提交 93367561 编写于 作者: Q qingqing01 提交者: GitHub

Merge pull request #532 from qingqing01/cn_doc

Refine use_concepts.rst
......@@ -2,16 +2,18 @@
PaddlePaddle 基本使用概念
#########################
PaddlePaddle是一个神经网络学习框架。其单机进程为 :code:`paddle train`。 单机的所有设备使用,均在单机进程内调度完成。 而多机辅助进程 :code:`paddle pserver` 负责联合多个单机进程进行通信,进而充分利用集群的计算资源。 PaddlePaddle同时以 :code:`swig api` 的形式,提供训练结果模型预测的方法和自定义训练流程
PaddlePaddle是一个深度学习框架,支持单机模式和多机模式
下面我们会分别介绍主要进程 :code:`paddle train` 中的一些概念。这些概念会对如何使用PaddlePaddle有一定的帮助。 了解这些概念的前提是,读者已经了解 `基本的神经网络/机器学习原理和概念 <nn.html>`_ 。同时,如果想要了解PaddlePaddle实现中的一些概念,请参考 `PaddlePaddle 编程中的基本概念 <program_concepts.html>`_ 。
单机模式用命令 ``paddle train`` 可以启动一个trainer进程,单机训练通常只包括一个trainer进程。如果数据规模比较大,希望加速训练,可以启动分布式作业。一个分布式作业里包括若干trainer进程和若干Parameter Server(或称pserver)进程。用命令 ``paddle pserver`` 可以启动 pserver 进程,pserver进程用于协调多个trainer进程之间的通信。
本文首先介绍trainer进程中的一些使用概念,然后介绍pserver进程中概念。
.. contents::
PaddlePaddle 的进程模型
=======================
系统框图
========
PaddlePaddle进程内嵌了一个 :code:`python` 解释器。 这个 :code:`python` 解释器负责解析用户定义的神经网络配置,和解析用户数据,并将用户数据传入给 PaddlePaddle
下图描述了用户使用框图,PaddlePaddle的trainer进程里内嵌了Python解释器,trainer进程可以利用这个解释器执行Python脚本,Python脚本里定义了模型配置、训练算法、以及数据读取函数。其中,数据读取程序往往定义在一个单独Python脚本文件里,被称为数据提供器(DataProvider),通常是一个Python函数。模型配置、训练算法通常定义在另一单独Python文件中, 称为训练配置文件。下面将分别介绍这两部分
.. graphviz::
......@@ -30,164 +32,124 @@ PaddlePaddle进程内嵌了一个 :code:`python` 解释器。 这个 :code:`pyth
py -> data_provider [dir="back"];
}
所以,PaddlePaddle单机训练进程,:code:`paddle train` , 对于用户的主要接口语言为 python。 主要需要用户配置的两个文件为 :code:`DataProvider` 和训练文件 :code:`TrainerConfig` 。
.. _glossary_DataProvider:
DataProvider
============
数据提供器
==========
DataProvider是 :code:`paddle train` 的数据提供器。 它负责将用户的原始数据转换成 PaddlePaddle 可以识别的数据类型。每当 PaddlePaddle 需要新的数据训练时,都会调用 DataProvider 返回数据。 当所有数据读取完一轮后,DataProvider 便返回空数据通知 PaddlePaddle。PaddlePaddle负责在下一轮训练开始前,将DataProvider重置
DataProvider是PaddlePaddle系统的数据提供器,将用户的原始数据转换成系统可以识别的数据类型。每当系统需要新的数据训练时, trainer进程会调用DataProvider函数返回数据。当所有数据读取完一轮后,DataProvider返回空数据,通知系统一轮数据读取结束,并且系统每一轮训练开始时会重置DataProvider。需要注意的是,DataProvider是被系统调用,而不是新数据驱动系统,一些随机化噪声添加都应该在DataProvider中完成
需要注意的是,DataProvider在PaddlePaddle中是被训练逻辑调用的关系, 而不是新的数据驱动训练。并且所有的 :code:`shuffle` , 和一些随机化的噪声添加,都应该在 DataProvider 阶段完成。
为了方便用户使用自己的数据格式, PaddlePaddle 提供了 `PyDataProvider`_ 来处理数据。 并且在这个Provider中,PaddlePaddle的 C++ 部分接管了如何shuffle,处理 batch,GPU/CPU通信,双缓冲,异步读取等问题。 用户可以参考 `PyDataProvider`_ 的相关文档,继续深入了解 DataProvider 的使用。
