Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
94855f4a
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
94855f4a
编写于
10月 04, 2017
作者:
K
Kavya Srinet
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Fixed changes proposed in the review
上级
163d2871
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
77 addition
and
35 deletion
+77
-35
paddle/operators/rmsprop_op.cc
paddle/operators/rmsprop_op.cc
+48
-21
paddle/operators/rmsprop_op.h
paddle/operators/rmsprop_op.h
+13
-6
python/paddle/v2/framework/tests/test_rmsprop_op.py
python/paddle/v2/framework/tests/test_rmsprop_op.py
+16
-8
未找到文件。
paddle/operators/rmsprop_op.cc
浏览文件 @
94855f4a
...
@@ -25,25 +25,32 @@ class RmspropOp : public framework::OperatorWithKernel {
...
@@ -25,25 +25,32 @@ class RmspropOp : public framework::OperatorWithKernel {
void
InferShape
(
framework
::
InferShapeContextBase
*
ctx
)
const
override
{
void
InferShape
(
framework
::
InferShapeContextBase
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Param"
),
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Param"
),
"Input(Param) of RmspropOp should not be null."
);
"Input(Param) of RmspropOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"MeanSquare"
),
"Input(MeanSquare) of RmspropOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"LearningRate"
),
"Input(LearningRate) of RmspropOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Grad"
),
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Grad"
),
"Input(Grad) of RmspropOp should not be null."
);
"Input(Grad) of RmspropOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Moment"
),
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Moment"
),
"Input(Moment) of RmspropOp should not be null."
);
"Input(Moment) of RmspropOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"LearningRate"
),
"Input(LearningRate) of RmspropOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"ParamOut"
),
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"ParamOut"
),
"Output(param_out) of RmspropOp should not be null."
);
"Output(param_out) of RmspropOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"MomentOut"
),
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"MomentOut"
),
"Output(moment_out) of RmspropOp should not be null."
);
"Output(Momentum_out) of RmspropOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"MeanSquareOut"
),
"Output(MeanSquareOut) of RmspropOp should not be null."
);
auto
param_dim
=
ctx
->
GetInputDim
(
"Param"
);
auto
param_dim
=
ctx
->
GetInputDim
(
"Param"
);
PADDLE_ENFORCE_EQ
(
PADDLE_ENFORCE_EQ
(
param_dim
,
ctx
->
GetInputDim
(
"Grad"
),
param_dim
,
ctx
->
GetInputDim
(
"Grad"
),
"Param and grad input of RmspropOp should have the same dimension."
);
"Param and grad input of RmspropOp should have the same dimension."
);
PADDLE_ENFORCE_EQ
(
PADDLE_ENFORCE_EQ
(
param_dim
,
ctx
->
GetInputDim
(
"Moment"
),
param_dim
,
ctx
->
GetInputDim
(
"Moment"
),
"Param and Momentum input of RmspropOp "
"Param and moment input of RmspropOp should have the same dimension."
);
"should have the same dimension."
);
PADDLE_ENFORCE_EQ
(
param_dim
,
ctx
->
GetInputDim
(
"MeanSquare"
),
"Param and Momentum input of RmspropOp "
"should have the same dimension."
);
auto
lr_dim
=
ctx
->
GetInputDim
(
"LearningRate"
);
auto
lr_dim
=
ctx
->
GetInputDim
(
"LearningRate"
);
PADDLE_ENFORCE_EQ
(
framework
::
product
(
lr_dim
),
1
,
PADDLE_ENFORCE_EQ
(
framework
::
product
(
lr_dim
),
1
,
...
@@ -51,6 +58,7 @@ class RmspropOp : public framework::OperatorWithKernel {
...
@@ -51,6 +58,7 @@ class RmspropOp : public framework::OperatorWithKernel {
ctx
->
SetOutputDim
(
"ParamOut"
,
param_dim
);
ctx
->
SetOutputDim
(
"ParamOut"
,
param_dim
);
ctx
->
SetOutputDim
(
"MomentOut"
,
param_dim
);
ctx
->
SetOutputDim
(
"MomentOut"
,
param_dim
);
ctx
->
SetOutputDim
(
"MeanSquareOut"
,
param_dim
);
}
}
};
};
...
