Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
93dc44c9
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
93dc44c9
编写于
11月 09, 2016
作者:
L
liaogang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Update
上级
0519cc64
变更
22
隐藏空白更改
内联
并排
Showing
22 changed file
with
3759 addition
and
0 deletion
+3759
-0
python/paddle/trainer_config_helpers/tests/configs/img_layers.protostr
.../trainer_config_helpers/tests/configs/img_layers.protostr
+176
-0
python/paddle/trainer_config_helpers/tests/configs/last_first_seq.protostr
...iner_config_helpers/tests/configs/last_first_seq.protostr
+69
-0
python/paddle/trainer_config_helpers/tests/configs/layer_activations.protostr
...r_config_helpers/tests/configs/layer_activations.protostr
+423
-0
python/paddle/trainer_config_helpers/tests/configs/projections.protostr
...trainer_config_helpers/tests/configs/projections.protostr
+315
-0
python/paddle/trainer_config_helpers/tests/configs/shared_fc.protostr
...e/trainer_config_helpers/tests/configs/shared_fc.protostr
+0
-0
python/paddle/trainer_config_helpers/tests/configs/shared_lstm.protostr
...trainer_config_helpers/tests/configs/shared_lstm.protostr
+393
-0
python/paddle/trainer_config_helpers/tests/configs/simple_rnn_layers.protostr
...r_config_helpers/tests/configs/simple_rnn_layers.protostr
+418
-0
python/paddle/trainer_config_helpers/tests/configs/test_bilinear_interp.protostr
...onfig_helpers/tests/configs/test_bilinear_interp.protostr
+125
-0
python/paddle/trainer_config_helpers/tests/configs/test_cost_layers.protostr
...er_config_helpers/tests/configs/test_cost_layers.protostr
+289
-0
python/paddle/trainer_config_helpers/tests/configs/test_cost_layers_with_weight.protostr
...lpers/tests/configs/test_cost_layers_with_weight.protostr
+111
-0
python/paddle/trainer_config_helpers/tests/configs/test_expand_layer.protostr
...r_config_helpers/tests/configs/test_expand_layer.protostr
+56
-0
python/paddle/trainer_config_helpers/tests/configs/test_fc.protostr
...dle/trainer_config_helpers/tests/configs/test_fc.protostr
+98
-0
python/paddle/trainer_config_helpers/tests/configs/test_grumemory_layer.protostr
...onfig_helpers/tests/configs/test_grumemory_layer.protostr
+51
-0
python/paddle/trainer_config_helpers/tests/configs/test_hsigmoid.protostr
...ainer_config_helpers/tests/configs/test_hsigmoid.protostr
+62
-0
python/paddle/trainer_config_helpers/tests/configs/test_lstmemory_layer.protostr
...onfig_helpers/tests/configs/test_lstmemory_layer.protostr
+53
-0
python/paddle/trainer_config_helpers/tests/configs/test_maxout.protostr
...trainer_config_helpers/tests/configs/test_maxout.protostr
+0
-0
python/paddle/trainer_config_helpers/tests/configs/test_ntm_layers.protostr
...ner_config_helpers/tests/configs/test_ntm_layers.protostr
+225
-0
python/paddle/trainer_config_helpers/tests/configs/test_print_layer.protostr
...er_config_helpers/tests/configs/test_print_layer.protostr
+26
-0
python/paddle/trainer_config_helpers/tests/configs/test_rnn_group.protostr
...iner_config_helpers/tests/configs/test_rnn_group.protostr
+650
-0
python/paddle/trainer_config_helpers/tests/configs/test_sequence_pooling.protostr
...nfig_helpers/tests/configs/test_sequence_pooling.protostr
+111
-0
python/paddle/trainer_config_helpers/tests/configs/unused_layers.protostr
...ainer_config_helpers/tests/configs/unused_layers.protostr
+27
-0
python/paddle/trainer_config_helpers/tests/configs/util_layers.protostr
...trainer_config_helpers/tests/configs/util_layers.protostr
+81
-0
未找到文件。
python/paddle/trainer_config_helpers/tests/configs/img_layers.protostr
0 → 100644
浏览文件 @
93dc44c9
type: "nn"
layers {
name: "image"
type: "data"
size: 65536
active_type: ""
}
layers {
name: "__conv_0__"
type: "exconv"
size: 3297856
active_type: ""
inputs {
input_layer_name: "image"
input_parameter_name: "___conv_0__.w0"
conv_conf {
filter_size: 32
channels: 1
stride: 1
padding: 1
groups: 1
filter_channels: 1
output_x: 227
img_size: 256
caffe_mode: true
filter_size_y: 32
padding_y: 1
stride_y: 1
}
}
bias_parameter_name: "___conv_0__.wbias"
num_filters: 64
shared_biases: true
}
layers {
name: "__batch_norm_0__"
type: "batch_norm"
size: 3297856
active_type: "relu"
inputs {
input_layer_name: "__conv_0__"
input_parameter_name: "___batch_norm_0__.w0"
image_conf {
channels: 64
img_size: 227
}
}
inputs {
input_layer_name: "__conv_0__"
input_parameter_name: "___batch_norm_0__.w1"
}
inputs {
input_layer_name: "__conv_0__"
input_parameter_name: "___batch_norm_0__.w2"
}
bias_parameter_name: "___batch_norm_0__.wbias"
moving_average_fraction: 0.899999976158
}
layers {
name: "__crmnorm_0__"
type: "norm"
size: 3297856
active_type: ""
inputs {
input_layer_name: "__batch_norm_0__"
norm_conf {
norm_type: "cmrnorm-projection"
channels: 64
size: 32
scale: 0.000399999989895
pow: 0.75
output_x: 227
img_size: 227
blocked: false
}
}
}
layers {
name: "__pool_0__"
type: "pool"
size: 2458624
active_type: ""
inputs {
input_layer_name: "__conv_0__"
pool_conf {
pool_type: "max-projection"
channels: 64
size_x: 32
stride: 1
output_x: 196
img_size: 227
padding: 0
size_y: 32
stride_y: 1
output_y: 196
img_size_y: 227
padding_y: 0
}
}
}
parameters {
name: "___conv_0__.w0"
size: 65536
initial_mean: 0.0
initial_std: 0.0441941730678
initial_strategy: 0
initial_smart: false
}
parameters {
name: "___conv_0__.wbias"
size: 64
initial_mean: 0.0
initial_std: 0.0
dims: 64
dims: 1
initial_strategy: 0
initial_smart: false
}
parameters {
name: "___batch_norm_0__.w0"
size: 64
initial_mean: 1.0
initial_std: 0.0
initial_strategy: 0
initial_smart: false
}
parameters {
name: "___batch_norm_0__.w1"
size: 64
initial_mean: 0.0
initial_std: 0.0
dims: 1
dims: 64
initial_strategy: 0
initial_smart: false
is_static: true
is_shared: true
}
parameters {
name: "___batch_norm_0__.w2"
size: 64
initial_mean: 0.0
initial_std: 0.0
dims: 1
dims: 64
initial_strategy: 0
initial_smart: false
is_static: true
is_shared: true
}
parameters {
name: "___batch_norm_0__.wbias"
size: 64
initial_mean: 0.0
initial_std: 0.0
dims: 1
dims: 64
initial_strategy: 0
initial_smart: false
}
input_layer_names: "image"
output_layer_names: "__pool_0__"
output_layer_names: "__crmnorm_0__"
sub_models {
name: "root"
layer_names: "image"
layer_names: "__conv_0__"
layer_names: "__batch_norm_0__"
layer_names: "__crmnorm_0__"
layer_names: "__pool_0__"
input_layer_names: "image"
output_layer_names: "__pool_0__"
output_layer_names: "__crmnorm_0__"
is_recurrent_layer_group: false
}
python/paddle/trainer_config_helpers/tests/configs/last_first_seq.protostr
0 → 100644
浏览文件 @
93dc44c9
type: "nn"
layers {
name: "data"
type: "data"
size: 30
active_type: ""
}
layers {
name: "__first_seq_0__"
type: "seqlastins"
size: 30
active_type: "linear"
inputs {
input_layer_name: "data"
}
select_first: true
trans_type: "seq"
}
layers {
name: "__first_seq_1__"
type: "seqlastins"
size: 30
active_type: "linear"
inputs {
input_layer_name: "data"
}
select_first: true
trans_type: "non-seq"
}
layers {
name: "__last_seq_0__"
type: "seqlastins"
size: 30
active_type: "linear"
inputs {
input_layer_name: "data"
}
trans_type: "seq"
}
layers {
name: "__last_seq_1__"
type: "seqlastins"
size: 30
active_type: "linear"
inputs {
input_layer_name: "data"
}
trans_type: "non-seq"
}
input_layer_names: "data"
output_layer_names: "__first_seq_0__"
output_layer_names: "__first_seq_1__"
output_layer_names: "__last_seq_0__"
output_layer_names: "__last_seq_1__"
sub_models {
name: "root"
layer_names: "data"
layer_names: "__first_seq_0__"
layer_names: "__first_seq_1__"
layer_names: "__last_seq_0__"
layer_names: "__last_seq_1__"
input_layer_names: "data"
output_layer_names: "__first_seq_0__"
output_layer_names: "__first_seq_1__"
output_layer_names: "__last_seq_0__"
output_layer_names: "__last_seq_1__"
is_recurrent_layer_group: false
}
python/paddle/trainer_config_helpers/tests/configs/layer_activations.protostr
0 → 100644
浏览文件 @
93dc44c9
type: "nn"
layers {
name: "input"
type: "data"
size: 100
active_type: ""
}
layers {
name: "layer_0"
type: "fc"
size: 100
active_type: "tanh"
inputs {
input_layer_name: "input"
input_parameter_name: "_layer_0.w0"
}
bias_parameter_name: "_layer_0.wbias"
}
layers {
name: "layer_1"
type: "fc"
size: 100
active_type: "sigmoid"
inputs {
input_layer_name: "input"
input_parameter_name: "_layer_1.w0"
}
bias_parameter_name: "_layer_1.wbias"
}
layers {
name: "layer_2"
type: "fc"
size: 100
active_type: "softmax"
inputs {
input_layer_name: "input"
input_parameter_name: "_layer_2.w0"
}
bias_parameter_name: "_layer_2.wbias"
}
layers {
name: "layer_3"
type: "fc"
size: 100
active_type: ""
inputs {
input_layer_name: "input"
input_parameter_name: "_layer_3.w0"
}
bias_parameter_name: "_layer_3.wbias"
}
layers {
name: "layer_4"
type: "fc"
size: 100
active_type: ""
inputs {
input_layer_name: "input"
input_parameter_name: "_layer_4.w0"
}
bias_parameter_name: "_layer_4.wbias"
}
layers {
name: "layer_5"
type: "fc"
size: 100
active_type: "exponential"
inputs {
input_layer_name: "input"
input_parameter_name: "_layer_5.w0"
}
bias_parameter_name: "_layer_5.wbias"
}
layers {
name: "layer_6"
type: "fc"
size: 100
active_type: "relu"
inputs {
input_layer_name: "input"
input_parameter_name: "_layer_6.w0"
}
bias_parameter_name: "_layer_6.wbias"
}
layers {
name: "layer_7"
type: "fc"
size: 100
active_type: "brelu"
inputs {