.. _glossary_trainer_config:
训练文件
========
在不同的应用里,训练数据的格式往往各不相同。因此,为了用户能够灵活的处理数据,我们提供了Python处理数据的接口,称为 `PyDataProvider`_ 。在 ``PyDataProvider`` 中,系统C++模块接管了shuffle、处理batch、GPU和CPU通信、双缓冲、异步读取等问题,一些情况下(如:``min_pool_size=0``)需要Python接口里处理shuffle,可以参考 `PyDataProvider`_ 的相关文档继续深入了解。
训练文件是PaddlePaddle中配置神经网络结构、学习优化算法、数据传入方式的地方。 训练文件是一个python文件,使用命令行参数 :code:`--config` 传给 paddle 的主程序。 例如\:
.. code-block:: bash
训练配置文件
============
paddle train --config=trainer_config.py
训练配置文件主要包括数据源、优化算法、网络结构配置三部分。 其中数据源配置与DataProvider的关系是:DataProvider里定义数据读取函数,训练配置文件的数据源配置中指定DataProvider文件名字、生成数据函数接口,请不要混淆。
一个典型简单的训练文件可能为
一个简单的训练配置文件为:
.. literalinclude:: trainer_config.py
:linenos:
下面我们详细的介绍一下训练文件中各个模块的概念
文件开头 ``from paddle.trainer_config_helpers import *`` ,是因为PaddlePaddle配置文件与C++模块通信的最基础协议是protobuf,为了避免用户直接写复杂的protobuf string,我们为用户定以Python接口来配置网络,该Python代码可以生成protobuf包,这就是`trainer_config_helpers`_的作用。因此,在文件的开始,需要import这些函数。 这个包里面包含了模型配置需要的各个模块
下面分别介绍数据源配置、优化算法配置、网络结构配置这三部分该概念。
trainer_config_helpers
----------------------
数据源配置
----------
PaddlePaddle的配置文件与PaddlePaddle C++端通信的最基础协议是 :code:`protobuf` 。而为了避免用户直接写比较难写的 protobuf string,我们书写了一个helpers来生成这个protobuf包。所以在文件的开始,import这些helpers函数
使用 `PyDataProvider`_ 的函数 ``define_py_data_sources2`` 配置数据源。``define_py_data_sources2`` 里通过train_list和test_list指定是训练文件列表和测试文件列表。 如果传入字符串的话,是指一个数据列表文件。这个数据列表文件中包含的是每一个训练或者测试文件的路径。如果传入一个list的话,则会默认生成一个list文件,再传入给train.list或者test.list
需要注意的是,这个 :code:`paddle.trainer_config_helpers` 包是标准的python包,这意味着用户可以选择自己喜欢的 :code:`ide` 或者编辑器来编写Paddle的配置文件,这个python包注释文档比较完善,并且考虑了IDE的代码提示与类型注释
``module`` 和 ``obj`` 指定了DataProvider的文件名和返回数据的函数名。更详细的使用,请参考 `PyDataProvider`_
data_sources
优化算法配置
------------
data_sources是配置神经网络的数据源。这里使用的函数是 :code:`define_py_data_sources2` ,这个函数是定义了使用 `PyDataProvider`_ 作为数据源。 而后缀 :code:`2` 是Paddle历史遗留问题,因为Paddle之前使用的 PyDataProvider 性能较差,所以完全重构了一个新的 `PyDataProvider`_ 。
data_sources里面的 train_list 和 test_list 指定的是训练文件列表和测试文件列表。 如果传入一个字符串的话,是指一个训练列表文件。这个训练列表文件中包含的是每一个训练或者测试文件的路径。如果传入一个list的话,则会默认生成一个 list 文件,再传入给 train.list 或者 test.list 。
而 :code:`module` 和 :code:`obj` 指定了 DataProvider 的模块名和函数名。
通过 `settings`_ 接口设置神经网络所使用的训练参数和 `优化算法`_ ,包括学习率、batch_size、优化算法、正则方法等,具体的使用方法请参考 `settings`_ 文档。
更具体的使用,请参考 `PyDataProvider`_ 。