@@ -59,27 +67,46 @@ class RmspropOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -59,27 +67,46 @@ class RmspropOpMaker : public framework::OpProtoAndCheckerMaker {
RmspropOpMaker
(
framework
::
OpProto
*
proto
,
RmspropOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"Param"
,
"Input parameter"
);
AddInput
(
"Param"
,
AddInput
(
"Grad"
,
"Input gradient"
);
"(Tensor, default Tensor<float>) "
AddInput
(
"Moment"
,
"Second moment"
);
"Input parameter value that has to be updated"
);
AddInput
(
"LearningRate"
,
"Learning Rate"
);
AddInput
(
"MeanSquare"
,
"(Tensor, default Tensor<float>)"
AddOutput
(
"ParamOut"
,
"Output parameter"
);
" The mean square value that gets updated"
);
AddOutput
(
"MomentOut"
,
"Output second moment"
);
AddInput
(
"LearningRate"
,
"(Tensor, default Tensor<float>) "
AddAttr
<
float
>
(
"epsilon"
,
"Constant for numerical stability"
);
"The learning rate should be a tensor of size 1"
);
AddAttr
<
float
>
(
"decayRate"
,
"Decay rate for moving average of gradients"
);
AddInput
(
"Grad"
,
"(Tensor, default Tensor<float>) "
"Input gradient of the parameter"
);
AddInput
(
"Moment"
,
"(Tensor, default Tensor<float>) The moment that gets updated"
);
AddOutput
(
"ParamOut"
,
"(Tensor) Output updated parameter value"
);
AddOutput
(
"MomentOut"
,
"(Tensor) Output updated moment"
);
AddOutput
(
"MeanSquareOut"
,
"(Tensor) Output Mean squared updated value"
);
AddAttr
<
float
>
(
"epsilon"
,
"(float, default 1e-10) Constant "
"for numerical stability."
)
.
SetDefault
(
1e-10
);
AddAttr
<
float
>
(
"decay"
,
"(float, default 0.9) "
"Discounting factor for coming gradient."
)
.
SetDefault
(
0.9
);
AddAttr
<
float
>
(
"momentum"
,
"(float, default 0.0) Constant value"
)
.
SetDefault
(
0.0
);
AddComment
(
R"DOC(
AddComment
(
R"DOC(
RMSprop
RMSprop
MomentOut = decayRate * Moment + (1 - decayRate) * Grad * Grad
MeanSquareOut = decay * MeanSquare + (1 - decay) * Grad * Grad
ParamOut = Param - LearningRate * Grad / (sqrt(MomentOut) + epsilon)
MomentOut = momentum * Moment +
LearningRate * Grad / sqrt(MeanSquareOut + epsilon)
ParamOut = Param - MomentOut
The original slide
(
Slide 29 of
The original slide
s that proposed RMSprop:
Slide 29 of
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf)
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf)
does not have the epsilon attribute. It is added here for numerical stability
to avoid division by zero.
)DOC"
);
)DOC"
);
}
}
...
...
paddle/operators/rmsprop_op.h
浏览文件 @
94855f4a
...
@@ -30,23 +30,30 @@ class RmspropOpKernel : public framework::OpKernel<T> {
...
@@ -30,23 +30,30 @@ class RmspropOpKernel : public framework::OpKernel<T> {
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
param_out
=
ctx
.
Output
<
Tensor
>
(
"ParamOut"
);
auto
param_out
=
ctx
.
Output
<
Tensor
>
(
"ParamOut"
);
auto
moment_out
=
ctx
.
Output
<
Tensor
>
(
"MomentOut"
);
auto
moment_out
=
ctx
.
Output
<
Tensor
>
(
"MomentOut"
);
auto
mean_square_out
=
ctx
.
Output
<
Tensor
>
(
"MeanSquareOut"
);
param_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
param_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
moment_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
moment_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
mean_square_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
float
epsilon
=
ctx
.
Attr
<
float
>
(
"epsilon"
);
float
epsilon
=
ctx
.
Attr
<
float
>
(
"epsilon"
);
float
decay
=
ctx
.
Attr
<
float
>
(
"decayRate"
);
float
rho
=
ctx
.
Attr
<
float
>
(
"decay"
);
float
momentum
=
ctx
.
Attr
<
float
>
(
"momentum"
);
auto
p
=
EigenVector
<
T
>::
Flatten
(
*
ctx
.
Input
<
Tensor
>
(
"Param"
));
auto
p
=
EigenVector
<
T
>::
Flatten
(
*
ctx
.
Input
<
Tensor
>
(
"Param"
));
auto
g
=
EigenVector
<
T
>::
Flatten
(
*
ctx
.
Input
<
Tensor
>
(
"Grad"
));
auto
ms
=
EigenVector
<
T
>::
Flatten
(
*
ctx
.
Input
<
Tensor
>
(
"MeanSquare"
));
auto
m
=
EigenVector
<
T
>::
Flatten
(
*
ctx
.
Input
<
Tensor
>
(
"Moment"
));
float
lr
=
ctx
.