input_layer_name: "input"
input_parameter_name: "_layer_7.w0"
}
bias_parameter_name: "_layer_7.wbias"
}
layers {
name: "layer_8"
type: "fc"
size: 100
active_type: "softrelu"
inputs {
input_layer_name: "input"
input_parameter_name: "_layer_8.w0"
}
bias_parameter_name: "_layer_8.wbias"
}
layers {
name: "layer_9"
type: "fc"
size: 100
active_type: "stanh"
inputs {
input_layer_name: "input"
input_parameter_name: "_layer_9.w0"
}
bias_parameter_name: "_layer_9.wbias"
}
layers {
name: "layer_10"
type: "fc"
size: 100
active_type: "abs"
inputs {
input_layer_name: "input"
input_parameter_name: "_layer_10.w0"
}
bias_parameter_name: "_layer_10.wbias"
}
layers {
name: "layer_11"
type: "fc"
size: 100
active_type: "square"
inputs {
input_layer_name: "input"
input_parameter_name: "_layer_11.w0"
}
bias_parameter_name: "_layer_11.wbias"
}
parameters {
name: "_layer_0.w0"
size: 10000
initial_mean: 0.0
initial_std: 0.10000000149
dims: 100
dims: 100
initial_strategy: 0
initial_smart: true
}
parameters {
name: "_layer_0.wbias"
size: 100
initial_mean: 0.0
initial_std: 0.0
dims: 1
dims: 100
initial_strategy: 0
initial_smart: false
}
parameters {
name: "_layer_1.w0"
size: 10000
initial_mean: 0.0
initial_std: 0.10000000149
dims: 100
dims: 100
initial_strategy: 0
initial_smart: true
}
parameters {
name: "_layer_1.wbias"
size: 100
initial_mean: 0.0
initial_std: 0.0
dims: 1
dims: 100
initial_strategy: 0
initial_smart: false
}
parameters {
name: "_layer_2.w0"
size: 10000
initial_mean: 0.0
initial_std: 0.10000000149
dims: 100
dims: 100
initial_strategy: 0
initial_smart: true
}
parameters {
name: "_layer_2.wbias"
size: 100
initial_mean: 0.0
initial_std: 0.0
dims: 1
dims: 100
initial_strategy: 0
initial_smart: false
}
parameters {
name: "_layer_3.w0"
size: 10000
initial_mean: 0.0
initial_std: 0.10000000149
dims: 100
dims: 100
initial_strategy: 0
initial_smart: true
}
parameters {
name: "_layer_3.wbias"
size: 100
initial_mean: 0.0
initial_std: 0.0
dims: 1
dims: 100
initial_strategy: 0
initial_smart: false
}
parameters {
name: "_layer_4.w0"
size: 10000
initial_mean: 0.0
initial_std: 0.10000000149
dims: 100
dims: 100
initial_strategy: 0
initial_smart: true
}
parameters {
name: "_layer_4.wbias"
size: 100
initial_mean: 0.0
initial_std: 0.0
dims: 1
dims: 100
initial_strategy: 0
initial_smart: false
}
parameters {
name: "_layer_5.w0"
size: 10000
initial_mean: 0.0
initial_std: 0.10000000149
dims: 100
dims: 100
initial_strategy: 0
initial_smart: true
}
parameters {
name: "_layer_5.wbias"
size: 100
initial_mean: 0.0
initial_std: 0.0
dims: 1
dims: 100
initial_strategy: 0
initial_smart: false
}
parameters {
name: "_layer_6.w0"
size: 10000
initial_mean: 0.0
initial_std: 0.10000000149
dims: 100
dims: 100
initial_strategy: 0
initial_smart: true
}
parameters {
name: "_layer_6.wbias"
size: 100
initial_mean: 0.0
initial_std: 0.0
dims: 1
dims: 100
initial_strategy: 0
initial_smart: false
}
parameters {
name: "_layer_7.w0"
size: 10000
initial_mean: 0.0
initial_std: 0.10000000149
dims: 100
dims: 100
initial_strategy: 0
initial_smart: true
}
parameters {
name: "_layer_7.wbias"
size: 100
initial_mean: 0.0
initial_std: 0.0
dims: 1
dims: 100
initial_strategy: 0
initial_smart: false
}
parameters {
name: "_layer_8.w0"
size: 10000
initial_mean: 0.0
initial_std: 0.10000000149
dims: 100
dims: 100
initial_strategy: 0
initial_smart: true
}
parameters {
name: "_layer_8.wbias"
size: 100
initial_mean: 0.0
initial_std: 0.0
dims: 1
dims: 100
initial_strategy: 0
initial_smart: false
}
parameters {
name: "_layer_9.w0"
size: 10000
initial_mean: 0.0
initial_std: 0.10000000149
dims: 100
dims: 100
initial_strategy: 0
initial_smart: true
}
parameters {
name: "_layer_9.wbias"
size: 100
initial_mean: 0.0
initial_std: 0.0
dims: 1
dims: 100
initial_strategy: 0
initial_smart: false
}
parameters {
name: "_layer_10.w0"
size: 10000
initial_mean: 0.0
initial_std: 0.10000000149
dims: 100
dims: 100
initial_strategy: 0
initial_smart: true
}
parameters {
name: "_layer_10.wbias"
size: 100
initial_mean: 0.0
initial_std: 0.0
dims: 1
dims: 100
initial_strategy: 0
initial_smart: false
}
parameters {
name: "_layer_11.w0"
size: 10000
initial_mean: 0.0
initial_std: 0.10000000149
dims: 100
dims: 100
initial_strategy: 0
initial_smart: true
}
parameters {
name: "_layer_11.wbias"
size: 100
initial_mean: 0.0
initial_std: 0.0
dims: 1
dims: 100
initial_strategy: 0
initial_smart: false
}
input_layer_names: "input"
output_layer_names: "layer_0"
output_layer_names: "layer_1"
output_layer_names: "layer_2"
output_layer_names: "layer_3"
output_layer_names: "layer_4"
output_layer_names: "layer_5"
output_layer_names: "layer_6"
output_layer_names: "layer_7"
output_layer_names: "layer_8"
output_layer_names: "layer_9"
output_layer_names: "layer_10"
output_layer_names: "layer_11"
sub_models {
name: "root"
layer_names: "input"
layer_names: "layer_0"
layer_names: "layer_1"
layer_names: "layer_2"
layer_names: "layer_3"
layer_names: "layer_4"
layer_names: "layer_5"
layer_names: "layer_6"
layer_names: "layer_7"
layer_names: "layer_8"
layer_names: "layer_9"
layer_names: "layer_10"
layer_names: "layer_11"
input_layer_names: "input"
output_layer_names: "layer_0"
output_layer_names: "layer_1"
output_layer_names: "layer_2"
output_layer_names: "layer_3"
output_layer_names: "layer_4"
output_layer_names: "layer_5"
output_layer_names: "layer_6"
output_layer_names: "layer_7"
output_layer_names: "layer_8"
output_layer_names: "layer_9"
output_layer_names: "layer_10"
output_layer_names: "layer_11"
is_recurrent_layer_group: false
}
python/paddle/trainer_config_helpers/tests/configs/projections.protostr
0 → 100644
浏览文件 @
93dc44c9
type: "nn"
layers {
name: "test"
type: "data"
size: 100
active_type: ""
}
layers {
name: "__embedding_0__"
type: "mixed"
size: 256
active_type: ""
inputs {
input_layer_name: "test"
input_parameter_name: "___embedding_0__.w0"
proj_conf {
type: "table"
name: "___embedding_0__.w0"
input_size: 100
output_size: 256
}
}
}
layers {
name: "__mixed_0__"
type: "mixed"
size: 100
active_type: ""
inputs {
input_layer_name: "__embedding_0__"
input_parameter_name: "___mixed_0__.w0"
proj_conf {
type: "fc"
name: "___mixed_0__.w0"
input_size: 256
output_size: 100
}
}
}
layers {
name: "__mixed_1__"
type: "mixed"
size: 100
active_type: ""
inputs {
input_layer_name: "__mixed_0__"
input_parameter_name: "___mixed_1__.w0"
proj_conf {
type: "table"
name: "___mixed_1__.w0"
input_size: 100
output_size: 100
}
}
}
layers {
name: "__mixed_2__"
type: "mixed"
size: 100
active_type: ""
inputs {
input_layer_name: "__mixed_1__"
proj_conf {
type: "identity"
name: "___mixed_2__.w0"
input_size: 100
output_size: 100
}
}
}
layers {
name: "__mixed_3__"
type: "mixed"
size: 100
active_type: ""
inputs {
input_layer_name: "__mixed_2__"
input_parameter_name: "___mixed_3__.w0"
proj_conf {
type: "dot_mul"
name: "___mixed_3__.w0"
input_size: 100
output_size: 100
}
}
}
layers {
name: "__mixed_4__"
type: "mixed"
size: 300
active_type: ""
inputs {
input_layer_name: "__mixed_3__"
input_parameter_name: "___mixed_4__.w0"
proj_conf {
type: "context"
name: "___mixed_4__.w0"
input_size: 100
output_size: 300
context_start: -1
context_length: 3
trainable_padding: true
}
}
}
layers {
name: "__mixed_5__"
type: "mixed"
size: 100
active_type: ""
inputs {
input_layer_name: "__mixed_2__"
}
inputs {
input_layer_name: "__mixed_3__"
}
operator_confs {
type: "dot_mul"
input_indices: 0
input_indices: 1
input_sizes: 100
input_sizes: 100
output_size: 100
dotmul_scale: 1.0
}
}
layers {
name: "img"
type: "data"
size: 1024
active_type: ""
}
layers {
name: "filter"
type: "data"
size: 576
active_type: ""
}
layers {
name: "__mixed_6__"
type: "mixed"
size: 57600
active_type: ""
inputs {
input_layer_name: "img"
}
inputs {
input_layer_name: "filter"
}
operator_confs {
type: "conv"
input_indices: 0
input_indices: 1
input_sizes: 1024
input_sizes: 576
output_size: 57600
conv_conf {
filter_size: 3
channels: 1
stride: 1
padding: 0
groups: 1
filter_channels: 1
output_x: 30
img_size: 32
caffe_mode: true
filter_size_y: 3
padding_y: 0
stride_y: 1
}
num_filters: 64
}
}
layers {
name: "__mixed_7__"
type: "mixed"
size: 100
active_type: ""
inputs {
input_layer_name: "__mixed_4__"
input_parameter_name: "___mixed_7__.w0"
proj_conf {
type: "fc"
name: "___mixed_7__.w0"
input_size: 300
output_size: 100
}
}
inputs {
input_layer_name: "__mixed_5__"
input_parameter_name: "___mixed_7__.w1"
proj_conf {
type: "trans_fc"
name: "___mixed_7__.w1"
input_size: 100
output_size: 100
}
}
inputs {
input_layer_name: "__mixed_6__"
input_parameter_name: "___mixed_7__.w2"
proj_conf {
type: "fc"
name: "___mixed_7__.w2"
input_size: 57600
output_size: 100
}
}
drop_rate: 0.5
}
parameters {
name: "___embedding_0__.w0"
size: 25600
initial_mean: 0.0
initial_std: 0.10000000149
dims: 100
dims: 256
initial_strategy: 0
initial_smart: true
}
parameters {
name: "___mixed_0__.w0"
size: 25600
initial_mean: 0.0
initial_std: 0.0625
dims: 256
dims: 100
initial_strategy: 0
initial_smart: true
}
parameters {
name: "___mixed_1__.w0"
size: 10000
initial_mean: 0.0
initial_std: 0.10000000149
dims: 100
dims: 100
initial_strategy: 0
initial_smart: true
}
parameters {
name: "___mixed_3__.w0"
size: 100
initial_mean: 0.0
initial_std: 1.0
dims: 1
dims: 100
initial_strategy: 0
initial_smart: true
}
parameters {
name: "___mixed_4__.w0"
size: 200
