are mixed with cpu device,
* note: do not support the grads are mixed with cpu device,
* since it can not get memory desc from cpu device.
* since it can not get memory desc from cpu device.
*/
*/
virtual
void
resetMergeGrad
(
MKLDNNMatrixPtr
&
out
)
{
void
resetMergeGrad
(
MKLDNNMatrixPtr
&
out
);
mergeGrad_
=
nullptr
;
pipelineMergeGrad_
.
clear
();
protected:
if
(
outputMap_
.
size
()
<=
1
||
!
outputIsOnlyMKLDNN
())
{
/**
// do not merge when output is not all MKLDNN or only one output
* Set deviceId of this layer.
return
;
*/
}
void
setDevice
(
int
id
)
{
deviceId_
=
id
;
}
CHECK
(
out
)
<<
"should have reset internal ouput grad"
;
std
::
vector
<
double
>
scales
(
outputMap_
.
size
(),
1.0
);
/**
std
::
vector
<
mkldnn
::
memory
::
primitive_desc
>
srcPDs
;
* check the format is nchw or nc,
std
::
vector
<
mkldnn
::
primitive
::
at
>
srcs
;
* which is supported by Paddle default memory layout
for
(
auto
it
=
outputMap_
.
begin
();
it
!=
outputMap_
.
end
();
++
it
)
{
*/
MKLDNNMatrixPtr
src
=
bool
isPaddleFormat
(
mkldnn
::
memory
::
format
fmt
)
{
std
::
dynamic_pointer_cast
<
MKLDNNMatrix
>
(
it
->
second
->
grad
);
if
(
fmt
==
mkldnn
::
memory
::
format
::
nchw
||
VLOG
(
MKLDNN_BASE
)
<<
getName
()
<<
" has output grad "
<<
it
->
first
;
fmt
==
mkldnn
::
memory
::
format
::
nc
)
{
CHECK
(
src
)
<<
"should be MKLDNNMatrix"
;
return
true
;
auto
srcDims
=
src
->
getDims
();
}
else
{
auto
dstDims
=
out
->
getDims
();
return
false
;
CHECK_EQ
(
srcDims
.
size
(),
dstDims
.
size
());
for
(
size_t
i
=
0
;
i
<
srcDims
.
size
();
++
i
)
{
CHECK_EQ
(
srcDims
[
i
],
dstDims
[
i
]);
}
}
srcPDs
.
push_back
(
src
->
getPrimitiveDesc
());
srcs
.
push_back
(
*
src
);
}
}
// TODO(TJ): remove me when mkldnn sum support different formats
/**
for
(
size_t
i
=
1
;
i
<
srcPDs
.
size
();
++
i
)
{
* If input only has MKLDNN device.
CHECK
(
srcPDs
[
0
]
==
srcPDs
[
i
]);
* Otherwise, only support the previous layer using CPU device.
*/
bool
inputIsOnlyMKLDNN
(
int
index
=
0
)
{
int
prevDevice
=
getPrev
(
index
)
->
getDeviceId
();
if
(
prevDevice
==
MKLDNN_DEVICE
)
{
return
true
;
}
else
{
CHECK_EQ
(
prevDevice
,
CPU_DEVICE
)
<<
"Only support CPU yet"
;
return
false
;
}
}
tmpOutGrad_
=
out
;
tmpCvt_
=
nullptr
;
if
(
out
->
getPrimitiveDesc
()
!=
srcPDs
[
0
])
{
tmpOutGrad_
=
MKLDNNMatrix
::
create
(
srcPDs
[
0
]);
tmpCvt_
=
MKLDNNMatrix
::
createReorder
(
tmpOutGrad_
,
out
);
CHECK
(
tmpCvt_
);
pipelineMergeGrad_
.
push_back
(
*
tmpCvt_
);
}
}
auto
sumPD
=
mkldnn
::
sum
::
primitive_desc
(
/**
tmpOutGrad_
->
getMemoryDesc
(),
scales
,
srcPDs
);
* If output only has MKLDNN device.
mergeGrad_
.
reset
(
new
mkldnn
::
sum
(
sumPD
,
srcs
,
*
tmpOutGrad_
));
* Otherwise, other devices should only using CPU device.
pipelineMergeGrad_
.
insert
(
pipelineMergeGrad_
.
begin
(),
*
mergeGrad_
);
*/
bool
outputIsOnlyMKLDNN
()
{
for
(
size_t
i
=
0
;
i
<
outputOtherDevice_
.
size
();
i
++
)
{
CHECK_EQ
(
outputOtherDevice_
[
i
].
deviceId
,
CPU_DEVICE
)
<<
"Only support other device is CPU yet"
;
}
outputOnlyMKLDNN_
=
outputOtherDevice_
.
size
()
==
0
;
return
outputOnlyMKLDNN_
;
}
}
/**
/**
...
@@ -568,54 +333,7 @@ protected:
...
@@ -568,54 +333,7 @@ protected:
}
}
}
}
protected:
/**
* If input only has MKLDNN device.
* Otherwise, only support the previous layer using CPU device.
*/
bool
inputIsOnlyMKLDNN
(
int
index
=
0
)
{
int
prevDevice
=
getPrev
(
index
)
->
getDeviceId
();
if
(
prevDevice
==
MKLDNN_DEVICE
)
{
return
true
;
}
else
{
// do not support GPU yet
CHECK_EQ
(
prevDevice
,
CPU_DEVICE
)
<<
"Only support CPU yet"
;
return
false
;
}
}
/**
* If output only has MKLDNN device.
* Otherwise, other devices should only using CPU device.
*/
bool
outputIsOnlyMKLDNN
()
{
for
(
size_t
i
=
0
;
i
<
outputOtherDevice_
.
size
();
i
++
)
{
CHECK_EQ
(
outputOtherDevice_
[
i
].
deviceId
,
CPU_DEVICE
)
<<
"Only support other device is CPU yet"
;
}
outputOnlyMKLDNN_
=
outputOtherDevice_
.
size
()
==
0
;
return
outputOnlyMKLDNN_
;
}
/**
* Set deviceId of this layer.
*/
void
setDevice
(
int
id
)
{
deviceId_
=
id
;
}
private:
private:
/**
* check the format is nchw or nc,
* which is supported by Paddle default memory layout
*/
bool
isPaddleFormat
(
mkldnn
::
memory
::
format
fmt
)
{
if
(
fmt
==
mkldnn
::
memory
::
format
::
nchw
||
fmt
==
mkldnn
::
memory
::
format
::
nc
)
{
return
true
;
}
else
{
return
false
;
}
}
/**
/**
* clear all grad
* clear all grad
*/
*/
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录