未验证 提交 93870574 编写于 作者: W whs 提交者: GitHub

Init paddle slim (#14834)

* Init slim.

* Remove distillation demo.

* Fix import errors.
test=develop

* Fix some issues.
test=develop

* Fix configs.
test=develop

* Modify API.spec.
test=develop

* Fix format.
test=develop

* Fix format.
test=develop

* Add some comments.
上级 00dadb07
...@@ -351,6 +351,23 @@ paddle.fluid.contrib.QuantizeTranspiler.__init__ ArgSpec(args=['self', 'weight_b ...@@ -351,6 +351,23 @@ paddle.fluid.contrib.QuantizeTranspiler.__init__ ArgSpec(args=['self', 'weight_b
paddle.fluid.contrib.QuantizeTranspiler.convert_to_int8 ArgSpec(args=['self', 'program', 'place', 'scope'], varargs=None, keywords=None, defaults=(None,)) paddle.fluid.contrib.QuantizeTranspiler.convert_to_int8 ArgSpec(args=['self', 'program', 'place', 'scope'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.contrib.QuantizeTranspiler.freeze_program ArgSpec(args=['self', 'program', 'place', 'fuse_bn', 'scope'], varargs=None, keywords=None, defaults=(False, None)) paddle.fluid.contrib.QuantizeTranspiler.freeze_program ArgSpec(args=['self', 'program', 'place', 'fuse_bn', 'scope'], varargs=None, keywords=None, defaults=(False, None))
paddle.fluid.contrib.QuantizeTranspiler.training_transpile ArgSpec(args=['self', 'program', 'startup_program'], varargs=None, keywords=None, defaults=(None, None)) paddle.fluid.contrib.QuantizeTranspiler.training_transpile ArgSpec(args=['self', 'program', 'startup_program'], varargs=None, keywords=None, defaults=(None, None))
paddle.fluid.contrib.build_compressor ArgSpec(args=['place', 'data_reader', 'data_feeder', 'scope', 'metrics', 'epoch', 'config'], varargs=None, keywords=None, defaults=(None, None, None, None, None, None, None))
paddle.fluid.contrib.CompressPass.__init__ ArgSpec(args=['self', 'place', 'data_reader', 'data_feeder', 'scope', 'metrics', 'epoch', 'program_exe'], varargs=None, keywords=None, defaults=(None, None, None, None, None, None, None))
paddle.fluid.contrib.CompressPass.add_strategy ArgSpec(args=['self', 'strategy'], varargs=None, keywords=None, defaults=None)
paddle.fluid.contrib.CompressPass.apply ArgSpec(args=['self', 'graph'], varargs=None, keywords=None, defaults=None)
paddle.fluid.contrib.ImitationGraph.__init__ ArgSpec(args=['self', 'program'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.contrib.ImitationGraph.all_parameters ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.contrib.SensitivePruneStrategy.__init__ ArgSpec(args=['self', 'pruner', 'start_epoch', 'end_epoch', 'delta_rate', 'acc_loss_threshold', 'sensitivities'], varargs=None, keywords=None, defaults=(None, 0, 10, 0.2, 0.2, None))
paddle.fluid.contrib.SensitivePruneStrategy.on_batch_begin ArgSpec(args=['self', 'context'], varargs=None, keywords=None, defaults=None)
paddle.fluid.contrib.SensitivePruneStrategy.on_batch_end ArgSpec(args=['self', 'context'], varargs=None, keywords=None, defaults=None)
paddle.fluid.contrib.SensitivePruneStrategy.on_compress_begin ArgSpec(args=['self', 'context'], varargs=None, keywords=None, defaults=None)
paddle.fluid.contrib.SensitivePruneStrategy.on_compress_end ArgSpec(args=['self', 'context'], varargs=None, keywords=None, defaults=None)
paddle.fluid.contrib.SensitivePruneStrategy.on_epoch_begin ArgSpec(args=['self', 'context'], varargs=None, keywords=None, defaults=None)
paddle.fluid.contrib.SensitivePruneStrategy.on_epoch_end ArgSpec(args=['self', 'context'], varargs=None, keywords=None, defaults=None)
paddle.fluid.contrib.MagnitudePruner.__init__ ArgSpec(args=['self', 'threshold'], varargs=None, keywords=None, defaults=None)