initial_mean: 0.0
initial_std: 0.0
dims: 2
dims: 100
initial_strategy: 0
initial_smart: false
}
parameters {
name: "___mixed_7__.w0"
size: 30000
initial_mean: 0.0
initial_std: 0.0577350258827
dims: 300
dims: 100
initial_strategy: 0
initial_smart: true
}
parameters {
name: "___mixed_7__.w1"
size: 10000
initial_mean: 0.0
initial_std: 0.10000000149
dims: 100
dims: 100
initial_strategy: 0
initial_smart: true
}
parameters {
name: "___mixed_7__.w2"
size: 5760000
initial_mean: 0.0
initial_std: 0.00416666688398
dims: 57600
dims: 100
initial_strategy: 0
initial_smart: true
}
input_layer_names: "test"
input_layer_names: "img"
input_layer_names: "filter"
output_layer_names: "__mixed_7__"
sub_models {
name: "root"
layer_names: "test"
layer_names: "__embedding_0__"
layer_names: "__mixed_0__"
layer_names: "__mixed_1__"
layer_names: "__mixed_2__"
layer_names: "__mixed_3__"
layer_names: "__mixed_4__"
layer_names: "__mixed_5__"
layer_names: "img"
layer_names: "filter"
layer_names: "__mixed_6__"
layer_names: "__mixed_7__"
input_layer_names: "test"
input_layer_names: "img"
input_layer_names: "filter"
output_layer_names: "__mixed_7__"
is_recurrent_layer_group: false
}
python/paddle/trainer_config_helpers/tests/configs/shared_fc.protostr
0 → 100644
浏览文件 @
93dc44c9
python/paddle/trainer_config_helpers/tests/configs/shared_lstm.protostr
0 → 100644
浏览文件 @
93dc44c9
type: "recurrent_nn"
layers {
name: "data_a"
type: "data"
size: 100
active_type: ""
}
layers {
name: "data_b"
type: "data"
size: 100
active_type: ""
}
layers {
name: "__mixed_0__"
type: "mixed"
size: 400
active_type: ""
inputs {
input_layer_name: "data_a"
input_parameter_name: "mixed_param"
proj_conf {
type: "fc"
name: "___mixed_0__.w0"
input_size: 100
output_size: 400
}
}
}
layers {
name: "__mixed_1__"
type: "mixed"
size: 400
active_type: ""
inputs {
input_layer_name: "data_b"
input_parameter_name: "mixed_param"
proj_conf {
type: "fc"
name: "___mixed_1__.w0"
input_size: 100
output_size: 400
}
}
}
layers {
name: "__lstm_group_0___recurrent_group"
type: "recurrent_layer_group"
active_type: ""
}
layers {
name: "__mixed_0__@__lstm_group_0___recurrent_group"
type: "scatter_agent"
size: 400
active_type: ""
}
layers {
name: "__lstm_group_0__+delay1@__lstm_group_0___recurrent_group"
type: "agent"
size: 100
active_type: ""
}
layers {
name: "__lstm_group_0___state+delay1@__lstm_group_0___recurrent_group"
type: "agent"
size: 100
active_type: ""
}
layers {
name: "__lstm_group_0___input_recurrent@__lstm_group_0___recurrent_group"
type: "mixed"
size: 400
active_type: ""
inputs {
input_layer_name: "__mixed_0__@__lstm_group_0___recurrent_group"
proj_conf {
type: "identity"
name: "___lstm_group_0___input_recurrent.w0"
input_size: 400
output_size: 400
}
}
inputs {
input_layer_name: "__lstm_group_0__+delay1@__lstm_group_0___recurrent_group"
input_parameter_name: "lstm_param"
proj_conf {
type: "fc"
name: "___lstm_group_0___input_recurrent.w1"
input_size: 100
output_size: 400
}
}
}
layers {
name: "__lstm_group_0__@__lstm_group_0___recurrent_group"
type: "lstm_step"
size: 100
active_type: "tanh"
inputs {
input_layer_name: "__lstm_group_0___input_recurrent@__lstm_group_0___recurrent_group"
}
inputs {
input_layer_name: "__lstm_group_0___state+delay1@__lstm_group_0___recurrent_group"
}
bias_parameter_name: "lstm_bias"
active_gate_type: "sigmoid"
active_state_type: "sigmoid"
}
layers {
name: "__lstm_group_0___state@__lstm_group_0___recurrent_group"
type: "get_output"
size: 100
active_type: ""
inputs {
input_layer_name: "__lstm_group_0__@__lstm_group_0___recurrent_group"
input_layer_argument: "state"
}
}
layers {
name: "__lstm_group_0__"
type: "gather_agent"
size: 100
active_type: ""
}
layers {
name: "__lstm_group_1___recurrent_group"
type: "recurrent_layer_group"
active_type: ""
}
layers {
name: "__mixed_1__@__lstm_group_1___recurrent_group"
type: "scatter_agent"
size: 400
active_type: ""
}
layers {
name: "__lstm_group_1__+delay1@__lstm_group_1___recurrent_group"
type: "agent"
size: 100
active_type: ""
}
layers {
name: "__lstm_group_1___state+delay1@__lstm_group_1___recurrent_group"
type: "agent"
size: 100
active_type: ""
}
layers {
name: "__lstm_group_1___input_recurrent@__lstm_group_1___recurrent_group"
type: "mixed"
size: 400
active_type: ""
inputs {
input_layer_name: "__mixed_1__@__lstm_group_1___recurrent_group"
proj_conf {
type: "identity"
name: "___lstm_group_1___input_recurrent.w0"
input_size: 400
output_size: 400
}
}
inputs {
input_layer_name: "__lstm_group_1__+delay1@__lstm_group_1___recurrent_group"
input_parameter_name: "lstm_param"
proj_conf {
type: "fc"
name: "___lstm_group_1___input_recurrent.w1"
input_size: 100
output_size: 400
}
}
}
layers {
name: "__lstm_group_1__@__lstm_group_1___recurrent_group"
type: "lstm_step"
size: 100
active_type: "tanh"
inputs {
input_layer_name: "__lstm_group_1___input_recurrent@__lstm_group_1___recurrent_group"
}
inputs {
input_layer_name: "__lstm_group_1___state+delay1@__lstm_group_1___recurrent_group"
}
bias_parameter_name: "lstm_bias"
active_gate_type: "sigmoid"
active_state_type: "sigmoid"
}
layers {
name: "__lstm_group_1___state@__lstm_group_1___recurrent_group"
type: "get_output"
size: 100
active_type: ""
inputs {
input_layer_name: "__lstm_group_1__@__lstm_group_1___recurrent_group"
input_layer_argument: "state"
}
}
layers {
name: "__lstm_group_1__"
type: "gather_agent"
size: 100
active_type: ""
}
layers {
name: "__last_seq_0__"
type: "seqlastins"
size: 100
active_type: "linear"
inputs {
input_layer_name: "__lstm_group_0__"
}
trans_type: "non-seq"
}
layers {
name: "__last_seq_1__"
type: "seqlastins"
size: 100
active_type: "linear"
inputs {
input_layer_name: "__lstm_group_1__"
}
trans_type: "non-seq"
}
layers {
name: "__fc_layer_0__"
type: "fc"
size: 10
active_type: "softmax"
inputs {
input_layer_name: "__last_seq_0__"
input_parameter_name: "softmax_param"
}
inputs {
input_layer_name: "__last_seq_1__"
input_parameter_name: "softmax_param"
}
}
layers {
name: "label"
type: "data"
size: 10
active_type: ""
}
layers {
name: "__cost_0__"
type: "multi-class-cross-entropy"
size: 1
active_type: ""
inputs {
input_layer_name: "__fc_layer_0__"
}
inputs {
input_layer_name: "label"
}
coeff: 1.0
}
parameters {
name: "mixed_param"
size: 40000
initial_mean: 0.0
initial_std: 0.10000000149
dims: 100
dims: 400
initial_strategy: 0
initial_smart: true
}
parameters {
name: "lstm_param"
size: 40000
initial_mean: 0.0
initial_std: 0.10000000149
dims: 100
dims: 400
initial_strategy: 0
initial_smart: true
}
parameters {
name: "lstm_bias"
size: 300
initial_mean: 0.0
initial_std: 0.0
dims: 1
dims: 300
initial_strategy: 0
initial_smart: false
}
parameters {
name: "softmax_param"
size: 1000
initial_mean: 0.0
initial_std: 0.10000000149
dims: 100
dims: 10
initial_strategy: 0
initial_smart: true
}
input_layer_names: "data_a"
input_layer_names: "data_b"
input_layer_names: "label"
output_layer_names: "__cost_0__"
evaluators {
name: "classification_error_evaluator"
type: "classification_error"
input_layers: "__fc_layer_0__"
input_layers: "label"
}
sub_models {
name: "root"
layer_names: "data_a"
layer_names: "data_b"
layer_names: "__mixed_0__"
layer_names: "__mixed_1__"
layer_names: "__lstm_group_0___recurrent_group"
layer_names: "__lstm_group_0__"
layer_names: "__lstm_group_1___recurrent_group"
layer_names: "__lstm_group_1__"
layer_names: "__last_seq_0__"
layer_names: "__last_seq_1__"
layer_names: "__fc_layer_0__"
layer_names: "label"
layer_names: "__cost_0__"
input_layer_names: "data_a"
input_layer_names: "data_b"
input_layer_names: "label"
output_layer_names: "__cost_0__"
evaluator_names: "classification_error_evaluator"
is_recurrent_layer_group: false
}
sub_models {
name: "__lstm_group_0___recurrent_group"
layer_names: "__mixed_0__@__lstm_group_0___recurrent_group"
layer_names: "__lstm_group_0__+delay1@__lstm_group_0___recurrent_group"
layer_names: "__lstm_group_0___state+delay1@__lstm_group_0___recurrent_group"
layer_names: "__lstm_group_0___input_recurrent@__lstm_group_0___recurrent_group"
layer_names: "__lstm_group_0__@__lstm_group_0___recurrent_group"
layer_names: "__lstm_group_0___state@__lstm_group_0___recurrent_group"
is_recurrent_layer_group: true
reversed: false
memories {
layer_name: "__lstm_group_0__@__lstm_group_0___recurrent_group"
link_name: "__lstm_group_0__+delay1@__lstm_group_0___recurrent_group"
is_sequence: false
}
memories {
layer_name: "__lstm_group_0___state@__lstm_group_0___recurrent_group"
link_name: "__lstm_group_0___state+delay1@__lstm_group_0___recurrent_group"
is_sequence: false
}
in_links {
layer_name: "__mixed_0__"
link_name: "__mixed_0__@__lstm_group_0___recurrent_group"
has_subseq: false
}
out_links {
layer_name: "__lstm_group_0__@__lstm_group_0___recurrent_group"
link_name: "__lstm_group_0__"
has_subseq: false
}
target_inlinkid: -1
}
sub_models {
name: "__lstm_group_1___recurrent_group"
layer_names: "__mixed_1__@__lstm_group_1___recurrent_group"
layer_names: "__lstm_group_1__+delay1@__lstm_group_1___recurrent_group"
layer_names: "__lstm_group_1___state+delay1@__lstm_group_1___recurrent_group"
layer_names: "__lstm_group_1___input_recurrent@__lstm_group_1___recurrent_group"
layer_names: "__lstm_group_1__@__lstm_group_1___recurrent_group"
layer_names: "__lstm_group_1___state@__lstm_group_1___recurrent_group"
is_recurrent_layer_group: true