settings
--------
`settings`_ 是神经网络训练算法相关的设置项。包括学习率,batch_size,优化算法,正则方法等等。具体的使用方法请参考 `settings`_ 文档。
网络结构配置
------------
网络配置
--------
神经网络配置主要包括网络连接、激活函数、损失函数、评估器。
上述网络配置中余下的部分均是神经网络配置。第一行是定义一个名字叫 "pixel" 的 :code:`data_layer` 。每一个layer返回的都是一个 :code:`LayerOutput` 对象。 这里第一层的输出对象是 :code:`img` 。然后这个对象传输给了另一个 layer 函数,
:code:`simple_img_conv_pool` 。:code:`simple_img_conv_pool` 是一个组合层,
包括了图像的卷积 (convolution) 和池化(pooling),
并继续接了一个全连接层( :code:`fc_layer` ),然后再接了一个Softmax的全连接层。
- 网络连接: 主要由Layer组成,每个Layer返回的都是一个 ``LayerOutput`` 对象,Layer里面可以定义参数属性、激活类型等。
最终,网络配置输出了 :code:`classification_cost` 。标记网络输出的函数为
:code:`outputs` 。网络的输出是神经网络的优化目标,神经网络训练的时候,实际上就是
要最小化这个输出。
为了更灵活的配置,PaddlePaddle提供了基于 Projection 或者 Operator 的配置,这两个需要与 ``mixed_layer`` 配合使用。这里简单介绍Layer、Projection、Operator的概念:
在神经网络进行预测的时候,实际上网络的输出也是通过 :code:`outputs` 标记。
- Layer: 神经网络的某一层,可以有可学习的参数,一般是封装了许多复杂操作的集合。
- Projection:需要与 ``mixed_layer`` 配合使用,含可学习参数。
- Operator: 需要与 ``mixed_layer`` 配合使用,不含可学习参数,输入全是其他Layer的输出。
这个配置文件网络由 ``data_layer`` 、 ``simple_img_conv_pool`` 、 ``fc_layer`` 组成。
Layer、Projection、Operator
===========================
- `data_layer`_ : 通常每个配置文件都会包括 ``data_layer`` ,定义输入数据大小。
- `simple_img_conv_pool`_ :是一个组合层,包括了图像的卷积 (convolution)和池化(pooling)。
- `fc_layer`_ :全连接层,激活函数为Softmax,这里也可叫分类层。
PaddlePaddle的网络基本上是基于Layer来配置的。所谓的Layer即是神经网络的某一层,
而神经网络的某一层,一般是封装了许多复杂操作的操作集合。比如最简单的
:code:`fc_layer` ,也包括矩阵乘法,多输入的求和,和activation。
- 损失函数和评估器:损失函数即为网络的优化目标,评估器可以评价模型结果。
.. code-block:: python
PaddlePaddle包括很多损失函数和评估起,详细可以参考 `损失函数层`_ 和 `评估器`_ 。这里 ``classification_cost`` 默认使用多类交叉熵损失函数和分类错误率统计评估器。
- ``outputs``: 标记网络输出的函数为 ``outputs`` 。
data = data_layer(name='data', size=200)
out = fc_layer(input=data, size=200, act=TanhActivation())
训练阶段,网络的输出为神经网络的优化目标;预测阶段,网络的输出也可通过 ``outputs`` 标记。
而对于更灵活配置需求,可能这样基于Layer的配置是不灵活的。于是 PaddlePaddle 提供
了基于 Projection 或者 Operator 的配置。使用Projection和Operator需要与
:code:`mixed_layer` 配合使用。 :code:`mixed_layer` 是将layer中的元素累加求和,
并且做一个 :code:`activation` , 而这个layer具体如何计算,是交由内部的Projection
和 Operator 定义。Projection是指含有可学习参数的操作,而Operator不含有可学习的
参数,输入全是其他Layer的输出。
这里对 ``mixed_layer`` 稍做详细说明, 该Layer将多个输入(Projection 或 Operator)累加求和,具体计算是通过内部的 Projection 和 Operator 完成,然后加 Bias 和 activation 操作,
例如,和 :code:`fc_layer` 同样功能的 :code:`mixed_layer` 。
例如,和 ``fc_layer`` 同样功能的 ``mixed_layer`` 是:
.. code-block:: python