paddle.fluid.contrib.MagnitudePruner.prune ArgSpec(args=['self', 'param', 'threshold'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.contrib.RatioPruner.__init__ ArgSpec(args=['self', 'ratios'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.contrib.RatioPruner.prune ArgSpec(args=['self', 'param', 'ratio'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.contrib.load_persistables_for_increment ArgSpec(args=['dirname', 'executor', 'program', 'lookup_table_var', 'lookup_table_var_path'], varargs=None, keywords=None, defaults=None) paddle.fluid.contrib.load_persistables_for_increment ArgSpec(args=['dirname', 'executor', 'program', 'lookup_table_var', 'lookup_table_var_path'], varargs=None, keywords=None, defaults=None)
paddle.fluid.contrib.load_persistables_for_inference ArgSpec(args=['dirname', 'executor', 'program', 'lookup_table_var_name'], varargs=None, keywords=None, defaults=None) paddle.fluid.contrib.load_persistables_for_inference ArgSpec(args=['dirname', 'executor', 'program', 'lookup_table_var_name'], varargs=None, keywords=None, defaults=None)
paddle.fluid.contrib.convert_dist_to_sparse_program ArgSpec(args=['program'], varargs=None, keywords=None, defaults=None) paddle.fluid.contrib.convert_dist_to_sparse_program ArgSpec(args=['program'], varargs=None, keywords=None, defaults=None)
......
...@@ -22,6 +22,8 @@ from . import op_frequence ...@@ -22,6 +22,8 @@ from . import op_frequence
from .op_frequence import * from .op_frequence import *
from . import quantize from . import quantize
from .quantize import * from .quantize import *
from . import slim
from .slim import *
from . import utils from . import utils
from .utils import * from .utils import *
...@@ -30,4 +32,5 @@ __all__ += decoder.__all__ ...@@ -30,4 +32,5 @@ __all__ += decoder.__all__
__all__ += memory_usage_calc.__all__ __all__ += memory_usage_calc.__all__
__all__ += op_frequence.__all__ __all__ += op_frequence.__all__
__all__ += quantize.__all__ __all__ += quantize.__all__
__all__ += slim.__all__
__all__ += utils.__all__ __all__ += utils.__all__
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .core import *
from .graph import *
from .prune import *
__all__ = [
'build_compressor',
'CompressPass',
'ImitationGraph',
'SensitivePruneStrategy',
'MagnitudePruner',
'RatioPruner',
]
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from . import config
from .config import *
from . import compress_pass
from .compress_pass import *
from . import strategy
from .strategy import *
from . import pass_builder
from .pass_builder import *
__all__ = config.__all__ + compress_pass.__all__ + strategy.__all__ + pass_builder.__all__
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ....core import CPUPlace
from ..graph import get_executor
__all__ = ['Context', 'CompressPass']
class Context(object):
"""
The context in the process of compression.
Args:
exe: The executor used to execute graph.
graph: The graph to be compressed.
scope: The scope used to execute graph.
program_exe: The program_exe is used to execute the program
created for modifying the variables in scope.
"""
def __init__(self, exe, graph, scope, program_exe=None):
# The total number of epoches to be trained.
self.epoch = 0
# Current epoch
self.epoch_id = 0
# Current batch
self.batch_id = 0
self.exe = exe
self.graph = graph
self.scope = scope
self.program_exe = program_exe
class CompressPass(object):
"""
The pass used to compress model.
Args:
place: The device used in compression.
data_reader: The data_reader used to run graph.
data_feeder: The data_feeder used to run graph.
scope: The scope used to run graph.
metrics: The metrics for evaluating model.
epoch: The total epoches of trainning in compression.
program_exe: The program_exe is used to execute the program
created for modifying the variables in scope.