reversed: false
memories {
layer_name: "__lstm_group_1__@__lstm_group_1___recurrent_group"
link_name: "__lstm_group_1__+delay1@__lstm_group_1___recurrent_group"
is_sequence: false
}
memories {
layer_name: "__lstm_group_1___state@__lstm_group_1___recurrent_group"
link_name: "__lstm_group_1___state+delay1@__lstm_group_1___recurrent_group"
is_sequence: false
}
in_links {
layer_name: "__mixed_1__"
link_name: "__mixed_1__@__lstm_group_1___recurrent_group"
has_subseq: false
}
out_links {
layer_name: "__lstm_group_1__@__lstm_group_1___recurrent_group"
link_name: "__lstm_group_1__"
has_subseq: false
}
target_inlinkid: -1
}
python/paddle/trainer_config_helpers/tests/configs/simple_rnn_layers.protostr
0 → 100644
浏览文件 @
93dc44c9
type: "nn"
layers {
name: "data"
type: "data"
size: 200
active_type: ""
}
layers {
name: "__fc_layer_0__"
type: "fc"
size: 200
active_type: "sigmoid"
inputs {
input_layer_name: "data"
input_parameter_name: "___fc_layer_0__.w0"
}
bias_parameter_name: "___fc_layer_0__.wbias"
}
layers {
name: "__recurrent_layer_0__"
type: "recurrent"
size: 200
active_type: "sigmoid"
inputs {
input_layer_name: "__fc_layer_0__"
input_parameter_name: "___recurrent_layer_0__.w0"
}
bias_parameter_name: "___recurrent_layer_0__.wbias"
reversed: false
}
layers {
name: "__recurrent_layer_1__"
type: "recurrent"
size: 200
active_type: "sigmoid"
inputs {
input_layer_name: "__fc_layer_0__"
input_parameter_name: "___recurrent_layer_1__.w0"
}
bias_parameter_name: "___recurrent_layer_1__.wbias"
reversed: true
}
layers {
name: "__fc_layer_1__"
type: "fc"
size: 800
active_type: ""
inputs {
input_layer_name: "__fc_layer_0__"
input_parameter_name: "___fc_layer_1__.w0"
}
}
layers {
name: "__lstmemory_0__"
type: "lstmemory"
size: 200
active_type: "sigmoid"
inputs {
input_layer_name: "__fc_layer_1__"
input_parameter_name: "___lstmemory_0__.w0"
}
bias_parameter_name: "___lstmemory_0__.wbias"
reversed: false
active_gate_type: "sigmoid"
active_state_type: "tanh"
}
layers {
name: "__fc_layer_2__"
type: "fc"
size: 800
active_type: ""
inputs {
input_layer_name: "__fc_layer_0__"
input_parameter_name: "___fc_layer_2__.w0"
}
}
layers {
name: "__lstmemory_1__"
type: "lstmemory"
size: 200
active_type: "sigmoid"
inputs {
input_layer_name: "__fc_layer_2__"
input_parameter_name: "___lstmemory_1__.w0"
}
bias_parameter_name: "___lstmemory_1__.wbias"
reversed: true
active_gate_type: "sigmoid"
active_state_type: "tanh"
}
layers {
name: "__fc_layer_3__"
type: "fc"
size: 600
active_type: ""
inputs {
input_layer_name: "__fc_layer_0__"
input_parameter_name: "___fc_layer_3__.w0"
}
}
layers {
name: "__gru_0__"
type: "gated_recurrent"
size: 200
active_type: "sigmoid"
inputs {
input_layer_name: "__fc_layer_3__"
input_parameter_name: "___gru_0__.w0"
}
bias_parameter_name: "___gru_0__.wbias"
reversed: false
active_gate_type: "sigmoid"
}
layers {
name: "__fc_layer_4__"
type: "fc"
size: 600
active_type: ""
inputs {
input_layer_name: "__fc_layer_0__"
input_parameter_name: "___fc_layer_4__.w0"
}
}
layers {
name: "__gru_1__"
type: "gated_recurrent"
size: 200
active_type: "sigmoid"
inputs {
input_layer_name: "__fc_layer_4__"
input_parameter_name: "___gru_1__.w0"
}
bias_parameter_name: "___gru_1__.wbias"
reversed: true
active_gate_type: "sigmoid"
}
layers {
name: "__last_seq_0__"
type: "seqlastins"
size: 200
active_type: "linear"
inputs {
input_layer_name: "__recurrent_layer_0__"
}
trans_type: "non-seq"
}
layers {
name: "__first_seq_0__"
type: "seqlastins"
size: 200
active_type: "linear"
inputs {
input_layer_name: "__recurrent_layer_1__"
}
select_first: true
trans_type: "non-seq"
}
layers {
name: "__last_seq_1__"
type: "seqlastins"
size: 200
active_type: "linear"
inputs {
input_layer_name: "__lstmemory_0__"
}
trans_type: "non-seq"
}
layers {
name: "__first_seq_1__"
type: "seqlastins"
size: 200
active_type: "linear"
inputs {
input_layer_name: "__lstmemory_1__"
}
select_first: true
trans_type: "non-seq"
}
layers {
name: "__last_seq_2__"
type: "seqlastins"
size: 200
active_type: "linear"
inputs {
input_layer_name: "__gru_0__"
}
trans_type: "non-seq"
}
layers {
name: "__first_seq_2__"
type: "seqlastins"
size: 200
active_type: "linear"
inputs {
input_layer_name: "__gru_1__"
}
select_first: true
trans_type: "non-seq"
}
parameters {
name: "___fc_layer_0__.w0"
size: 40000
initial_mean: 0.0
initial_std: 0.0707106813788
dims: 200
dims: 200
initial_strategy: 0
initial_smart: true
}
parameters {
name: "___fc_layer_0__.wbias"
size: 200
initial_mean: 0.0
initial_std: 0.0
dims: 1
dims: 200
initial_strategy: 0
initial_smart: false
}
parameters {
name: "___recurrent_layer_0__.w0"
size: 40000
initial_mean: 0.0
initial_std: 0.0707106813788
dims: 200
dims: 200
initial_strategy: 0
initial_smart: true
}
parameters {
name: "___recurrent_layer_0__.wbias"
size: 200
initial_mean: 0.0
initial_std: 0.0
dims: 1
dims: 200
initial_strategy: 0
initial_smart: false
}
parameters {
name: "___recurrent_layer_1__.w0"
size: 40000
initial_mean: 0.0
initial_std: 0.0707106813788
dims: 200
dims: 200
initial_strategy: 0
initial_smart: true
}
parameters {
name: "___recurrent_layer_1__.wbias"
size: 200
initial_mean: 0.0
initial_std: 0.0
dims: 1
dims: 200
initial_strategy: 0
initial_smart: false
}
parameters {
name: "___fc_layer_1__.w0"
size: 160000
initial_mean: 0.0
initial_std: 0.0707106813788
dims: 200
dims: 800
initial_strategy: 0
initial_smart: true
}
parameters {
name: "___lstmemory_0__.w0"
size: 160000
initial_mean: 0.0
initial_std: 0.0707106813788
dims: 200
dims: 200
dims: 4
initial_strategy: 0
initial_smart: true
}
parameters {
name: "___lstmemory_0__.wbias"
size: 1400
initial_mean: 0.0
initial_std: 0.0
dims: 1
dims: 1400
initial_strategy: 0
initial_smart: false
}
parameters {
name: "___fc_layer_2__.w0"
size: 160000
initial_mean: 0.0
initial_std: 0.0707106813788
dims: 200
dims: 800
initial_strategy: 0
initial_smart: true
}
parameters {
name: "___lstmemory_1__.w0"
size: 160000
initial_mean: 0.0
initial_std: 0.0707106813788
dims: 200
dims: 200
dims: 4
initial_strategy: 0
initial_smart: true
}
parameters {
name: "___lstmemory_1__.wbias"
size: 1400
initial_mean: 0.0
initial_std: 0.0
dims: 1
dims: 1400
initial_strategy: 0
initial_smart: false
}
parameters {
name: "___fc_layer_3__.w0"
size: 120000
initial_mean: 0.0
initial_std: 0.0707106813788
dims: 200
dims: 600
initial_strategy: 0
initial_smart: true
}
parameters {
name: "___gru_0__.w0"
size: 120000
initial_mean: 0.0
initial_std: 0.0707106813788
dims: 200
dims: 600
initial_strategy: 0
initial_smart: true
}
parameters {
name: "___gru_0__.wbias"
size: 600
initial_mean: 0.0
initial_std: 0.0
dims: 1
dims: 600
initial_strategy: 0
initial_smart: false
}
parameters {
name: "___fc_layer_4__.w0"
size: 120000
initial_mean: 0.0
initial_std: 0.0707106813788
dims: 200
dims: 600
initial_strategy: 0
initial_smart: true
}
parameters {
name: "___gru_1__.w0"
size: 120000
initial_mean: 0.0
initial_std: 0.0707106813788
dims: 200
dims: 600
initial_strategy: 0
initial_smart: true
}
parameters {
name: "___gru_1__.wbias"
size: 600
initial_mean: 0.0
initial_std: 0.0
dims: 1
dims: 600
initial_strategy: 0
initial_smart: false
}
input_layer_names: "data"
output_layer_names: "__last_seq_0__"
output_layer_names: "__first_seq_0__"
output_layer_names: "__last_seq_1__"
output_layer_names: "__first_seq_1__"
output_layer_names: "__last_seq_2__"
output_layer_names: "__first_seq_2__"
sub_models {
name: "root"
layer_names: "data"
layer_names: "__fc_layer_0__"
layer_names: "__recurrent_layer_0__"
layer_names: "__recurrent_layer_1__"
layer_names: "__fc_layer_1__"
layer_names: "__lstmemory_0__"
layer_names: "__fc_layer_2__"
layer_names: "__lstmemory_1__"
layer_names: "__fc_layer_3__"
layer_names: "__gru_0__"
layer_names: "__fc_layer_4__"
layer_names: "__gru_1__"
layer_names: "__last_seq_0__"
layer_names: "__first_seq_0__"
layer_names: "__last_seq_1__"
layer_names: "__first_seq_1__"
layer_names: "__last_seq_2__"
layer_names: "__first_seq_2__"
input_layer_names: "data"
output_layer_names: "__last_seq_0__"
output_layer_names: "__first_seq_0__"
output_layer_names: "__last_seq_1__"
output_layer_names: "__first_seq_1__"
output_layer_names: "__last_seq_2__"
output_layer_names: "__first_seq_2__"
is_recurrent_layer_group: false
}
python/paddle/trainer_config_helpers/tests/configs/test_bilinear_interp.protostr
0 → 100644
浏览文件 @
93dc44c9
type: "nn"
layers {
name: "data"
type: "data"
size: 2304
active_type: ""
}
layers {
name: "__conv_0__"
type: "exconv"
size: 36864
active_type: ""
inputs {
input_layer_name: "data"
input_parameter_name: "___conv_0__.w0"
conv_conf {
filter_size: 3
channels: 1
stride: 1
padding: 1
groups: 1
filter_channels: 1
output_x: 48
img_size: 48
caffe_mode: true
filter_size_y: 3
padding_y: 1
stride_y: 1
}
}
bias_parameter_name: "___conv_0__.wbias"
num_filters: 16
shared_biases: true
}
layers {
name: "__bilinear_interp_layer_0__"
type: "bilinear_interp"
size: 36864
active_type: ""
inputs {
input_layer_name: "__conv_0__"
bilinear_interp_conf {
img_size_x: 32
img_size_y: 32
out_size_x: 64
out_size_y: 64
num_channels: 16
}
}
}
layers {
name: "__pool_0__"
type: "pool"
size: 9216
active_type: ""
inputs {
input_layer_name: "__bilinear_interp_layer_0__"
pool_conf {
pool_type: "max-projection"
channels: 4
size_x: 2
stride: 2
output_x: 48
img_size: 96
padding: 0
size_y: 2
stride_y: 2
output_y: 48