data = data_layer(name='data', size=200)
with mixed_layer(size=200) as out:
out += full_matrix_projection(input=data)
data = data_layer(name='data', size=200)
with mixed_layer(size=200) as out:
out += full_matrix_projection(input=data)
PaddlePaddle 可以使用 ``mixed layer`` 配置出非常复杂的网络,甚至可以直接配置一个完整的LSTM。用户可以参考 `mixed_layer`_ 的相关文档进行配置。
PaddlePaddle可以使用的mixed layer 配置出非常复杂的网络,甚至可以直接配置一个完整的LSTM。
用户可以参考 `mixed_layer`_ 的相关文档进行配置。
如何利用单机的所有GPU或所有CPU核心
==================================
分布式训练
==========
PaddlePaddle的单机进程 :code:`paddle train` 可以充分利用一台计算机上所有的GPU资
源或者CPU。
如果要使用机器上多块GPU,使用如下命令即可\:
.. code-block:: bash
paddle train --use_gpu=true --trainer_count=4 # use 4 gpu card, 0, 1, 2, 3
如果要使用机器上多块CPU, 使用如下命令即可\:
.. code-block:: bash
paddle train --trainer_config=4 # use 4 cpu cores.
对于其他设置GPU的选择情况,例如选择第0、2号GPU显卡,则可以使用 :code:`CUDA_VISIBLE_DEVICES` 环境变量来选择部分的显卡。 具体可以参考连接`masking-gpus`_ 。 可以使用的命令为
.. code-block:: bash
env CUDA_VISIBLE_DEVICES=0,2 paddle train --use_gpu=true --trainer_config=2
如何利用多台机器的计算资源训练神经网络
======================================
PaddlePaddle多机使用的经典方法是通过 :code:`Parameter Server` 来对多机的 :code:`paddle train` 进行同步。 而多机训练神经网络,首先要讲数据切分到不同的机器上。 切分数据文件的方式在PaddlePaddle的开源实现中并没有提供工具包。 但是切分数据并不是一件非常复杂的事情,也不是神经网络实现的重点。
多机训练过程中,经典的拓扑结构如下\:
PaddlePaddle多机采用经典的 Parameter Server 架构对多个节点的 trainer 进行同步。多机训练的经典拓扑结构如下\:
.. graphviz:: pserver_topology.dot
图中每个灰色方块是一台机器,在每个机器中,先去启动一个 :code:`paddle pserver` 进程,并确定整体的端口号。可能的参数是\:
图中每个灰色方块是一台机器,在每个机器中,先使用命令 ``paddle pserver`` 启动一个pserver进程,并指定端口号,可能的参数是\:
.. code-block:: bash
paddle pserver --port=5000 --num_gradient_servers=4 --nics='eth0'
paddle pserver --port=5000 --num_gradient_servers=4 --tcp_rdma='tcp' --nics='eth0'
* ``--port=5000`` : 指定 pserver 进程端口是 5000 。
* ``--gradient_servers=4`` : 有四个训练进程(PaddlePaddle 将 trainer 也称作 GradientServer ,因为其为负责提供Gradient) 。
* ``--tcp_rdma='tcp' --nics=`eth0```: 指定以太网类型为TCP网络,指定网络接口名字为eth0。
这里说明系统的 :code:`paddle pserver` 的起始端口是 :code:`5000` ,并且有四个训练进程(:code:`gradient_servers`,Paddle同时将 :code:`paddle train` 进程称作 :code:`GradientServer` 。因为其为负责提供Gradient的进程)。 而对于训练进程的话,则需要在 :code:`paddle pserver` 启动之后,再在各个节点上运行如下命令\:
启动之后 pserver 进程之后,需要启动 trainer 训练进程,在各个机器上运行如下命令\:
.. code-block:: bash
paddle train --port=5000 --pservers=192.168.100.101,192.168.100.102,192.168.100.103,192.168.100.104 --config=...
