From 94e442d4b14c66ba68d8e64c0f51f5bc849437dd Mon Sep 17 00:00:00 2001 From: tensor-tang Date: Thu, 19 Oct 2017 16:32:11 +0800 Subject: [PATCH] add cpp file of MKLDNNLayer --- paddle/gserver/layers/MKLDNNLayer.cpp | 327 ++++++++++++++++++++++ paddle/gserver/layers/MKLDNNLayer.h | 386 ++++---------------------- 2 files changed, 379 insertions(+), 334 deletions(-) create mode 100644 paddle/gserver/layers/MKLDNNLayer.cpp diff --git a/paddle/gserver/layers/MKLDNNLayer.cpp b/paddle/gserver/layers/MKLDNNLayer.cpp new file mode 100644 index 00000000000..91f0ff5bd32 --- /dev/null +++ b/paddle/gserver/layers/MKLDNNLayer.cpp @@ -0,0 +1,327 @@ +/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "MKLDNNLayer.h" + +using namespace mkldnn; // NOLINT +typedef memory::format format; + +namespace paddle { + +bool MKLDNNLayer::init(const LayerMap& layerMap, + const ParameterMap& parameterMap) { + CHECK(FLAGS_use_mkldnn) << "MkldnnLayers only support use_mkldnn." + << "Please set WITH_MKLDNN=ON " + << "and set use_mkldnn=True"; + CHECK(!useGpu_) << "Do not support GPU yet"; + + // set device id before Layer::init + setDevice(MKLDNN_DEVICE); + // change param device to MKLDNN device + setParamsDevice(MKLDNN_DEVICE, parameterMap); + if (!Layer::init(layerMap, parameterMap)) { + return false; + } + setOutputMap(); + checkCPUOutputsNumber(); + + stream_.reset(new MKLDNNStream()); + engine_ = CPUEngine::Instance().getEngine(); + return true; +} + +void MKLDNNLayer::forward(PassType passType) { + passType_ = passType; + + { + REGISTER_TIMER_INFO("mkldnn_FwdTimer", getName().c_str()); + CHECK(!inputLayers_.empty()); + copySeqInfoToOutputs(); + size_t elemenCnt = inputLayers_[0]->getOutputValue()->getElementCnt(); + if (inputElemenCnt_ != elemenCnt) { + VLOG(MKLDNN_BASE) << getName() << " reset mkldnn forward"; + // reset when input total sizes changed, not only the batchsize + inputElemenCnt_ = elemenCnt; + pipelineFwd_.clear(); + reshape(bs_, ic_, ih_, iw_, oc_, oh_, ow_); + // all cpu device output grad or value share output's + shareCPUDevice(); + resetFwd(pipelineFwd_, inVal_, wgtVal_, biasVal_, outVal_); + // MKLDNNLayer output value should be MKLDNNMatrix + // so external output value is necessary. + // then external input value is not necessary, + // since input may be mkldnn internal buffer. + CHECK(extOutVal_) << "external output value is necessary"; + output_.value = std::dynamic_pointer_cast(extOutVal_); + CHECK(inVal_ && outVal_) << "internal memories are necessary"; + if (cvtInVal_) { + pipelineFwd_.insert(pipelineFwd_.begin(), *cvtInVal_); + } + if (cvtOutVal_) { + pipelineFwd_.push_back(*cvtOutVal_); + } + convertWeightsFromPaddle(); + printSizeInfo(); + printValueFormat(); + needResetBwd_ = true; + } + + if (inputLayers_[0]->getType() == "data") { + // Update input value data when input layer is "data" type, + // since the input value data address might be changed. + CHECK(extInVal_); + extInVal_->setData(getInputValue(0, CPU_DEVICE)->getData()); + } + + if (!outputOnlyMKLDNN_) { + clearGrads(); + } + stream_->submit(pipelineFwd_); + } + { + REGISTER_TIMER_INFO("FwActTimer", getName().c_str()); + forwardActivation(); + } +} + +void