img_size_y: 96
padding_y: 0
}
}
}
layers {
name: "__fc_layer_0__"
type: "fc"
size: 384
active_type: "tanh"
inputs {
input_layer_name: "__pool_0__"
input_parameter_name: "___fc_layer_0__.w0"
}
}
parameters {
name: "___conv_0__.w0"
size: 144
initial_mean: 0.0
initial_std: 0.471404522657
initial_strategy: 0
initial_smart: false
}
parameters {
name: "___conv_0__.wbias"
size: 16
initial_mean: 0.0
initial_std: 0.0
dims: 16
dims: 1
initial_strategy: 0
initial_smart: false
}
parameters {
name: "___fc_layer_0__.w0"
size: 3538944
initial_mean: 0.0
initial_std: 0.0104166669771
dims: 9216
dims: 384
initial_strategy: 0
initial_smart: true
}
input_layer_names: "data"
output_layer_names: "__fc_layer_0__"
sub_models {
name: "root"
layer_names: "data"
layer_names: "__conv_0__"
layer_names: "__bilinear_interp_layer_0__"
layer_names: "__pool_0__"
layer_names: "__fc_layer_0__"
input_layer_names: "data"
output_layer_names: "__fc_layer_0__"
is_recurrent_layer_group: false
}
python/paddle/trainer_config_helpers/tests/configs/test_cost_layers.protostr
0 → 100644
浏览文件 @
93dc44c9
type: "nn"
layers {
name: "input"
type: "data"
size: 200
active_type: ""
}
layers {
name: "labels"
type: "data"
size: 5000
active_type: ""
}
layers {
name: "probs"
type: "data"
size: 10
active_type: ""
}
layers {
name: "xe-label"
type: "data"
size: 10
active_type: ""
}
layers {
name: "__ctc_layer_0__"
type: "ctc"
size: 5001
active_type: ""
inputs {
input_layer_name: "input"
}
inputs {
input_layer_name: "labels"
}
norm_by_times: false
}
layers {
name: "__fc_layer_0__"
type: "fc"
size: 4
active_type: "tanh"
inputs {
input_layer_name: "input"
input_parameter_name: "___fc_layer_0__.w0"
}
bias_parameter_name: "___fc_layer_0__.wbias"
}
layers {
name: "crf_label"
type: "data"
size: 4
active_type: ""
}
layers {
name: "__crf_layer_0__"
type: "crf"
size: 4
active_type: ""
inputs {
input_layer_name: "__fc_layer_0__"
input_parameter_name: "___crf_layer_0__.w0"
}
inputs {
input_layer_name: "crf_label"
}
coeff: 1.0
}
layers {
name: "left"
type: "data"
size: 1
active_type: ""
}
layers {
name: "right"
type: "data"
size: 1
active_type: ""
}
layers {
name: "label"
type: "data"
size: 1
active_type: ""
}
layers {
name: "__rank_cost_0__"
type: "rank-cost"
size: 1
active_type: ""
inputs {
input_layer_name: "left"
}
inputs {
input_layer_name: "right"
}
inputs {
input_layer_name: "label"
}
coeff: 1.0
}
layers {
name: "list_feature"
type: "data"
size: 100
active_type: ""
}
layers {
name: "list_scores"
type: "data"
size: 1
active_type: ""
}
layers {
name: "__lambda_cost_0__"
type: "lambda_cost"
size: 1
active_type: ""
inputs {
input_layer_name: "list_feature"
}
inputs {
input_layer_name: "list_scores"
}
NDCG_num: 5
max_sort_size: -1
}
layers {
name: "__cross_entropy_0__"
type: "multi-class-cross-entropy"
size: 1
active_type: ""
inputs {
input_layer_name: "probs"
}
inputs {
input_layer_name: "xe-label"
}
coeff: 1.0
}
layers {
name: "__cross_entropy_with_selfnorm_0__"
type: "multi_class_cross_entropy_with_selfnorm"
active_type: ""
inputs {
input_layer_name: "probs"
}
inputs {
input_layer_name: "xe-label"
}
softmax_selfnorm_alpha: 0.10000000149
coeff: 1.0
}
layers {
name: "huber_probs"
type: "data"
size: 1
active_type: ""
}
layers {
name: "huber_label"
type: "data"
size: 1
active_type: ""
}
layers {
name: "__huber_cost_0__"
type: "huber"
size: 1
active_type: ""
inputs {
input_layer_name: "huber_probs"
}
inputs {
input_layer_name: "huber_label"
}
coeff: 1.0
}
layers {
name: "__multi_binary_label_cross_entropy_0__"
type: "multi_binary_label_cross_entropy"
size: 1
active_type: ""
inputs {
input_layer_name: "probs"
}
inputs {
input_layer_name: "xe-label"
}
coeff: 1.0
}
parameters {
name: "___fc_layer_0__.w0"
size: 800
initial_mean: 0.0
initial_std: 0.0707106813788
dims: 200
dims: 4
initial_strategy: 0
initial_smart: true
}
parameters {
name: "___fc_layer_0__.wbias"
size: 4
initial_mean: 0.0
initial_std: 0.0
dims: 1
dims: 4
initial_strategy: 0
initial_smart: false
}
parameters {
name: "___crf_layer_0__.w0"
size: 24
initial_mean: 0.0
initial_std: 0.5
dims: 4
dims: 6
initial_strategy: 0
initial_smart: true
}
input_layer_names: "input"
input_layer_names: "labels"
input_layer_names: "crf_label"
input_layer_names: "left"
input_layer_names: "right"
input_layer_names: "label"
input_layer_names: "list_feature"
input_layer_names: "list_scores"
input_layer_names: "probs"
input_layer_names: "xe-label"
input_layer_names: "huber_probs"
input_layer_names: "huber_label"
output_layer_names: "__ctc_layer_0__"
output_layer_names: "__crf_layer_0__"
output_layer_names: "__rank_cost_0__"
output_layer_names: "__lambda_cost_0__"
output_layer_names: "__cross_entropy_0__"
output_layer_names: "__cross_entropy_with_selfnorm_0__"
output_layer_names: "__huber_cost_0__"
output_layer_names: "__multi_binary_label_cross_entropy_0__"
sub_models {
name: "root"
layer_names: "input"
layer_names: "labels"
layer_names: "probs"
layer_names: "xe-label"
layer_names: "__ctc_layer_0__"
layer_names: "__fc_layer_0__"
layer_names: "crf_label"
layer_names: "__crf_layer_0__"
layer_names: "left"
layer_names: "right"
layer_names: "label"
layer_names: "__rank_cost_0__"
layer_names: "list_feature"
layer_names: "list_scores"
layer_names: "__lambda_cost_0__"
layer_names: "__cross_entropy_0__"
layer_names: "__cross_entropy_with_selfnorm_0__"
layer_names: "huber_probs"
layer_names: "huber_label"
layer_names: "__huber_cost_0__"
layer_names: "__multi_binary_label_cross_entropy_0__"
input_layer_names: "input"
input_layer_names: "labels"
input_layer_names: "crf_label"
input_layer_names: "left"
input_layer_names: "right"
input_layer_names: "label"
input_layer_names: "list_feature"
input_layer_names: "list_scores"
input_layer_names: "probs"
input_layer_names: "xe-label"
input_layer_names: "huber_probs"
input_layer_names: "huber_label"
output_layer_names: "__ctc_layer_0__"
output_layer_names: "__crf_layer_0__"
output_layer_names: "__rank_cost_0__"
output_layer_names: "__lambda_cost_0__"
output_layer_names: "__cross_entropy_0__"
output_layer_names: "__cross_entropy_with_selfnorm_0__"
output_layer_names: "__huber_cost_0__"
output_layer_names: "__multi_binary_label_cross_entropy_0__"
is_recurrent_layer_group: false
}
python/paddle/trainer_config_helpers/tests/configs/test_cost_layers_with_weight.protostr
0 → 100644
浏览文件 @
93dc44c9
type: "nn"
layers {
name: "input"
type: "data"
size: 300
active_type: ""
}
layers {
name: "label"
type: "data"
size: 1
active_type: ""
}
layers {
name: "weight"
type: "data"
size: 1
active_type: ""
}
layers {
name: "__fc_layer_0__"
type: "fc"
size: 10
active_type: "softmax"
inputs {
input_layer_name: "input"
input_parameter_name: "___fc_layer_0__.w0"
}
bias_parameter_name: "___fc_layer_0__.wbias"
}
layers {
name: "__cost_0__"
type: "multi-class-cross-entropy"
size: 1
active_type: ""
inputs {
input_layer_name: "__fc_layer_0__"
}
inputs {
input_layer_name: "label"
}
inputs {
input_layer_name: "weight"
}
coeff: 1.0
}
layers {
name: "__regression_cost_0__"
type: "square_error"
size: 1
active_type: ""
inputs {
input_layer_name: "__fc_layer_0__"
}
inputs {
input_layer_name: "label"
}
inputs {
input_layer_name: "weight"
}
coeff: 1.0
}
parameters {
name: "___fc_layer_0__.w0"
size: 3000
initial_mean: 0.0
initial_std: 0.0577350258827
dims: 300
dims: 10
initial_strategy: 0
initial_smart: true
}
parameters {
name: "___fc_layer_0__.wbias"
size: 10
initial_mean: 0.0
initial_std: 0.0
dims: 1
dims: 10
initial_strategy: 0
initial_smart: false
}
input_layer_names: "input"
input_layer_names: "label"
input_layer_names: "weight"
output_layer_names: "__cost_0__"
output_layer_names: "__regression_cost_0__"
evaluators {
name: "classification_error_evaluator"
type: "classification_error"
input_layers: "__fc_layer_0__"
input_layers: "label"
input_layers: "weight"
}
sub_models {
name: "root"
layer_names: "input"
layer_names: "label"
layer_names: "weight"
layer_names: "__fc_layer_0__"
layer_names: "__cost_0__"
layer_names: "__regression_cost_0__"
input_layer_names: "input"
input_layer_names: "label"
input_layer_names: "weight"
output_layer_names: "__cost_0__"
output_layer_names: "__regression_cost_0__"
evaluator_names: "classification_error_evaluator"
is_recurrent_layer_group: false
}
python/paddle/trainer_config_helpers/tests/configs/test_expand_layer.protostr
0 → 100644
浏览文件 @
93dc44c9
type: "nn"
layers {
name: "data"
type: "data"
size: 30
active_type: ""
}
layers {
name: "data_seq"
type: "data"
size: 30
active_type: ""
}
layers {
name: "__expand_layer_0__"
type: "expand"
size: 30
active_type: ""
inputs {
input_layer_name: "data"
}
inputs {
input_layer_name: "data_seq"
}
trans_type: "seq"
}
layers {
name: "__expand_layer_1__"
type: "expand"
size: 30
active_type: ""
inputs {
input_layer_name: "data"
}
inputs {
input_layer_name: "data_seq"
}
trans_type: "non-seq"
}
input_layer_names: "data"
input_layer_names: "data_seq"
output_layer_names: "__expand_layer_0__"
output_layer_names: "__expand_layer_1__"
sub_models {
name: "root"
layer_names: "data"
layer_names: "data_seq"
layer_names: "__expand_layer_0__"
layer_names: "__expand_layer_1__"
input_layer_names: "data"
input_layer_names: "data_seq"
output_layer_names: "__expand_layer_0__"
output_layer_names: "__expand_layer_1__"
is_recurrent_layer_group: false
}
python/paddle/trainer_config_helpers/tests/configs/test_fc.protostr