"""
def __init__(self,
place=None,
data_reader=None,
data_feeder=None,
scope=None,
metrics=None,
epoch=None,
program_exe=None):
self.strategies = []
self.place = CPUPlace() if place is None else place
self.data_reader = data_reader
self.data_feeder = data_feeder
self.scope = scope
self.metrics = metrics
self.epoch = epoch
self.program_exe = program_exe
def add_strategy(self, strategy):
"""
Add a strategy to current compress pass.
Args:
strategy: The strategy to be added into current compress pass.
"""
self.strategies.append(strategy)
self.epoch = max(strategy.end_epoch, self.epoch)
def apply(self, graph):
"""
Compress a model.
Args:
graph: The target graph to be compressed.
"""
self.executor = get_executor(graph, self.place)
context = Context(
self.executor, graph, self.scope, program_exe=self.program_exe)
for strategy in self.strategies:
strategy.on_compress_begin(context)
for epoch in range(self.epoch):
for strategy in self.strategies:
strategy.on_epoch_begin(context)
for data in self.data_reader():
for strategy in self.strategies:
strategy.on_batch_begin(context)
fetches = None
if self.metrics:
fetches = self.metrics.values()
feed = None
if self.data_feeder:
feed = self.data_feeder.feed(data)
results = self.executor.run(graph,
fetches=fetches,
scope=self.scope,
feed=feed)
if results:
print("results: {}".format(
zip(self.metrics.keys(), results)))
for strategy in self.strategies:
strategy.on_batch_end(context)
context.batch_id += 1
for strategy in self.strategies:
strategy.on_epoch_end(context)
context.epoch_id += 1
for strategy in self.strategies:
strategy.on_compress_end(context)
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
import funcsigs
import yaml
from collections import OrderedDict
from ..prune import *
from .compress_pass import *
from .strategy import *
__all__ = ['ConfigFactory']
"""This factory is used to create instances by loading and parsing configure file with yaml format.
"""
class ConfigFactory(object):
def __init__(self, config):
"""Init a factory from configure file."""
self.instances = {}
self.version = None
self._parse_config(config)
def get_compress_pass(self):
"""
Get compress pass from factory.
"""
return self.instance('compress_pass')
def instance(self, name):
"""
Get instance from factory.
"""
if name in self.instances:
return self.instances[name]
else:
return None
def _new_instance(self, name, attrs):
if name not in self.instances:
class_ = globals()[attrs['class']]
sig = funcsigs.signature(class_.__init__)
keys = [
param.name for param in sig.parameters.values()
if (param.kind == param.POSITIONAL_OR_KEYWORD)
][1:]
keys = set(attrs.keys()).intersection(set(keys))
args = {}
for key in keys:
value = attrs[key]
if isinstance(value, str) and value in self.instances:
value = self.instances[value]
args[key] = value
self.instances[name] = class_(**args)
return self.instances.get(name)
def _parse_config(self, config):
assert config
with open(config, 'r') as config_file:
key_values = self._ordered_load(config_file)
for key in key_values:
# parse version
if key == 'version' and self.version is None:
self.version = int(key_values['version'])
assert self.version == int(key_values['version'])
# parse pruners
if key == 'pruners' or key == 'strategies':
instances = key_values[key]
for name in instances:
self._new_instance(name, instances[name])
if key == 'compress_pass':
compress_pass = self._new_instance(key, key_values[key])
for name in key_values[key]['strategies']:
strategy = self.instance(name)
compress_pass.add_strategy(strategy)
if key == 'include':
for config_file in key_values[key]:
self._parse_config(config_file.strip())
def _ordered_load(self,
stream,
Loader=yaml.Loader,
object_pairs_hook=OrderedDict):
"""
See: https://stackoverflow.com/questions/5121931/in-python-how-can-you-load-yaml-mappings-as-ordereddicts
"""
class OrderedLoader(Loader):
pass
def construct_mapping(loader, node):
loader.flatten_mapping(node)
return object_pairs_hook(loader.construct_pairs(node))
OrderedLoader.add_constructor(
yaml.resolver.BaseResolver.DEFAULT_MAPPING_TAG, construct_mapping)
return yaml.load(stream, OrderedLoader)
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .compress_pass import CompressPass
from .config import ConfigFactory
__all__ = ['build_compressor']
def build_compressor(place=None,
data_reader=None,
data_feeder=None,
scope=None,
metrics=None,
epoch=None,
config=None):
if config is not None:
factory = ConfigFactory(config)
comp_pass = factory.get_compress_pass()
else:
comp_pass = CompressPass()
comp_pass.place = place
comp_pass.data_reader = data_reader
comp_pass.data_feeder = data_feeder
comp_pass.scope = scope
comp_pass.metrics = metrics
comp_pass.epoch = epoch
return comp_pass
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
__all__ = ['Strategy']
class Strategy(object):
"""
Base class for all strategies.