对于简单的多机协同使用上述方式即可。同时,pserver/train 通常在高级情况下,还有两个参数需要设置,他们是
对于简单的多机协同训练使用上述方式即可。另外,pserver/train 通常在高级情况下,还需要设置下面两个参数\:
* --ports_num\: 一个 pserver进程共绑定多少个端口用来做稠密更新。默认是1
* --ports_num_for_sparse\: 一个pserver进程共绑定多少端口用来做稀疏更新,默认是0
* --ports_num\: 一个 pserver 进程共绑定多少个端口用来做稠密更新,默认是1。
* --ports_num_for_sparse\: 一个pserver进程共绑定多少端口用来做稀疏更新,默认是0
使用手工指定端口数量,是因为Paddle的网络通信中,使用了 :code:`int32` 作为消息长度,比较容易在大模型下溢出。所以,在 :code:`paddle pserver` 进程中可以启动多个子线程去接受 trainer 的数据,这样单个子线程的长度就不会溢出了。但是这个值不可以调的过大,因为增加这个值,还是对性能,尤其是内存占用有一定的开销的,另外稀疏更新的端口如果太大的话,很容易某一个参数服务器没有分配到任何参数。
使用手工指定端口数量,是因为Paddle的网络通信中,使用了 int32 作为消息长度,比较容易在大模型下溢出。所以,在 pserver 进程中可以启动多个子线程去接受 trainer 的数据,这样单个子线程的长度就不会溢出了。但是这个值不可以调的过大,因为增加这个值,对性能尤其是内存占用有一定的开销,另外稀疏更新的端口如果太大的话,很容易导致某一个参数服务器没有分配到任何参数。
详细的说明可以参考,使用 `集群训练Paddle`_ 。
.. _PyDataProvider: ../ui/data_provider/pydataprovider2.html
.. _settings: ../../doc/ui/api/trainer_config_helpers/optimizers.html#settings
.. _mixed_layer: ../../doc/ui/api/trainer_config_helpers/layers.html#mixed-layer
.. _masking-gpu: http://www.acceleware.com/blog/cudavisibledevices-masking-gpus
.. _settings: ../../doc/ui/api/trainer_config_helpers/optimizers.html#settings
.. _优化算法: ../../doc/ui/api/trainer_config_helpers/optimizers.html#optimizers
.. _trainer_config_helper: ../../doc/ui/api/trainer_config_helpers/index.html
.. _data_layer: ../../doc/ui/api/trainer_config_helpers/layers.html#data-layer
.. _simple_img_conv_pool: ../../doc/ui/api/trainer_config_helpers/networks.html#simple-img-conv-pool
.. _fc_layer: ../../doc/ui/api/trainer_config_helpers/layers.html#fc-layer
.. _损失函数层: ../../doc/ui/api/trainer_config_helpers/layers.html#cost-layers
.. _评估器: ../../doc/ui/api/trainer_config_helpers/evaluators.html
.. _mixed_layer: ../../doc/ui/api/trainer_config_helpers/layers.html#mixed-layer
.. _集群训练Paddle: ../cluster/index.html
......@@ -267,4 +267,21 @@ PaddlePaddle的参数使用名字 :code:`name` 作为参数的ID,相同名字
obj="process",
args={"src_dict_path": src_dict_path})
完整源码可参考 `seqToseq <https://github.com/PaddlePaddle/Paddle/tree/develop/demo/seqToseq>`_ 示例。
\ No newline at end of file
完整源码可参考 `seqToseq <https://github.com/PaddlePaddle/Paddle/tree/develop/demo/seqToseq>`_ 示例。
11. 如何指定GPU设备
-------------------
例如机器上有4块GPU,编号从0开始,指定使用2、3号GPU:
* 方式1:通过 `CUDA_VISIBLE_DEVICES <http://www.acceleware.com/blog/cudavisibledevices-masking-gpus>`_ 环境变量来指定特定的GPU。
.. code-block:: bash
env CUDA_VISIBLE_DEVICES=2,3 paddle train --use_gpu=true --trainer_count=2
* 方式2:通过命令行参数 ``--gpu_id`` 指定。
.. code-block:: bash
paddle train --use_gpu=true --trainer_count=2 --gpu_id=2
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册