0 → 100644
浏览文件 @
93dc44c9
type: "nn"
layers {
name: "data"
type: "data"
size: 100
active_type: ""
}
layers {
name: "__trans_layer_0__"
type: "trans"
size: 100
active_type: ""
inputs {
input_layer_name: "data"
}
}
layers {
name: "__fc_layer_0__"
type: "fc"
size: 100
active_type: "tanh"
inputs {
input_layer_name: "__trans_layer_0__"
input_parameter_name: "___fc_layer_0__.w0"
}
}
layers {
name: "mask"
type: "data"
size: 100
active_type: ""
}
layers {
name: "__selective_fc_layer_0__"
type: "selective_fc"
size: 100
active_type: "sigmoid"
inputs {
input_layer_name: "data"
input_parameter_name: "___selective_fc_layer_0__.w0"
}
inputs {
input_layer_name: "mask"
}
bias_parameter_name: "___selective_fc_layer_0__.wbias"
selective_fc_pass_generation: false
has_selected_colums: true
selective_fc_full_mul_ratio: 0.019999999553
}
parameters {
name: "___fc_layer_0__.w0"
size: 10000
initial_mean: 0.0
initial_std: 0.10000000149
dims: 100
dims: 100
initial_strategy: 0
initial_smart: true
}
parameters {
name: "___selective_fc_layer_0__.w0"
size: 10000
initial_mean: 0.0
initial_std: 0.10000000149
dims: 100
dims: 100
initial_strategy: 0
initial_smart: true
is_sparse: false
}
parameters {
name: "___selective_fc_layer_0__.wbias"
size: 100
initial_mean: 0.0
initial_std: 0.0
dims: 1
dims: 100
initial_strategy: 0
initial_smart: false
}
input_layer_names: "data"
input_layer_names: "mask"
output_layer_names: "__fc_layer_0__"
output_layer_names: "__selective_fc_layer_0__"
sub_models {
name: "root"
layer_names: "data"
layer_names: "__trans_layer_0__"
layer_names: "__fc_layer_0__"
layer_names: "mask"
layer_names: "__selective_fc_layer_0__"
input_layer_names: "data"
input_layer_names: "mask"
output_layer_names: "__fc_layer_0__"
output_layer_names: "__selective_fc_layer_0__"
is_recurrent_layer_group: false
}
python/paddle/trainer_config_helpers/tests/configs/test_grumemory_layer.protostr
0 → 100644
浏览文件 @
93dc44c9
type: "nn"
layers {
name: "data"
type: "data"
size: 120
active_type: ""
}
layers {
name: "__gru_0__"
type: "gated_recurrent"
size: 40
active_type: "sigmoid"
inputs {
input_layer_name: "data"
input_parameter_name: "___gru_0__.w0"
}
bias_parameter_name: "___gru_0__.wbias"
reversed: true
active_gate_type: "tanh"
}
parameters {
name: "___gru_0__.w0"
size: 4800
initial_mean: 0.0
initial_std: 0.158113881946
dims: 40
dims: 120
initial_strategy: 0
initial_smart: true
}
parameters {
name: "___gru_0__.wbias"
size: 120
initial_mean: 0.0
initial_std: 0.0
dims: 1
dims: 120
initial_strategy: 0
initial_smart: false
}
input_layer_names: "data"
output_layer_names: "__gru_0__"
sub_models {
name: "root"
layer_names: "data"
layer_names: "__gru_0__"
input_layer_names: "data"
output_layer_names: "__gru_0__"
is_recurrent_layer_group: false
}
python/paddle/trainer_config_helpers/tests/configs/test_hsigmoid.protostr
0 → 100644
浏览文件 @
93dc44c9
type: "nn"
layers {
name: "data"
type: "data"
size: 100
active_type: ""
}
layers {
name: "label"
type: "data"
size: 10
active_type: ""
}
layers {
name: "__hsigmoid_0__"
type: "hsigmoid"
size: 1
active_type: ""
inputs {
input_layer_name: "data"
input_parameter_name: "___hsigmoid_0__.w0"
}
inputs {
input_layer_name: "label"
}
bias_parameter_name: "___hsigmoid_0__.wbias"
num_classes: 10
}
parameters {
name: "___hsigmoid_0__.w0"
size: 900
initial_mean: 0.0
initial_std: 0.333333343267
dims: 9
dims: 100
initial_strategy: 0
initial_smart: true
}
parameters {
name: "___hsigmoid_0__.wbias"
size: 9
initial_mean: 0.0
initial_std: 0.0
dims: 1
dims: 9
initial_strategy: 0
initial_smart: false
}
input_layer_names: "data"
input_layer_names: "label"
output_layer_names: "__hsigmoid_0__"
sub_models {
name: "root"
layer_names: "data"
layer_names: "label"
layer_names: "__hsigmoid_0__"
input_layer_names: "data"
input_layer_names: "label"
output_layer_names: "__hsigmoid_0__"
is_recurrent_layer_group: false
}
python/paddle/trainer_config_helpers/tests/configs/test_lstmemory_layer.protostr
0 → 100644
浏览文件 @
93dc44c9
type: "nn"
layers {
name: "data"
type: "data"
size: 128
active_type: ""
}
layers {
name: "__lstmemory_0__"
type: "lstmemory"
size: 32
active_type: "tanh"
inputs {
input_layer_name: "data"
input_parameter_name: "___lstmemory_0__.w0"
}
bias_parameter_name: "___lstmemory_0__.wbias"
reversed: true
active_gate_type: "tanh"
active_state_type: "tanh"
}
parameters {
name: "___lstmemory_0__.w0"
size: 4096
initial_mean: 0.0
initial_std: 0.176776692271
dims: 32
dims: 32
dims: 4
initial_strategy: 0
initial_smart: true
}
parameters {
name: "___lstmemory_0__.wbias"
size: 224
initial_mean: 0.0
initial_std: 0.0
dims: 1
dims: 224
initial_strategy: 0
initial_smart: false
}
input_layer_names: "data"
output_layer_names: "__lstmemory_0__"
sub_models {
name: "root"
layer_names: "data"
layer_names: "__lstmemory_0__"
input_layer_names: "data"
output_layer_names: "__lstmemory_0__"
is_recurrent_layer_group: false
}
python/paddle/trainer_config_helpers/tests/configs/test_maxout.protostr
0 → 100644
浏览文件 @
93dc44c9
python/paddle/trainer_config_helpers/tests/configs/test_ntm_layers.protostr
0 → 100644
浏览文件 @
93dc44c9
type: "nn"
layers {
name: "w"
type: "data"
size: 1
active_type: ""
}
layers {
name: "a"
type: "data"
size: 100
active_type: ""
}
layers {
name: "b"
type: "data"
size: 100
active_type: ""
}
layers {
name: "c"
type: "data"
size: 200
active_type: ""
}
layers {
name: "d"
type: "data"
size: 31
active_type: ""
}
layers {
name: "__interpolation_layer_0__"
type: "interpolation"
size: 100
active_type: ""
inputs {
input_layer_name: "w"
}
inputs {
input_layer_name: "a"
}
inputs {
input_layer_name: "b"
}
}
layers {
name: "__power_layer_0__"
type: "power"
size: 100
active_type: ""
inputs {
input_layer_name: "w"
}
inputs {
input_layer_name: "a"
}
}
layers {
name: "__scaling_layer_0__"
type: "scaling"
size: 100
active_type: ""
inputs {
input_layer_name: "w"
}
inputs {
input_layer_name: "a"
}
}
layers {
name: "__cos_sim_0__"
type: "cos"
size: 1
active_type: ""
inputs {
input_layer_name: "a"
}
inputs {
input_layer_name: "b"
}
cos_scale: 5.0
}
layers {
name: "__cos_sim_1__"
type: "cos_vm"
size: 2
active_type: ""
inputs {
input_layer_name: "a"
}
inputs {
input_layer_name: "c"
}
cos_scale: 5.0
}
layers {
name: "__sum_to_one_norm_layer_0__"
type: "sum_to_one_norm"
size: 100
active_type: ""
inputs {
input_layer_name: "a"
}
}
layers {
name: "__conv_shift_layer_0__"
type: "conv_shift"
size: 100
active_type: ""
inputs {
input_layer_name: "a"
}
inputs {
input_layer_name: "d"
}
}
layers {
name: "__tensor_layer_0__"
type: "tensor"
size: 1000
active_type: ""
inputs {
input_layer_name: "a"
input_parameter_name: "___tensor_layer_0__.w0"
}
inputs {
input_layer_name: "b"
}
bias_parameter_name: "___tensor_layer_0__.wbias"
}
layers {
name: "__slope_intercept_layer_0__"
type: "slope_intercept"
size: 100
active_type: ""
inputs {
input_layer_name: "a"
}
slope: 0.699999988079
intercept: 0.899999976158
}
layers {
name: "__linear_comb_layer_0__"
type: "convex_comb"
size: 2
active_type: ""
inputs {
input_layer_name: "b"
}
inputs {
input_layer_name: "c"
}
}
parameters {
name: "___tensor_layer_0__.w0"
size: 10000000
initial_mean: 0.0
initial_std: 0.10000000149
dims: 100
dims: 100
dims: 1000
initial_strategy: 0
initial_smart: true
}
parameters {
name: "___tensor_layer_0__.wbias"
size: 1000
initial_mean: 0.0
initial_std: 0.0
dims: 1
dims: 1000
initial_strategy: 0
initial_smart: false
}
input_layer_names: "w"
input_layer_names: "a"
input_layer_names: "b"
input_layer_names: "c"
input_layer_names: "d"
output_layer_names: "__interpolation_layer_0__"
output_layer_names: "__power_layer_0__"
output_layer_names: "__scaling_layer_0__"
output_layer_names: "__cos_sim_0__"
output_layer_names: "__cos_sim_1__"
output_layer_names: "__sum_to_one_norm_layer_0__"
output_layer_names: "__conv_shift_layer_0__"
output_layer_names: "__tensor_layer_0__"
output_layer_names: "__slope_intercept_layer_0__"
output_layer_names: "__linear_comb_layer_0__"
sub_models {
name: "root"
layer_names: "w"
layer_names: "a"
layer_names: "b"
layer_names: "c"
layer_names: "d"
layer_names: "__interpolation_layer_0__"
layer_names: "__power_layer_0__"
layer_names: "__scaling_layer_0__"
layer_names: "__cos_sim_0__"
layer_names: "__cos_sim_1__"
layer_names: "__sum_to_one_norm_layer_0__"
layer_names: "__conv_shift_layer_0__"
layer_names: "__tensor_layer_0__"
layer_names: "__slope_intercept_layer_0__"
layer_names: "__linear_comb_layer_0__"
input_layer_names: "w"
input_layer_names: "a"
input_layer_names: "b"
input_layer_names: "c"
input_layer_names: "d"
output_layer_names: "__interpolation_layer_0__"
output_layer_names: "__power_layer_0__"
output_layer_names: "__scaling_layer_0__"
output_layer_names: "__cos_sim_0__"
output_layer_names: "__cos_sim_1__"
output_layer_names: "__sum_to_one_norm_layer_0__"
output_layer_names: "__conv_shift_layer_0__"
output_layer_names: "__tensor_layer_0__"
output_layer_names: "__slope_intercept_layer_0__"
output_layer_names: "__linear_comb_layer_0__"
is_recurrent_layer_group: false
}
python/paddle/trainer_config_helpers/tests/configs/test_print_layer.protostr
0 → 100644
浏览文件 @
93dc44c9
type: "nn"
layers {
name: "input"
type: "data"
size: 100
active_type: ""
}
layers {
name: "__print_0__"
type: "print"
active_type: ""
inputs {
input_layer_name: "input"
}
}
input_layer_names: "input"