"""
def __init__(self, start_epoch=0, end_epoch=10):
"""
Args:
start_epoch: The first epoch to apply the strategy.
end_epoch: The last epoch to apply the strategy.
"""
self.start_epoch = start_epoch
self.end_epoch = end_epoch
def on_compress_begin(self, context):
pass
def on_epoch_begin(self, context):
pass
def on_epoch_end(self, context):
pass
def on_batch_begin(self, context):
pass
def on_batch_end(self, context):
pass
def on_compress_end(self, context):
pass
version: 1.0
pruners:
pruner_1:
class: 'RatioPruner'
ratios:
'conv1_1.w': 0.3
'conv1_2.w': 0.4
'*': 0.9
group_dims:
'*': [1, 2, 3]
criterions:
'*': 'l1-norm'
strategies:
strategy_1:
class: 'SensitivePruneStrategy'
pruner: 'pruner_1'
start_epoch: 0
end_epoch: 10
delta_rate: 0.20
acc_loss_threshold: 0.2
sensitivities:
'conv1_1.w': 0.4
compress_pass:
class: 'CompressPass'
epoch: 100
strategies:
- strategy_1
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle.fluid as fluid
import paddle
import os
import sys
from paddle.fluid.contrib.slim import CompressPass
from paddle.fluid.contrib.slim import build_compressor
from paddle.fluid.contrib.slim import ImitationGraph
class LinearModel(object):
def __init__(slef):
pass
def train(self):
train_program = fluid.Program()
startup_program = fluid.Program()
startup_program.random_seed = 10
with fluid.program_guard(train_program, startup_program):
x = fluid.layers.data(name='x', shape=[13], dtype='float32')
y = fluid.layers.data(name='y', shape=[1], dtype='float32')
predict = fluid.layers.fc(input=x, size=1, act=None)
cost = fluid.layers.square_error_cost(input=predict, label=y)
avg_cost = fluid.layers.mean(cost)
eval_program = train_program.clone()
sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
sgd_optimizer.minimize(avg_cost)
train_reader = paddle.batch(
paddle.dataset.uci_housing.train(), batch_size=1)
eval_reader = paddle.batch(
paddle.dataset.uci_housing.test(), batch_size=1)
place = fluid.CPUPlace()
train_feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
eval_feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
exe = fluid.Executor(place)
exe.run(startup_program)
train_metrics = {"loss": avg_cost.name}
eval_metrics = {"loss": avg_cost.name}
graph = ImitationGraph(train_program)
config = './config.yaml'
comp_pass = build_compressor(
place,
data_reader=train_reader,
data_feeder=train_feeder,
scope=fluid.global_scope(),
metrics=train_metrics,
epoch=1,
config=config)
comp_pass.apply(graph)
if __name__ == "__main__":
model = LinearModel()
model.train()
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from . import executor
from .executor import *
from . import graph
from .graph import *
from . import graph_pass
from .graph_pass import *
__all__ = executor.__all__
__all__ += graph.__all__
__all__ += graph_pass.__all__
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import abc
from abc import abstractmethod
from .... import executor
from .graph import IRGraph, ImitationGraph
__all__ = ['get_executor']
class GraphExecutor(object):
__metaclass__ = abc.ABCMeta
def __init__(self, place):
self.place = place
@abstractmethod
def run(self, graph, feches=None, feed=None):
pass
class IRGraphExecutor(GraphExecutor):
def run(self, grah, fetches, feed=None):
pass
class ImitationGraphExecutor(GraphExecutor):
def __init__(self, place):
super(ImitationGraphExecutor, self).__init__(place)
self.exe = executor.Executor(place)
def run(self, graph, scope=None, fetches=None, feed=None):
assert isinstance(graph, ImitationGraph)
fetch_list = None
if fetches:
fetch_list = [
graph.program.global_block().var(name) for name in fetches
]
results = self.exe.run(graph.program,
scope=scope,
fetch_list=fetch_list,
feed=feed)
return results
def get_executor(graph, place):
if isinstance(graph, ImitationGraph):
return ImitationGraphExecutor(place)
if isinstance(graph, IRGraph):
return IRGraphExecutor(place)
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ....framework import Program
__all__ = ['Graph', 'ImitationGraph', 'IRGraph']
class Graph(object):
"""
Base class for all graph.
