Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
948bc8b7
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
未验证
提交
948bc8b7
编写于
8月 05, 2020
作者:
L
LielinJiang
提交者:
GitHub
8月 05, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add apply for Layer (#25812)
* add apply for Layer
上级
3dd2e380
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
129 addition
and
0 deletion
+129
-0
python/paddle/fluid/dygraph/layers.py
python/paddle/fluid/dygraph/layers.py
+39
-0
python/paddle/fluid/tests/unittests/test_imperative_layer_apply.py
...ddle/fluid/tests/unittests/test_imperative_layer_apply.py
+90
-0
未找到文件。
python/paddle/fluid/dygraph/layers.py
浏览文件 @
948bc8b7
...
@@ -129,6 +129,45 @@ class Layer(core.Layer):
...
@@ -129,6 +129,45 @@ class Layer(core.Layer):
for
layer
in
self
.
sublayers
():
for
layer
in
self
.
sublayers
():
layer
.
eval
()
layer
.
eval
()
def
apply
(
self
,
fn
):
"""
Applies ``fn`` recursively to every sublayer (as returned by ``.sublayers()``)
as well as self. Typical use includes initializing the parameters of a model.
Parameters:
fn (function): a function to be applied to each sublayer
Returns:
Layer: self
Example::
.. code-block:: python
import paddle
import paddle.nn as nn
paddle.enable_imperative()
net = nn.Sequential(nn.Linear(2, 2), nn.Linear(2, 2))
def init_weights(layer):
if type(layer) == nn.Linear:
print('before init weight:', layer.weight.numpy())
new_weight = paddle.fill_constant(layer.weight.shape, layer.weight.dtype, value=0.9)
layer.weight.set_value(new_weight)
print('after init weight:', layer.weight.numpy())
net.apply(init_weights)
print(net.state_dict())
"""
for
layer
in
self
.
sublayers
():
layer
.
apply
(
fn
)
fn
(
self
)
return
self
def
full_name
(
self
):
def
full_name
(
self
):
"""Full name for this layer, composed by name_scope + "/" + MyLayer.__class__.__name__
"""Full name for this layer, composed by name_scope + "/" + MyLayer.__class__.__name__
...
...
python/paddle/fluid/tests/unittests/test_imperative_layer_apply.py
0 → 100644
浏览文件 @
948bc8b7
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
paddle
import
paddle.nn
as
nn
import
paddle.fluid
as
fluid
import
numpy
as
np
class
LeNetDygraph
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
num_classes
=
10
,
classifier_activation
=
'softmax'
):
super
(
LeNetDygraph
,
self
).
__init__
()
self
.
num_classes
=
num_classes
self
.
features
=
nn
.
Sequential
(
nn
.
Conv2D
(
1
,
6
,
3
,
stride
=
1
,
padding
=
1
),
nn
.
ReLU
(),
nn
.
Pool2D
(
2
,
'max'
,
2
),
nn
.
Conv2D
(
6
,
16
,
5
,
stride
=
1
,
padding
=
0
),
nn
.
ReLU
(),
nn
.
Pool2D
(
2
,
'max'
,
2
))
if
num_classes
>
0
:
self
.
fc
=
nn
.
Sequential
(
nn
.
Linear
(
400
,
120
),
nn
.
Linear
(
120
,
84
),
nn
.
Linear
(
84
,
10
,
act
=
classifier_activation
))
def
forward
(
self
,
inputs
):
x
=
self
.
features
(
inputs
)
if
self
.
num_classes
>
0
:
x
=
fluid
.
layers
.
flatten
(
x
,
1
)
x
=
self
.
fc
(
x
)
return
x
def
init_weights
(
layer
):
if
type
(
layer
)
==
nn
.
Linear
:
new_weight
=
paddle
.
fill_constant
(
layer
.
weight
.
shape
,
layer
.
weight
.
dtype
,
value
=
0.9
)
layer
.
weight
.
set_value
(
new_weight
)
new_bias
=
paddle
.
fill_constant
(
layer
.
bias
.
shape
,
layer
.
bias
.
dtype
,
value
=-
0.1
)
layer
.
bias
.
set_value
(
new_bias
)
elif
type
(
layer
)
==
nn
.
Conv2D
:
new_weight
=
paddle
.
fill_constant
(
layer
.
weight
.
shape
,
layer
.
weight
.
dtype
,
value
=
0.7
)
layer
.
weight
.
set_value
(
new_weight
)
new_bias
=
paddle
.
fill_constant
(
layer
.
bias
.
shape
,
layer
.
bias
.
dtype
,
value
=-
0.2
)
layer
.
bias
.
set_value
(
new_bias
)
class
TestLayerApply
(
unittest
.
TestCase
):
def
test_apply_init_weight
(
self
):
with
fluid
.
dygraph
.
guard
():
net
=
LeNetDygraph
()
net
.
apply
(
init_weights
)
for
layer
in
net
.
sublayers
():
if
type
(
layer
)
==
nn
.
Linear
:
np
.
testing
.
assert_allclose
(
layer
.
weight
.
numpy
(),
0.9
)
np
.
testing
.
assert_allclose
(
layer
.
bias
.
numpy
(),
-
0.1
)
elif
type
(
layer
)
==
nn
.
Conv2D
:
np
.
testing
.
assert_allclose
(
layer
.
weight
.
numpy
(),
0.7
)
np
.
testing
.
assert_allclose
(
layer
.
bias
.
numpy
(),
-
0.2
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录