output_layer_names: "input"
sub_models {
name: "root"
layer_names: "input"
layer_names: "__print_0__"
input_layer_names: "input"
output_layer_names: "input"
is_recurrent_layer_group: false
}
python/paddle/trainer_config_helpers/tests/configs/test_rnn_group.protostr
0 → 100644
浏览文件 @
93dc44c9
type: "recurrent_nn"
layers {
name: "seq_input"
type: "data"
size: 100
active_type: ""
}
layers {
name: "sub_seq_input"
type: "data"
size: 100
active_type: ""
}
layers {
name: "label"
type: "data"
size: 1
active_type: ""
}
layers {
name: "__mixed_0__"
type: "mixed"
size: 400
active_type: ""
inputs {
input_layer_name: "seq_input"
input_parameter_name: "___mixed_0__.w0"
proj_conf {
type: "fc"
name: "___mixed_0__.w0"
input_size: 100
output_size: 400
}
}
}
layers {
name: "__mixed_1__"
type: "mixed"
size: 300
active_type: ""
inputs {
input_layer_name: "seq_input"
input_parameter_name: "___mixed_1__.w0"
proj_conf {
type: "fc"
name: "___mixed_1__.w0"
input_size: 100
output_size: 300
}
}
}
layers {
name: "__recurrent_group_0__"
type: "recurrent_layer_group"
active_type: ""
}
layers {
name: "seq_input@__recurrent_group_0__"
type: "scatter_agent"
size: 100
active_type: ""
}
layers {
name: "rnn_forward+delay1@__recurrent_group_0__"
type: "agent"
size: 200
active_type: ""
}
layers {
name: "rnn_forward@__recurrent_group_0__"
type: "fc"
size: 200
active_type: "tanh"
inputs {
input_layer_name: "seq_input@__recurrent_group_0__"
input_parameter_name: "_rnn_forward@__recurrent_group_0__.w0"
}
inputs {
input_layer_name: "rnn_forward+delay1@__recurrent_group_0__"
input_parameter_name: "_rnn_forward@__recurrent_group_0__.w1"
}
bias_parameter_name: "_rnn_forward@__recurrent_group_0__.wbias"
}
layers {
name: "rnn_forward"
type: "gather_agent"
size: 200
active_type: ""
}
layers {
name: "__last_seq_0__"
type: "seqlastins"
size: 200
active_type: "linear"
inputs {
input_layer_name: "rnn_forward"
}
trans_type: "non-seq"
}
layers {
name: "__recurrent_group_1__"
type: "recurrent_layer_group"
active_type: ""
}
layers {
name: "seq_input@__recurrent_group_1__"
type: "scatter_agent"
size: 100
active_type: ""
}
layers {
name: "rnn_back+delay1@__recurrent_group_1__"
type: "agent"
size: 200
active_type: ""
}
layers {
name: "rnn_back@__recurrent_group_1__"
type: "fc"
size: 200
active_type: "tanh"
inputs {
input_layer_name: "seq_input@__recurrent_group_1__"
input_parameter_name: "_rnn_back@__recurrent_group_1__.w0"
}
inputs {
input_layer_name: "rnn_back+delay1@__recurrent_group_1__"
input_parameter_name: "_rnn_back@__recurrent_group_1__.w1"
}
bias_parameter_name: "_rnn_back@__recurrent_group_1__.wbias"
}
layers {
name: "rnn_back"
type: "gather_agent"
size: 200
active_type: ""
}
layers {
name: "__first_seq_0__"
type: "seqlastins"
size: 200
active_type: "linear"
inputs {
input_layer_name: "rnn_back"
}
select_first: true
trans_type: "non-seq"
}
layers {
name: "__recurrent_group_2__"
type: "recurrent_layer_group"
active_type: ""
}
layers {
name: "sub_seq_input@__recurrent_group_2__"
type: "sequence_scatter_agent"
size: 100
active_type: ""
}
layers {
name: "rnn_subseq_forward+delay1@__recurrent_group_2__"
type: "agent"
size: 200
active_type: ""
}
layers {
name: "rnn_subseq_forward@__recurrent_group_2__"
type: "fc"
size: 200
active_type: "tanh"
inputs {
input_layer_name: "sub_seq_input@__recurrent_group_2__"
input_parameter_name: "_rnn_subseq_forward@__recurrent_group_2__.w0"
}
inputs {
input_layer_name: "rnn_subseq_forward+delay1@__recurrent_group_2__"
input_parameter_name: "_rnn_subseq_forward@__recurrent_group_2__.w1"
}
bias_parameter_name: "_rnn_subseq_forward@__recurrent_group_2__.wbias"
}
layers {
name: "rnn_subseq_forward"
type: "sequence_gather_agent"
size: 200
active_type: ""
}
layers {
name: "__last_seq_1__"
type: "seqlastins"
size: 200
active_type: "linear"
inputs {
input_layer_name: "rnn_subseq_forward"
}
trans_type: "non-seq"
}
layers {
name: "__lstm_group_0___recurrent_group"
type: "recurrent_layer_group"
active_type: ""
}
layers {
name: "__mixed_0__@__lstm_group_0___recurrent_group"
type: "scatter_agent"
size: 400
active_type: ""
}
layers {
name: "__lstm_group_0__+delay1@__lstm_group_0___recurrent_group"
type: "agent"
size: 100
active_type: ""
}
layers {
name: "__lstm_group_0___state+delay1@__lstm_group_0___recurrent_group"
type: "agent"
size: 100
active_type: ""
}
layers {
name: "__lstm_group_0___input_recurrent@__lstm_group_0___recurrent_group"
type: "mixed"
size: 400
active_type: ""
inputs {
input_layer_name: "__mixed_0__@__lstm_group_0___recurrent_group"
proj_conf {
type: "identity"
name: "___lstm_group_0___input_recurrent.w0"
input_size: 400
output_size: 400
}
}
inputs {
input_layer_name: "__lstm_group_0__+delay1@__lstm_group_0___recurrent_group"
input_parameter_name: "___lstm_group_0___input_recurrent@__lstm_group_0___recurrent_group.w1"
proj_conf {
type: "fc"
name: "___lstm_group_0___input_recurrent.w1"
input_size: 100
output_size: 400
}
}
}
layers {
name: "__lstm_group_0__@__lstm_group_0___recurrent_group"
type: "lstm_step"
size: 100
active_type: "tanh"
inputs {
input_layer_name: "__lstm_group_0___input_recurrent@__lstm_group_0___recurrent_group"
}
inputs {
input_layer_name: "__lstm_group_0___state+delay1@__lstm_group_0___recurrent_group"
}
bias_parameter_name: "___lstm_group_0__@__lstm_group_0___recurrent_group.wbias"
active_gate_type: "sigmoid"
active_state_type: "sigmoid"
}
layers {
name: "__lstm_group_0___state@__lstm_group_0___recurrent_group"
type: "get_output"
size: 100
active_type: ""
inputs {
input_layer_name: "__lstm_group_0__@__lstm_group_0___recurrent_group"
input_layer_argument: "state"
}
}
layers {
name: "__lstm_group_0__"
type: "gather_agent"
size: 100
active_type: ""
}
layers {
name: "__last_seq_2__"
type: "seqlastins"
size: 100
active_type: "linear"
inputs {
input_layer_name: "__lstm_group_0__"
}
trans_type: "non-seq"
}
layers {
name: "__gru_group_0___recurrent_group"
type: "recurrent_layer_group"
active_type: ""
}
layers {
name: "__mixed_1__@__gru_group_0___recurrent_group"
type: "scatter_agent"
size: 300
active_type: ""
}
layers {
name: "__gru_group_0__+delay1@__gru_group_0___recurrent_group"
type: "agent"
size: 100
active_type: ""
}
layers {
name: "__gru_group_0__@__gru_group_0___recurrent_group"
type: "gru_step"
size: 100
active_type: "tanh"
inputs {
input_layer_name: "__mixed_1__@__gru_group_0___recurrent_group"
input_parameter_name: "___gru_group_0__@__gru_group_0___recurrent_group.w0"
}
inputs {
input_layer_name: "__gru_group_0__+delay1@__gru_group_0___recurrent_group"
}
bias_parameter_name: "___gru_group_0__@__gru_group_0___recurrent_group.wbias"
active_gate_type: "sigmoid"
}
layers {
name: "__gru_group_0__"
type: "gather_agent"
size: 100
active_type: ""
}
layers {
name: "__last_seq_3__"
type: "seqlastins"
size: 100
active_type: "linear"
inputs {
input_layer_name: "__gru_group_0__"
}
trans_type: "non-seq"
}
parameters {
name: "___mixed_0__.w0"
size: 40000
initial_mean: 0.0
initial_std: 0.10000000149
dims: 100
dims: 400
initial_strategy: 0
initial_smart: true
}
parameters {
name: "___mixed_1__.w0"
size: 30000
initial_mean: 0.0
initial_std: 0.10000000149
dims: 100
dims: 300
initial_strategy: 0
initial_smart: true
}
parameters {
name: "_rnn_forward@__recurrent_group_0__.w0"
size: 20000
initial_mean: 0.0
initial_std: 0.10000000149
dims: 100
dims: 200
initial_strategy: 0
initial_smart: true
}
parameters {
name: "_rnn_forward@__recurrent_group_0__.w1"
size: 40000
initial_mean: 0.0
initial_std: 0.0707106813788
dims: 200
dims: 200
initial_strategy: 0
initial_smart: true
}
parameters {
name: "_rnn_forward@__recurrent_group_0__.wbias"
size: 200
initial_mean: 0.0
initial_std: 0.0
dims: 1
dims: 200
initial_strategy: 0
initial_smart: false
}
parameters {
name: "_rnn_back@__recurrent_group_1__.w0"
size: 20000
initial_mean: 0.0
initial_std: 0.10000000149
dims: 100
dims: 200
initial_strategy: 0
initial_smart: true
}
parameters {
name: "_rnn_back@__recurrent_group_1__.w1"
size: 40000
initial_mean: 0.0
initial_std: 0.0707106813788
dims: 200
dims: 200
initial_strategy: 0
initial_smart: true
}
parameters {
name: "_rnn_back@__recurrent_group_1__.wbias"
size: 200
initial_mean: 0.0
initial_std: 0.0
dims: 1
dims: 200
initial_strategy: 0
initial_smart: false
}
parameters {
name: "_rnn_subseq_forward@__recurrent_group_2__.w0"
size: 20000
initial_mean: 0.0
initial_std: 0.10000000149
dims: 100
dims: 200
initial_strategy: 0
initial_smart: true
}
parameters {
name: "_rnn_subseq_forward@__recurrent_group_2__.w1"
size: 40000
initial_mean: 0.0
initial_std: 0.0707106813788
dims: 200
dims: 200
initial_strategy: 0
initial_smart: true
}
parameters {
name: "_rnn_subseq_forward@__recurrent_group_2__.wbias"
size: 200
initial_mean: 0.0
initial_std: 0.0
dims: 1
dims: 200
initial_strategy: 0
initial_smart: false
}
parameters {
name: "___lstm_group_0___input_recurrent@__lstm_group_0___recurrent_group.w1"
size: 40000
initial_mean: 0.0
initial_std: 0.10000000149
dims: 100
dims: 400
initial_strategy: 0
initial_smart: true
}
parameters {
name: "___lstm_group_0__@__lstm_group_0___recurrent_group.wbias"
size: 300
initial_mean: 0.0
initial_std: 0.0
dims: 1
dims: 300
initial_strategy: 0
initial_smart: false
}
parameters {
name: "___gru_group_0__@__gru_group_0___recurrent_group.w0"
size: 30000
initial_mean: 0.0
initial_std: 0.00999999977648
dims: 100