"""
def __init__(self):
pass
def all_parameters(self):
"""
Return all the parameters in current graph.
"""
pass
class ImitationGraph(Graph):
def __init__(self, program=None):
super(ImitationGraph, self).__init__()
self.program = Program() if program is None else program
def all_parameters(self):
return self.program.global_block().all_parameters()
class IRGraph(Graph):
pass
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
__all__ = ['GraphPass', 'PruneParameterPass']
class GraphPass(object):
"""
Base class for all graph pass.
"""
def __init__(self):
pass
def apply(self, graph):
pass
class PruneParameterPass(GraphPass):
"""
Generate a graph for pruning parameters from target graph.
"""
def __init__(self, pruned_params, thresholds):
super(PruneParameterPass, self).__init__()
self.pruned_params = pruned_params
self.thresholds = thresholds
self.default_threshold = thresholds['*']
def apply(self, graph):
pass
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from . import pruner
from .pruner import *
from . import prune_strategy
from .prune_strategy import *
__all__ = pruner.__all__
__all__ += prune_strategy.__all__
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..core.strategy import Strategy
from ....framework import Program, program_guard
from .... import layers
import numpy as np
__all__ = ['SensitivePruneStrategy', 'PruneStrategy']
class SensitivePruneStrategy(Strategy):
def __init__(self,
pruner=None,
start_epoch=0,
end_epoch=10,
delta_rate=0.20,
acc_loss_threshold=0.2,
sensitivities=None):
super(SensitivePruneStrategy, self).__init__(start_epoch, end_epoch)
self.pruner = pruner
self.delta_rate = delta_rate
self.acc_loss_threshold = acc_loss_threshold
self.sensitivities = sensitivities
class PruneStrategy(Strategy):
"""
The strategy that pruning weights by threshold or ratio iteratively.
"""
def __init__(self,
pruner,
mini_batch_pruning_frequency=1,
start_epoch=0,
end_epoch=10):
super(PruneStrategy, self).__init__(start_epoch, end_epoch)
self.pruner = pruner
self.mini_batch_pruning_frequency = mini_batch_pruning_frequency
def _triger(self, context):
return (context.batch_id % self.mini_batch_pruning_frequency == 0 and
self.start_epoch <= context.epoch_id < self.end_epoch)
def on_batch_end(self, context):
if self._triger(context):
prune_program = Program()
with program_guard(prune_program):
for param in context.graph.all_parameters():
prune_program.global_block().clone_variable(param)
p = prune_program.global_block().var(param.name)
zeros_mask = self.pruner.prune(p)
pruned_param = p * zeros_mask
layers.assign(input=pruned_param, output=param)
context.program_exe.run(prune_program, scope=context.scope)
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
from .... import layers
__all__ = ['Pruner', 'MagnitudePruner', 'RatioPruner']
class Pruner(object):
"""
Base class of all pruners.
"""
def __init__(self):
pass
def prune(self, param):
pass
class MagnitudePruner(Pruner):
"""
Pruner used to pruning a parameter by threshold.
"""
def __init__(self, threshold):
self.threshold = threshold
def prune(self, param, threshold=None):
if threshold is None:
thres = layers.fill_constant(
shape=[1], dtype='float32', value=self.threshold)
else:
thres = threshold
zeros_mask = layers.less_than(x=param, y=thres)
return zeros_mask
class RatioPruner(Pruner):
"""
Pruner used to pruning a parameter by ratio.