MKLDNNLayer::backward(const UpdateCallback& callback) { + if (needResetBwd_) { + VLOG(MKLDNN_BASE) << getName() << " reset mkldnn backward"; + pipelineBwd_.clear(); + pipelineMergeGrad_.clear(); + mergeGrad_ = nullptr; + resetBwd(pipelineBwd_, inGrad_, wgtGrad_, biasGrad_, outGrad_); + // external output grad is not necessary + // since output may be mkldnn internal buffer or merge them directly. + CHECK(outGrad_) << "internal output grad is necessary"; + if (cvtOutGrad_) { + pipelineBwd_.insert(pipelineBwd_.begin(), *cvtOutGrad_); + } + if (cvtInGrad_) { + pipelineBwd_.push_back(*cvtInGrad_); + } + printGradFormat(); + needResetBwd_ = false; + } + + // merge grad must before backward activation + if (mergeGrad_) { + REGISTER_TIMER_INFO("MergeBpGrad", getName().c_str()); + stream_->submit(pipelineMergeGrad_); + } + { + REGISTER_TIMER_INFO("BpActTimer", getName().c_str()); + backwardActivation(); + } + { + REGISTER_TIMER_INFO("mkldnn_bwdTimer", getName().c_str()); + stream_->submit(pipelineBwd_); + } + { + REGISTER_TIMER_INFO("WeightUpdate", getName().c_str()); + updateWeights(callback); + } +} + +void MKLDNNLayer::reshapeInput(int& batchsize, int& height, int& width) { + const Argument& input = inputLayers_[0]->getOutput(); + batchsize = input.getBatchSize(); + int h = input.getFrameHeight(); + int w = input.getFrameWidth(); + if (h != 0) { + height = h; + } + if (w != 0) { + width = w; + } +} + +void MKLDNNLayer::reshapeOutput(size_t height, size_t width) { + output_.setFrameHeight(height); + output_.setFrameWidth(width); + for (size_t i = 0; i < outputOtherDevice_.size(); i++) { + outputOtherDevice_[i].setFrameHeight(height); + outputOtherDevice_[i].setFrameWidth(width); + } +} + +void MKLDNNLayer::resetWithMatrix(MKLDNNMatrixPtr& dnn, + const MatrixPtr& mat, + memory::primitive_desc pd) { + dnn = nullptr; + if (mat == nullptr) { + return; + } + dnn = MKLDNNMatrix::create(pd, mat); +} + +void MKLDNNLayer::resetInValue( + MKLDNNMatrixPtr& in, const std::shared_ptr& intPD) { + cvtInVal_ = nullptr; + extInVal_ = nullptr; + in = nullptr; + CHECK_GT(bs_ * ic_ * ih_ * iw_, 0); + auto extPD = MKLDNNMatrix::createPrimitiveDesc( + {bs_, ic_, ih_, iw_}, format::nchw, engine_); + const MatrixPtr& inMat = inputLayers_[0]->getOutputValue(); + in = std::dynamic_pointer_cast(inMat); + CHECK_EQ(inputIsOnlyMKLDNN(), in != nullptr); + if (in == nullptr || in->getFormat() == format::nc) { + in = MKLDNNMatrix::create(extPD, inMat); + } + extInVal_ = isPaddleFormat(in->getFormat()) ? in : nullptr; + if (in->getFormat() == format::nc) { + CHECK(ih_ == 1 && iw_ == 1); + } + if (nullptr == intPD || in->getPrimitiveDesc() == *intPD) { + return; + } + // need create reorder + in = MKLDNNMatrix::create(*intPD); + extInVal_ = extInVal_ ? extInVal_ : MKLDNNMatrix::create(extPD, inMat); + cvtInVal_ = MKLDNNMatrix::createReorder(extInVal_, in); + CHECK(cvtInVal_) << "should not be emptry"; +} + +void MKLDNNLayer::resetOutValue(MKLDNNMatrixPtr& out, + memory::primitive_desc intPD) { + cvtOutVal_ = nullptr; + out = MKLDNNMatrix::create(intPD, output_.value); + extOutVal_ = out; + if (outputIsOnlyMKLDNN() || isPaddleFormat(extOutVal_->getFormat())) { + return; + } + // need create reorder + CHECK_GT(bs_ * oc_ * oh_ * ow_, 0); + extOutVal_ = MKLDNNMatrix::create( + memory::dims{bs_, oc_, oh_, ow_}, format::nchw, engine_, output_.value); + out = MKLDNNMatrix::create(intPD); + cvtOutVal_ = MKLDNNMatrix::createReorder(out, extOutVal_); + CHECK(cvtOutVal_) << "should not be empty"; +} + +void MKLDNNLayer::resetInGrad(MKLDNNMatrixPtr& in, + memory::primitive_desc intPD) { + cvtInGrad_ = nullptr; + extInGrad_ = nullptr; + in = nullptr; + LayerPtr& input = inputLayers_[0]; + if (input->getOutputGrad() == nullptr) { + // no need input grad + return; + } + CHECK(inputIsOnlyMKLDNN() || input->getOutputMapSize() <= 1) + << "only support input is MKLDNN layer or only have one output layer"; + // when input is a mkldnn branch node, + // this layer will save input grad to a internal buffer, + // and the mkldnn input layer will merge them to actual prev->output_.grad + const MatrixPtr& inMat = + input->getOutputMapSize() <= 1 ? input->getOutputGrad() : nullptr; + in = MKLDNNMatrix::create(intPD, inMat); + Argument& arg = input->getOutput(this->getName()); + arg.grad = std::dynamic_pointer_cast(in); + CHECK(inVal_ != nullptr && inVal_->getPrimitiveDesc() == intPD) + << "should have internal input value and primitive desc must equal"; + if (inputIsOnlyMKLDNN()) { + return; + } + + extInGrad_ = in; + if (isPaddleFormat(extInGrad_->getFormat())) { + return; + } + // need create reorder + CHECK(extInVal_ != nullptr && isPaddleFormat(extInVal_->getFormat())) + << "should have external input value and the format must be nchw(nc)"; + extInGrad_ = MKLDNNMatrix::create(extInVal_->getPrimitiveDesc(), inMat); + CHECK(inVal_ != nullptr && inVal_->getPrimitiveDesc() == intPD) + << "should have internal input value and primitive desc must equal"; + in = MKLDNNMatrix::create(intPD); + cvtInGrad_ = MKLDNNMatrix::createReorder(in, extInGrad_); + CHECK(cvtInGrad_); +} + +void MKLDNNLayer::resetOutGrad(MKLDNNMatrixPtr& out, + memory::primitive_desc intPD) { + cvtOutGrad_ = nullptr; + extOutGrad_ = nullptr; + out = nullptr; + MatrixPtr& outMat = output_.grad; + out = MKLDNNMatrix::create(intPD, outMat); + resetMergeGrad(out); + if (outputIsOnlyMKLDNN()) { + return; + } + CHECK_LE(outputMap_.size(), 1U) << "do not support mixed with cpu device"; + extOutGrad_ = out; + if (isPaddleFormat(extOutGrad_->getFormat())) { + return; + } + // need create reorder + CHECK(extOutVal_ != nullptr && isPaddleFormat(extOutVal_->getFormat())) + << "should have external output value and the format must be nchw(nc)"; + extOutGrad_ = MKLDNNMatrix::create(extOutVal_->getPrimitiveDesc(), outMat); + CHECK(outVal_ != nullptr && outVal_->getPrimitiveDesc() == intPD) + << "should have internal output value and primitive desc must equal"; + out = MKLDNNMatrix::create(intPD); + cvtOutGrad_ = MKLDNNMatrix::createReorder(extOutGrad_, out); + CHECK(cvtOutGrad_); +} + +void MKLDNNLayer::resetMergeGrad(MKLDNNMatrixPtr& out) { + mergeGrad_ = nullptr; + pipelineMergeGrad_.clear(); + if (outputMap_.size() <= 1 || !outputIsOnlyMKLDNN()) { + // do not merge when output is not all MKLDNN or only one output + return; + } + CHECK(out) << "should have reset internal ouput grad"; + std::vector scales(outputMap_.size(), 1.0); + std::vector srcPDs; + std::vector srcs; + for (auto it = outputMap_.begin(); it != outputMap_.end(); ++it) { + MKLDNNMatrixPtr src = + std::dynamic_pointer_cast(it->second->grad); + VLOG(MKLDNN_BASE) << getName() << " has output grad " << it->first; + CHECK(src) << "should be MKLDNNMatrix"; + auto srcDims = src->getDims(); + auto dstDims = out->getDims(); + CHECK_EQ(srcDims.size(), dstDims.size()); + for (size_t i = 0; i < srcDims.size(); ++i) { + CHECK_EQ(srcDims[i], dstDims[i]); + } + srcPDs.push_back(src->getPrimitiveDesc()); + srcs.push_back(*src); + } + + // TODO(TJ): remove me when mkldnn sum support different formats + for (size_t i = 1; i < srcPDs.size(); ++i) { + CHECK(srcPDs[0] == srcPDs[i]); + } + tmpOutGrad_ = out; + tmpCvt_ = nullptr; + if (out->getPrimitiveDesc() != srcPDs[0]) { + tmpOutGrad_ = MKLDNNMatrix::create(srcPDs[0]); + tmpCvt_ = MKLDNNMatrix::createReorder(tmpOutGrad_, out); + CHECK(tmpCvt_); + pipelineMergeGrad_.push_back(*tmpCvt_); + } + + auto sumPD = + sum::primitive_desc(tmpOutGrad_->getMemoryDesc(), scales, srcPDs); + mergeGrad_.reset(new sum(sumPD, srcs, *tmpOutGrad_)); + pipelineMergeGrad_.insert(pipelineMergeGrad_.begin(), *mergeGrad_); +} + +} // namespace paddle diff --git a/paddle/gserver/layers/MKLDNNLayer.h b/paddle/gserver/layers/MKLDNNLayer.h index 80c67529daf..faad434526f 100644 --- a/paddle/gserver/layers/MKLDNNLayer.h +++ b/paddle/gserver/layers/MKLDNNLayer.h @@ -119,119 +119,9 @@ public: ~MKLDNNLayer() {} - virtual bool init(const LayerMap& layerMap, - const ParameterMap& parameterMap) { - CHECK(FLAGS_use_mkldnn) << "MkldnnLayers only support use_mkldnn." - << "Please set WITH_MKLDNN=ON " - << "and set use_mkldnn=True"; - CHECK(!useGpu_) << "Do not support GPU yet"; - - // set device id before Layer::init - setDevice(MKLDNN_DEVICE); - // change param device to MKLDNN device - setParamsDevice(MKLDNN_DEVICE, parameterMap); - if (!Layer::init(layerMap, parameterMap)) { - return false; - } - setOutputMap(); - checkCPUOutputsNumber(); - - stream_.reset(new MKLDNNStream()); - engine_ = CPUEngine::Instance().getEngine(); - return true; - } - - void forward(PassType passType) override { - passType_ = passType; - - { - REGISTER_TIMER_INFO("mkldnn_FwdTimer", getName().c_str()); - CHECK(!inputLayers_.empty()); - copySeqInfoToOutputs(); - size_t elemenCnt = inputLayers_[0]->getOutputValue()->getElementCnt(); - if (inputElemenCnt_ != elemenCnt) { - VLOG(MKLDNN_BASE) << getName() << " reset mkldnn forward"; - // reset when input total sizes changed, not only the batchsize - inputElemenCnt_ = elemenCnt; - pipelineFwd_.clear(); - reshape(bs_, ic_, ih_, iw_, oc_, oh_, ow_); - // all cpu device output grad or value share output's - shareCPUDevice(); - resetFwd(pipelineFwd_, inVal_, wgtVal_, biasVal_, outVal_); - // MKLDNNLayer output value should be MKLDNNMatrix - // so external output value is necessary. - // then external input value is not