dims: 300
initial_strategy: 0
initial_smart: false
}
parameters {
name: "___gru_group_0__@__gru_group_0___recurrent_group.wbias"
size: 300
initial_mean: 0.0
initial_std: 0.0
dims: 1
dims: 300
initial_strategy: 0
initial_smart: false
}
input_layer_names: "seq_input"
input_layer_names: "sub_seq_input"
output_layer_names: "__last_seq_0__"
output_layer_names: "__first_seq_0__"
output_layer_names: "__last_seq_1__"
output_layer_names: "__last_seq_2__"
output_layer_names: "__last_seq_3__"
sub_models {
name: "root"
layer_names: "seq_input"
layer_names: "sub_seq_input"
layer_names: "label"
layer_names: "__mixed_0__"
layer_names: "__mixed_1__"
layer_names: "__recurrent_group_0__"
layer_names: "rnn_forward"
layer_names: "__last_seq_0__"
layer_names: "__recurrent_group_1__"
layer_names: "rnn_back"
layer_names: "__first_seq_0__"
layer_names: "__recurrent_group_2__"
layer_names: "rnn_subseq_forward"
layer_names: "__last_seq_1__"
layer_names: "__lstm_group_0___recurrent_group"
layer_names: "__lstm_group_0__"
layer_names: "__last_seq_2__"
layer_names: "__gru_group_0___recurrent_group"
layer_names: "__gru_group_0__"
layer_names: "__last_seq_3__"
input_layer_names: "seq_input"
input_layer_names: "sub_seq_input"
output_layer_names: "__last_seq_0__"
output_layer_names: "__first_seq_0__"
output_layer_names: "__last_seq_1__"
output_layer_names: "__last_seq_2__"
output_layer_names: "__last_seq_3__"
is_recurrent_layer_group: false
}
sub_models {
name: "__recurrent_group_0__"
layer_names: "seq_input@__recurrent_group_0__"
layer_names: "rnn_forward+delay1@__recurrent_group_0__"
layer_names: "rnn_forward@__recurrent_group_0__"
is_recurrent_layer_group: true
reversed: false
memories {
layer_name: "rnn_forward@__recurrent_group_0__"
link_name: "rnn_forward+delay1@__recurrent_group_0__"
is_sequence: false
}
in_links {
layer_name: "seq_input"
link_name: "seq_input@__recurrent_group_0__"
has_subseq: false
}
out_links {
layer_name: "rnn_forward@__recurrent_group_0__"
link_name: "rnn_forward"
has_subseq: false
}
target_inlinkid: -1
}
sub_models {
name: "__recurrent_group_1__"
layer_names: "seq_input@__recurrent_group_1__"
layer_names: "rnn_back+delay1@__recurrent_group_1__"
layer_names: "rnn_back@__recurrent_group_1__"
is_recurrent_layer_group: true
reversed: true
memories {
layer_name: "rnn_back@__recurrent_group_1__"
link_name: "rnn_back+delay1@__recurrent_group_1__"
is_sequence: false
}
in_links {
layer_name: "seq_input"
link_name: "seq_input@__recurrent_group_1__"
has_subseq: false
}
out_links {
layer_name: "rnn_back@__recurrent_group_1__"
link_name: "rnn_back"
has_subseq: false
}
target_inlinkid: -1
}
sub_models {
name: "__recurrent_group_2__"
layer_names: "sub_seq_input@__recurrent_group_2__"
layer_names: "rnn_subseq_forward+delay1@__recurrent_group_2__"
layer_names: "rnn_subseq_forward@__recurrent_group_2__"
is_recurrent_layer_group: true
reversed: false
memories {
layer_name: "rnn_subseq_forward@__recurrent_group_2__"
link_name: "rnn_subseq_forward+delay1@__recurrent_group_2__"
is_sequence: false
}
in_links {
layer_name: "sub_seq_input"
link_name: "sub_seq_input@__recurrent_group_2__"
has_subseq: true
}
out_links {
layer_name: "rnn_subseq_forward@__recurrent_group_2__"
link_name: "rnn_subseq_forward"
has_subseq: true
}
target_inlinkid: -1
}
sub_models {
name: "__lstm_group_0___recurrent_group"
layer_names: "__mixed_0__@__lstm_group_0___recurrent_group"
layer_names: "__lstm_group_0__+delay1@__lstm_group_0___recurrent_group"
layer_names: "__lstm_group_0___state+delay1@__lstm_group_0___recurrent_group"
layer_names: "__lstm_group_0___input_recurrent@__lstm_group_0___recurrent_group"
layer_names: "__lstm_group_0__@__lstm_group_0___recurrent_group"
layer_names: "__lstm_group_0___state@__lstm_group_0___recurrent_group"
is_recurrent_layer_group: true
reversed: false
memories {
layer_name: "__lstm_group_0__@__lstm_group_0___recurrent_group"
link_name: "__lstm_group_0__+delay1@__lstm_group_0___recurrent_group"
is_sequence: false
}
memories {
layer_name: "__lstm_group_0___state@__lstm_group_0___recurrent_group"
link_name: "__lstm_group_0___state+delay1@__lstm_group_0___recurrent_group"
is_sequence: false
}
in_links {
layer_name: "__mixed_0__"
link_name: "__mixed_0__@__lstm_group_0___recurrent_group"
has_subseq: false
}
out_links {
layer_name: "__lstm_group_0__@__lstm_group_0___recurrent_group"
link_name: "__lstm_group_0__"
has_subseq: false
}
target_inlinkid: -1
}
sub_models {
name: "__gru_group_0___recurrent_group"
layer_names: "__mixed_1__@__gru_group_0___recurrent_group"
layer_names: "__gru_group_0__+delay1@__gru_group_0___recurrent_group"
layer_names: "__gru_group_0__@__gru_group_0___recurrent_group"
is_recurrent_layer_group: true
reversed: false
memories {
layer_name: "__gru_group_0__@__gru_group_0___recurrent_group"
link_name: "__gru_group_0__+delay1@__gru_group_0___recurrent_group"
is_sequence: false
}
in_links {
layer_name: "__mixed_1__"
link_name: "__mixed_1__@__gru_group_0___recurrent_group"
has_subseq: false
}
out_links {
layer_name: "__gru_group_0__@__gru_group_0___recurrent_group"
link_name: "__gru_group_0__"
has_subseq: false
}
target_inlinkid: -1
}
python/paddle/trainer_config_helpers/tests/configs/test_sequence_pooling.protostr
0 → 100644
浏览文件 @
93dc44c9
type: "nn"
layers {
name: "dat_in"
type: "data"
size: 100
active_type: ""
}
layers {
name: "__seq_pooling_0__"
type: "max"
size: 100
active_type: "linear"
inputs {
input_layer_name: "dat_in"
}
trans_type: "seq"
}
layers {
name: "__seq_pooling_1__"
type: "max"
size: 100
active_type: "linear"
inputs {
input_layer_name: "dat_in"
}
trans_type: "non-seq"
}
layers {
name: "__seq_pooling_2__"
type: "average"
size: 100
active_type: "linear"
inputs {
input_layer_name: "dat_in"
}
average_strategy: "average"
trans_type: "seq"
}
layers {
name: "__seq_pooling_3__"
type: "average"
size: 100
active_type: "linear"
inputs {
input_layer_name: "dat_in"
}
average_strategy: "average"
trans_type: "non-seq"
}
layers {
name: "__seq_pooling_4__"
type: "average"
size: 100
active_type: "linear"
inputs {
input_layer_name: "dat_in"
}
average_strategy: "sum"
trans_type: "seq"
}
layers {
name: "__seq_pooling_5__"
type: "average"
size: 100
active_type: "linear"
inputs {
input_layer_name: "dat_in"
}
average_strategy: "sum"
trans_type: "non-seq"
}
layers {
name: "__seq_pooling_6__"
type: "max"
size: 100
active_type: "linear"
inputs {
input_layer_name: "dat_in"
}
output_max_index: true
trans_type: "non-seq"
}
input_layer_names: "dat_in"
output_layer_names: "__seq_pooling_0__"
output_layer_names: "__seq_pooling_1__"
output_layer_names: "__seq_pooling_2__"
output_layer_names: "__seq_pooling_3__"
output_layer_names: "__seq_pooling_4__"
output_layer_names: "__seq_pooling_5__"
output_layer_names: "__seq_pooling_6__"
sub_models {
name: "root"
layer_names: "dat_in"
layer_names: "__seq_pooling_0__"
layer_names: "__seq_pooling_1__"
layer_names: "__seq_pooling_2__"
layer_names: "__seq_pooling_3__"
layer_names: "__seq_pooling_4__"
layer_names: "__seq_pooling_5__"
layer_names: "__seq_pooling_6__"
input_layer_names: "dat_in"
output_layer_names: "__seq_pooling_0__"
output_layer_names: "__seq_pooling_1__"
output_layer_names: "__seq_pooling_2__"
output_layer_names: "__seq_pooling_3__"
output_layer_names: "__seq_pooling_4__"
output_layer_names: "__seq_pooling_5__"
output_layer_names: "__seq_pooling_6__"
is_recurrent_layer_group: false
}
python/paddle/trainer_config_helpers/tests/configs/unused_layers.protostr
0 → 100644
浏览文件 @
93dc44c9
type: "nn"
layers {
name: "probs"
type: "data"
size: 100
active_type: ""
}
layers {
name: "__sampling_id_layer_0__"
type: "sampling_id"
size: 100
active_type: ""
inputs {
input_layer_name: "probs"
}
}
input_layer_names: "probs"
output_layer_names: "__sampling_id_layer_0__"
sub_models {
name: "root"
layer_names: "probs"
layer_names: "__sampling_id_layer_0__"
input_layer_names: "probs"
output_layer_names: "__sampling_id_layer_0__"
is_recurrent_layer_group: false
}
python/paddle/trainer_config_helpers/tests/configs/util_layers.protostr
0 → 100644
浏览文件 @
93dc44c9
type: "nn"
layers {
name: "a"
type: "data"
size: 10
active_type: ""
}
layers {
name: "b"
type: "data"
size: 10
active_type: ""
}
layers {
name: "__addto_0__"
type: "addto"
size: 10
active_type: ""
inputs {
input_layer_name: "a"
}
inputs {
input_layer_name: "b"
}
}
layers {
name: "__concat_0__"
type: "concat"
size: 20
active_type: ""
inputs {
input_layer_name: "a"
}
inputs {
input_layer_name: "b"
}
}
layers {
name: "__concat_1__"
type: "concat2"
size: 20
active_type: ""
inputs {
input_layer_name: "a"
proj_conf {
type: "identity"
name: "___concat_1__.w0"
input_size: 10
output_size: 10
}
}
inputs {
input_layer_name: "b"
proj_conf {
type: "identity"
name: "___concat_1__.w1"
input_size: 10
output_size: 10
}
}
}
input_layer_names: "a"
input_layer_names: "b"
output_layer_names: "__addto_0__"
output_layer_names: "__concat_0__"
output_layer_names: "__concat_1__"
sub_models {
name: "root"
layer_names: "a"
layer_names: "b"
layer_names: "__addto_0__"
layer_names: "__concat_0__"
layer_names: "__concat_1__"
input_layer_names: "a"
input_layer_names: "b"
output_layer_names: "__addto_0__"
output_layer_names: "__concat_0__"
output_layer_names: "__concat_1__"
is_recurrent_layer_group: false
}
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录