Input
<
Tensor
>
(
"LearningRate"
)
->
data
<
float
>
()[
0
];
float
lr
=
ctx
.
Input
<
Tensor
>
(
"LearningRate"
)
->
data
<
float
>
()[
0
];
auto
g
=
EigenVector
<
T
>::
Flatten
(
*
ctx
.
Input
<
Tensor
>
(
"Grad"
));
auto
mom
=
EigenVector
<
T
>::
Flatten
(
*
ctx
.
Input
<
Tensor
>
(
"Moment"
));
auto
p_out
=
EigenVector
<
T
>::
Flatten
(
*
param_out
);
auto
p_out
=
EigenVector
<
T
>::
Flatten
(
*
param_out
);
auto
m_out
=
EigenVector
<
T
>::
Flatten
(
*
moment_out
);
auto
mom_out
=
EigenVector
<
T
>::
Flatten
(
*
moment_out
);
auto
ms_out
=
EigenVector
<
T
>::
Flatten
(
*
mean_square_out
);
auto
place
=
ctx
.
GetEigenDevice
<
Place
>
();
auto
place
=
ctx
.
GetEigenDevice
<
Place
>
();
m_out
.
device
(
place
)
=
decay
*
m
+
(
1
-
decay
)
*
g
*
g
;
ms_out
.
device
(
place
)
=
rho
*
ms
+
(
1
-
rho
)
*
g
*
g
;
p_out
.
device
(
place
)
=
p
-
lr
*
g
/
(
m_out
.
sqrt
()
+
epsilon
);
mom_out
.
device
(
place
)
=
momentum
*
mom
+
lr
*
g
/
(
ms_out
+
epsilon
).
sqrt
();
p_out
.
device
(
place
)
=
p
-
mom_out
;
}
}
};
};
...
...
python/paddle/v2/framework/tests/test_rmsprop_op.py
浏览文件 @
94855f4a
...
@@ -8,27 +8,35 @@ class TestRmspropOp(OpTest):
...
@@ -8,27 +8,35 @@ class TestRmspropOp(OpTest):
self
.
op_type
=
"rmsprop"
self
.
op_type
=
"rmsprop"
param
=
np
.
random
.
random
((
123
,
321
)).
astype
(
"float32"
)
param
=
np
.
random
.
random
((
123
,
321
)).
astype
(
"float32"
)
mean_square
=
np
.
random
.
random
((
123
,
321
)).
astype
(
"float32"
)
learning_rate
=
np
.
array
([
0.01
]).
astype
(
"float32"
)
grad
=
np
.
random
.
random
((
123
,
321
)).
astype
(
"float32"
)
grad
=
np
.
random
.
random
((
123
,
321
)).
astype
(
"float32"
)
moment
=
np
.
zeros
((
123
,
321
)).
astype
(
"float32"
)
moment
=
np
.
zeros
((
123
,
321
)).
astype
(
"float32"
)
learning_rate
=
np
.
array
([
0.01
]).
astype
(
"float32"
)
epsilon
=
1e-6
epsilon
=
1e-6
decay_rate
=
0.9
decay
=
0.9
momentum
=
0.0
self
.
inputs
=
{
self
.
inputs
=
{
'Param'
:
param
,
'Param'
:
param
,
'MeanSquare'
:
mean_square
,
'LearningRate'
:
learning_rate
,
'Grad'
:
grad
,
'Grad'
:
grad
,
'Moment'
:
moment
,
'Moment'
:
moment
,
'LearningRate'
:
learning_rate
}
}
self
.
attrs
=
{
'epsilon'
:
epsilon
,
'decay
Rate'
:
decay_rate
}
self
.
attrs
=
{
'epsilon'
:
epsilon
,
'decay
'
:
decay
,
'momentum'
:
momentum
}
moment_out
=
decay_rate
*
moment
+
(
1
-
decay_rate
)
*
grad
*
grad
ms_out
=
decay
*
mean_square
+
(
1
-
decay
)
*
grad
*
grad
param_out
=
param
-
learning_rate
*
grad
/
(
np
.
sqrt
(
moment_out
)
+
moment_out
=
momentum
*
moment
+
\
epsilon
)
learning_rate
*
grad
/
np
.
sqrt
(
ms_out
+
epsilon
)
param_out
=
param
-
moment_out
self
.
outputs
=
{
'ParamOut'
:
param_out
,
'MomentOut'
:
moment_out
}
self
.
outputs
=
{
'ParamOut'
:
param_out
,
'MomentOut'
:
moment_out
,
'MeanSquareOut'
:
ms_out
}
def
test_check_output
(
self
):
def
test_check_output
(
self
):
self
.
check_output
()
self
.
check_output
()
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录