necessary, - // since input may be mkldnn internal buffer. - CHECK(extOutVal_) << "external output value is necessary"; - output_.value = std::dynamic_pointer_cast(extOutVal_); - CHECK(inVal_ && outVal_) << "internal memories are necessary"; - if (cvtInVal_) { - pipelineFwd_.insert(pipelineFwd_.begin(), *cvtInVal_); - } - if (cvtOutVal_) { - pipelineFwd_.push_back(*cvtOutVal_); - } - convertWeightsFromPaddle(); - printValueFormat(); - needResetBwd_ = true; - } - - if (inputLayers_[0]->getType() == "data") { - // Update input value data when input layer is "data" type, - // since the input value data address might be changed. - CHECK(extInVal_); - extInVal_->setData(getInputValue(0, CPU_DEVICE)->getData()); - } - - if (!outputOnlyMKLDNN_) { - clearGrads(); - } - stream_->submit(pipelineFwd_); - } - { - REGISTER_TIMER_INFO("FwActTimer", getName().c_str()); - forwardActivation(); - } - } - - void backward(const UpdateCallback& callback) override { - if (needResetBwd_) { - VLOG(MKLDNN_BASE) << getName() << " reset mkldnn backward"; - pipelineBwd_.clear(); - pipelineMergeGrad_.clear(); - mergeGrad_ = nullptr; - resetBwd(pipelineBwd_, inGrad_, wgtGrad_, biasGrad_, outGrad_); - // external output grad is not necessary - // since output may be mkldnn internal buffer or merge them directly. - CHECK(outGrad_) << "internal output grad is necessary"; - if (cvtOutGrad_) { - pipelineBwd_.insert(pipelineBwd_.begin(), *cvtOutGrad_); - } - if (cvtInGrad_) { - pipelineBwd_.push_back(*cvtInGrad_); - } - printGradFormat(); - needResetBwd_ = false; - } - - // merge grad must before backward activation - if (mergeGrad_) { - REGISTER_TIMER_INFO("MergeBpGrad", getName().c_str()); - stream_->submit(pipelineMergeGrad_); - } - { - REGISTER_TIMER_INFO("BpActTimer", getName().c_str()); - backwardActivation(); - } - { - REGISTER_TIMER_INFO("mkldnn_bwdTimer", getName().c_str()); - stream_->submit(pipelineBwd_); - } - { - REGISTER_TIMER_INFO("WeightUpdate", getName().c_str()); - updateWeights(callback); - } - } + virtual bool init(const LayerMap& layerMap, const ParameterMap& parameterMap); + void forward(PassType passType) override; + void backward(const UpdateCallback& callback) override; /** * reshape the input image sizes @@ -287,30 +177,12 @@ protected: /** * reshape the input image sizes and input batchsize */ - virtual void reshapeInput(int& batchsize, int& height, int& width) { - const Argument& input = inputLayers_[0]->getOutput(); - batchsize = input.getBatchSize(); - int h = input.getFrameHeight(); - int w = input.getFrameWidth(); - if (h != 0) { - height = h; - } - if (w != 0) { - width = w; - } - } + void reshapeInput(int& batchsize, int& height, int& width); /** * reshape output image sizes */ - virtual void reshapeOutput(size_t height, size_t width) { - output_.setFrameHeight(height); - output_.setFrameWidth(width); - for (size_t i = 0; i < outputOtherDevice_.size(); i++) { - outputOtherDevice_[i].setFrameHeight(height); - outputOtherDevice_[i].setFrameWidth(width); - } - } + void reshapeOutput(size_t height, size_t width); /** * reset MKLDNNMatrix from Matrix and internal primitive desc. @@ -318,13 +190,7 @@ protected: */ void resetWithMatrix(MKLDNNMatrixPtr& dnn, const MatrixPtr& mat, - mkldnn::memory::primitive_desc pd) { - dnn = nullptr; - if (mat == nullptr) { - return; - } - dnn = MKLDNNMatrix::create(pd, mat); - } + mkldnn::memory::primitive_desc pd); /** * reset input value from input MKLDNNMatrix and internal primitive desc. @@ -332,99 +198,20 @@ protected: */ void resetInValue( MKLDNNMatrixPtr& in, - const std::shared_ptr& intPD = nullptr) { - cvtInVal_ = nullptr; - extInVal_ = nullptr; - in = nullptr; - CHECK_GT(bs_ * ic_ * ih_ * iw_, 0); - auto extPD = MKLDNNMatrix::createPrimitiveDesc( - {bs_, ic_, ih_, iw_}, mkldnn::memory::format::nchw, engine_); - const MatrixPtr& inMat = inputLayers_[0]->getOutputValue(); - in = std::dynamic_pointer_cast(inMat); - CHECK_EQ(inputIsOnlyMKLDNN(), in != nullptr); - if (in == nullptr || in->getFormat() == mkldnn::memory::format::nc) { - in = MKLDNNMatrix::create(extPD, inMat); - } - extInVal_ = isPaddleFormat(in->getFormat()) ? in : nullptr; - if (in->getFormat() == mkldnn::memory::format::nc) { - CHECK(ih_ == 1 && iw_ == 1); - } - if (nullptr == intPD || in->getPrimitiveDesc() == *intPD) { - return; - } - // need create reorder - in = MKLDNNMatrix::create(*intPD); - extInVal_ = extInVal_ ? extInVal_ : MKLDNNMatrix::create(extPD, inMat); - cvtInVal_ = MKLDNNMatrix::createReorder(extInVal_, in); - CHECK(cvtInVal_) << "should not be emptry"; - } + const std::shared_ptr& intPD = nullptr); /** * reset output value from internal primitive desc. * reset both internal and external buffer and create reorder if necessary. */ void resetOutValue(MKLDNNMatrixPtr& out, - mkldnn::memory::primitive_desc intPD) { - cvtOutVal_ = nullptr; - out = MKLDNNMatrix::create(intPD, output_.value); - extOutVal_ = out; - if (outputIsOnlyMKLDNN() || isPaddleFormat(extOutVal_->getFormat())) { - return; - } - // need create reorder - CHECK_GT(bs_ * oc_ * oh_ * ow_, 0); - extOutVal_ = MKLDNNMatrix::create(mkldnn::memory::dims{bs_, oc_, oh_, ow_}, - mkldnn::memory::format::nchw, - engine_, - output_.value); - out = MKLDNNMatrix::create(intPD); - cvtOutVal_ = MKLDNNMatrix::createReorder(out, extOutVal_); - CHECK(cvtOutVal_) << "should not be empty"; - } + mkldnn::memory::primitive_desc intPD); /** * reset input grad from internal primitive desc. * reset both internal and external buffer and create reorder if necessary. */ - void resetInGrad(MKLDNNMatrixPtr& in, mkldnn::memory::primitive_desc intPD) { - cvtInGrad_ = nullptr; - extInGrad_ = nullptr; - in = nullptr; - LayerPtr& input = inputLayers_[0]; - if (input->getOutputGrad() == nullptr) { - // no need input grad - return; - } - CHECK(inputIsOnlyMKLDNN() || input->getOutputMapSize() <= 1) - << "only support input is MKLDNN layer or only have one output layer"; - // when input is a mkldnn branch node, - // this layer will save input grad to a internal buffer, - // and the mkldnn input layer will merge them to actual prev->output_.grad - const MatrixPtr& inMat = - input->getOutputMapSize() <= 1 ? input->getOutputGrad() : nullptr; - in = MKLDNNMatrix::create(intPD, inMat); - Argument& arg = input->getOutput(this->getName()); - arg.grad = std::dynamic_pointer_cast(in); - CHECK(inVal_ != nullptr && inVal_->getPrimitiveDesc() == intPD) - << "should have internal input value and primitive desc must equal"; - if (inputIsOnlyMKLDNN()) { - return; - } - - extInGrad_ = in; - if (isPaddleFormat(extInGrad_->getFormat())) { - return; - } - // need create reorder - CHECK(extInVal_ != nullptr && isPaddleFormat(extInVal_->getFormat())) - << "should have external input value and the format must be nchw(nc)"; - extInGrad_ = MKLDNNMatrix::create(extInVal_->getPrimitiveDesc(), inMat); - CHECK(inVal_ != nullptr && inVal_->getPrimitiveDesc() == intPD) - << "should have internal input value and primitive desc must equal"; - in = MKLDNNMatrix::create(intPD); - cvtInGrad_ = MKLDNNMatrix::createReorder(in, extInGrad_); - CHECK(cvtInGrad_); - } + void resetInGrad(MKLDNNMatrixPtr& in, mkldnn::memory::primitive_desc intPD); /** * reset output grad from internal primitive desc. @@ -434,81 +221,59 @@ protected: * it could not be mixed with cpu device, * since it can not get memory desc from cpu device. */ - void resetOutGrad(MKLDNNMatrixPtr& out, - mkldnn::memory::primitive_desc intPD) { - cvtOutGrad_ = nullptr; - extOutGrad_ = nullptr; - out = nullptr; - MatrixPtr& outMat = output_.grad; - out = MKLDNNMatrix::create(intPD, outMat); - resetMergeGrad(out); - if (outputIsOnlyMKLDNN()) { - return; - } - CHECK_LE(outputMap_.size(), 1U) << "do not support mixed with cpu device"; - extOutGrad_ = out; - if (isPaddleFormat(extOutGrad_->getFormat())) { - return; - } - // need create reorder - CHECK(extOutVal_ != nullptr && isPaddleFormat(extOutVal_->getFormat())) - << "should have external output value and the format must be nchw(nc)"; - extOutGrad_ = MKLDNNMatrix::create(extOutVal_->getPrimitiveDesc(), outMat); - CHECK(outVal_ != nullptr && outVal_->getPrimitiveDesc() == intPD) - << "should have internal output value and primitive desc must equal"; - out = MKLDNNMatrix::create(intPD); - cvtOutGrad_ = MKLDNNMatrix::createReorder(extOutGrad_, out); - CHECK(cvtOutGrad_); - } + void resetOutGrad(MKLDNNMatrixPtr& out, mkldnn::memory::primitive_desc intPD); /** * reset the merge grad primitive if necessary. * note: do not support the grads are mixed with cpu device, * since it can not get memory desc from cpu device. */ - virtual void resetMergeGrad(MKLDNNMatrixPtr& out) { - mergeGrad_ = nullptr; - pipelineMergeGrad_.clear(); - if (outputMap_.size() <= 1 || !outputIsOnlyMKLDNN()) { - // do not merge when output is not all MKLDNN or only one output - return; - } - CHECK(out) << "should have reset internal ouput grad"; - std::vector scales(outputMap_.size(), 1.0); - std::vector srcPDs; - std::vector srcs; - for (auto it = outputMap_.begin(); it != outputMap_.end(); ++it) { - MKLDNNMatrixPtr src = - std::dynamic_pointer_cast(it->second->grad); - VLOG(MKLDNN_BASE) << getName() << " has output grad " << it->first; - CHECK(src) << "should be MKLDNNMatrix"; - auto srcDims = src->getDims(); - auto dstDims = out->getDims(); - CHECK_EQ(srcDims.size(), dstDims.size()); - for (size_t i = 0; i < srcDims.size(); ++i) { - CHECK_EQ(srcDims[i], dstDims[i]); - } - srcPDs.push_back(src->getPrimitiveDesc()); - srcs.push_back(*src); - } + void resetMergeGrad(MKLDNNMatrixPtr& out); + +protected: + /** + * Set deviceId of this layer. + */ + void setDevice(int id) { deviceId_ = id; } - // TODO(TJ): remove me when mkldnn sum support different formats - for (size_t i = 1; i < srcPDs.size(); ++i) { - CHECK(srcPDs[0] == srcPDs[i]); + /** + * check the format is nchw or nc, + * which is supported by Paddle default memory layout + */ + bool isPaddleFormat(mkldnn::memory::format fmt) { + if (fmt == mkldnn::memory::format::nchw || + fmt == mkldnn::memory::format::nc) { + return true; + } else { + return false; } - tmpOutGrad_ = out; - tmpCvt_ = nullptr; - if (out->getPrimitiveDesc() != srcPDs[0]) { - tmpOutGrad_ = MKLDNNMatrix::create(srcPDs[0]); - tmpCvt_ = MKLDNNMatrix::createReorder(tmpOutGrad_, out); - CHECK(tmpCvt_); - pipelineMergeGrad_.push_back(*tmpCvt_); + } + + /** + * If input only has MKLDNN device. + * Otherwise, only support the previous layer using CPU device. + */ + bool inputIsOnlyMKLDNN(int index = 0) { + int prevDevice = getPrev(index)->getDeviceId(); + if (prevDevice == MKLDNN_DEVICE) { + return true; + } else { + CHECK_EQ(prevDevice, CPU_DEVICE) << "Only support CPU yet"; + return false; } + } - auto sumPD = mkldnn::sum::primitive_desc( - tmpOutGrad_->getMemoryDesc(), scales, srcPDs); - mergeGrad_.reset(new mkldnn::sum(sumPD, srcs, *tmpOutGrad_)); - pipelineMergeGrad_.insert(pipelineMergeGrad_.begin(), *mergeGrad_); + /** + * If output only has MKLDNN device. + * Otherwise, other devices should only using CPU device. + */ + bool outputIsOnlyMKLDNN() { + for (size_t i = 0; i < outputOtherDevice_.size(); i++) { + CHECK_EQ(outputOtherDevice_[i].deviceId, CPU_DEVICE) + << "Only support other device is CPU yet"; + } + outputOnlyMKLDNN_ = outputOtherDevice_.size() == 0; + return outputOnlyMKLDNN_; } /** @@ -568,54 +333,7 @@ protected: } } -protected: - /** - * If input only has MKLDNN device. - * Otherwise, only support the previous layer using CPU device. - */ - bool inputIsOnlyMKLDNN(int index = 0) { - int prevDevice = getPrev(index)->getDeviceId(); - if (prevDevice == MKLDNN_DEVICE) { - return true; - } else { - // do not support GPU yet - CHECK_EQ(prevDevice, CPU_DEVICE) << "Only support CPU yet"; - return false; - } - } - - /** - * If output only has MKLDNN device. - * Otherwise, other devices should only using CPU device. - */ - bool outputIsOnlyMKLDNN() { - for (size_t i = 0; i < outputOtherDevice_.size(); i++) { - CHECK_EQ(outputOtherDevice_[i].deviceId, CPU_DEVICE) - << "Only support other device is CPU yet"; - } - outputOnlyMKLDNN_ = outputOtherDevice_.size() == 0; - return outputOnlyMKLDNN_; - } - - /** - * Set deviceId of this layer. - */ - void setDevice(int id) { deviceId_ = id; } - private: - /** - * check the format is nchw or nc, - * which is supported by Paddle default memory layout - */ - bool isPaddleFormat(mkldnn::memory::format fmt) { - if (fmt == mkldnn::memory::format::nchw || - fmt == mkldnn::memory::format::nc) { - return true; - } else { - return false; - } - } - /** * clear all grad */ -- GitLab