"""
def __init__(self, ratios=None):
"""
Args:
ratios: dict with pair (paramer_name, pruned_ratio).
"""
self.ratios = ratios
def prune(self, param, ratio=None):
"""
Args:
ratio: `ratio=40%` means pruning (1 - 40%) weights to zero.
"""
if ratio is None:
rat = self.ratios[
param.name] if param.name in self.ratios else self.ratios['*']
else:
rat = ratio
if rat < 1.0:
k = max(int(rat * np.prod(param.shape)), 1)
param_vec = layers.reshape(x=param, shape=[1, -1])
param_topk, _ = layers.topk(param_vec, k=k)
threshold = layers.slice(
param_topk, axes=[1], starts=[-1], ends=[k])
threshold = layers.reshape(x=threshold, shape=[1])
zeros_mask = layers.less_than(x=param, y=threshold)
else:
zeros_mask = layers.ones(param.shape)
return zeros_mask
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
version: 1.0
include: ["./unitest/configs/pruners.yaml", "./unitest/configs/pruners_0.yaml"]
pruners:
pruner_1:
class: 'RatioPruner'
ratios:
'conv1_1.w': 0.3
'conv1_2.w': 0.4
'*': 0.9
group_dims:
'*': [1, 2, 3]
criterions:
'*': 'l1-norm'
strategies:
strategy_1:
class: 'SensitivePruneStrategy'
pruner: 'pruner_2'
start_epoch: 0
end_epoch: 10
delta_rate: 0.20
acc_loss_threshold: 0.2
sensitivities:
'conv1_1.w': 0.4
compress_pass:
class: 'CompressPass'
epoch: 100
strategies:
- strategy_1
version: 1.0
pruners:
pruner_2:
class: 'RatioPruner'
ratios:
'conv1_1.w': 0.5
'conv1_2.w': 0.2
'*': 0.7
group_dims:
'*': [1, 2, 3]
criterions:
'*': 'l1-norm'
version: 1.0
pruners:
pruner_3:
class: 'RatioPruner'
ratios:
'conv1_1.w': 0.5
'conv1_2.w': 0.2
'*': 0.7
group_dims:
'*': [1, 2, 3]
criterions:
'*': 'l1-norm'
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle.fluid.contrib.slim import ConfigFactory
import unittest
class TestFactory(unittest.TestCase):
def test_parse(self):
factory = ConfigFactory('./unitest/configs/config.yaml')
pruner = factory.instance('pruner_1')
self.assertEquals(pruner.ratios['conv1_1.w'], 0.3)
pruner = factory.instance('pruner_2')
self.assertEquals(pruner.ratios['*'], 0.7)
strategy = factory.instance('strategy_1')
pruner = strategy.pruner
self.assertEquals(pruner.ratios['*'], 0.7)
compress_pass = factory.get_compress_pass()
self.assertEquals(compress_pass.epoch, 100)
strategy = compress_pass.strategies[0]
self.assertEquals(strategy.delta_rate, 0.2)
if __name__ == '__main__':
unittest.main()
...@@ -9,3 +9,5 @@ Pillow ...@@ -9,3 +9,5 @@ Pillow
nltk>=3.2.2 nltk>=3.2.2
graphviz graphviz
six six
funcsigs
pyyaml
...@@ -109,6 +109,10 @@ packages=['paddle', ...@@ -109,6 +109,10 @@ packages=['paddle',
'paddle.fluid.contrib', 'paddle.fluid.contrib',
'paddle.fluid.contrib.decoder', 'paddle.fluid.contrib.decoder',
'paddle.fluid.contrib.quantize', 'paddle.fluid.contrib.quantize',
'paddle.fluid.contrib.slim',
'paddle.fluid.contrib.slim.core',
'paddle.fluid.contrib.slim.graph',
'paddle.fluid.contrib.slim.prune',
'paddle.fluid.contrib.utils', 'paddle.fluid.contrib.utils',
'paddle.fluid.transpiler', 'paddle.fluid.transpiler',
'paddle.fluid.transpiler.details'] 'paddle.fluid.transpiler.details']
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册