Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
9252e8fa
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
9252e8fa
编写于
6月 27, 2019
作者:
S
Sylwester Fraczek
提交者:
Tao Luo
6月 27, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add int8 mkldnn prior_box (#17242)
add prior_box quantization code add scale algo rules for prior box test=develop
上级
5fd68ac1
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
180 addition
and
23 deletion
+180
-23
paddle/fluid/framework/ir/graph_pattern_detector.cc
paddle/fluid/framework/ir/graph_pattern_detector.cc
+25
-0
paddle/fluid/framework/ir/graph_pattern_detector.h
paddle/fluid/framework/ir/graph_pattern_detector.h
+17
-0
paddle/fluid/framework/ir/mkldnn/cpu_quantize_pass.cc
paddle/fluid/framework/ir/mkldnn/cpu_quantize_pass.cc
+40
-0
paddle/fluid/framework/ir/mkldnn/cpu_quantize_pass.h
paddle/fluid/framework/ir/mkldnn/cpu_quantize_pass.h
+2
-0
paddle/fluid/inference/api/mkldnn_quantizer_config.cc
paddle/fluid/inference/api/mkldnn_quantizer_config.cc
+5
-0
paddle/fluid/operators/detection/prior_box_op.cc
paddle/fluid/operators/detection/prior_box_op.cc
+69
-4
paddle/fluid/operators/detection/prior_box_op.h
paddle/fluid/operators/detection/prior_box_op.h
+22
-19
未找到文件。
paddle/fluid/framework/ir/graph_pattern_detector.cc
浏览文件 @
9252e8fa
...
@@ -1265,6 +1265,31 @@ PDNode *patterns::ConvConcatReLU::operator()() {
...
@@ -1265,6 +1265,31 @@ PDNode *patterns::ConvConcatReLU::operator()() {
return
relu_out
;
return
relu_out
;
}
}
PDNode
*
patterns
::
PriorBox
::
operator
()()
{
auto
prior_box_op
=
pattern
->
NewNode
(
prior_box_op_repr
())
->
assert_is_op
(
"prior_box"
);
auto
input_var
=
pattern
->
NewNode
(
prior_box_input_repr
())
->
AsInput
()
->
assert_is_op_input
(
"prior_box"
,
"Input"
);
auto
image_var
=
pattern
->
NewNode
(
prior_box_image_repr
())
->
AsInput
()
->
assert_is_op_input
(
"prior_box"
,
"Image"
);
auto
boxes_var
=
pattern
->
NewNode
(
prior_box_boxes_repr
())
->
AsOutput
()
->
assert_is_op_output
(
"prior_box"
,
"Boxes"
);
auto
variances_var
=
pattern
->
NewNode
(
prior_box_variances_repr
())
->
AsOutput
()
->
assert_is_op_output
(
"prior_box"
,
"Variances"
);
prior_box_op
->
LinksFrom
({
input_var
,
image_var
})
.
LinksTo
({
boxes_var
,
variances_var
});
return
boxes_var
;
}
std
::
unordered_set
<
std
::
string
>
conv_act_set
({
"identity"
,
"relu"
});
std
::
unordered_set
<
std
::
string
>
conv_act_set
({
"identity"
,
"relu"
});
PDNode
*
patterns
::
ConvElementwiseaddAct
::
operator
()(
PDNode
*
conv_in
)
{
PDNode
*
patterns
::
ConvElementwiseaddAct
::
operator
()(
PDNode
*
conv_in
)
{
...
...
paddle/fluid/framework/ir/graph_pattern_detector.h
浏览文件 @
9252e8fa
...
@@ -793,6 +793,23 @@ struct ConvConcatReLU : public PatternBase {
...
@@ -793,6 +793,23 @@ struct ConvConcatReLU : public PatternBase {
PATTERN_DECL_NODE
(
relu_out
);
PATTERN_DECL_NODE
(
relu_out
);
};
};
// PriorBox operator
// operator: prior_box_op
// inputs: prior_box_input, prior_box_image
// outputs: prior_box_boxes, prior_box_variances
struct
PriorBox
:
public
PatternBase
{
PriorBox
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
)
:
PatternBase
(
pattern
,
name_scope
,
"PriorBox"
)
{}
PDNode
*
operator
()();
PATTERN_DECL_NODE
(
prior_box_op
);
PATTERN_DECL_NODE
(
prior_box_input
);
PATTERN_DECL_NODE
(
prior_box_image
);
PATTERN_DECL_NODE
(
prior_box_boxes
);
PATTERN_DECL_NODE
(
prior_box_variances
);
};
// Conv + ElementwiseAdd + an activation
// Conv + ElementwiseAdd + an activation
// This pattern can futher fuse the conv related ops after the conv+bn fusion.
// This pattern can futher fuse the conv related ops after the conv+bn fusion.
struct
ConvElementwiseaddAct
:
public
PatternBase
{
struct
ConvElementwiseaddAct
:
public
PatternBase
{
...
...
paddle/fluid/framework/ir/mkldnn/cpu_quantize_pass.cc
浏览文件 @
9252e8fa
...
@@ -306,6 +306,45 @@ void CPUQuantizePass::QuantizeConcat(Graph* graph) const {
...
@@ -306,6 +306,45 @@ void CPUQuantizePass::QuantizeConcat(Graph* graph) const {
PrettyLogDetail
(
"--- quantized %d concat ops"
,
quantize_concat_count
);
PrettyLogDetail
(
"--- quantized %d concat ops"
,
quantize_concat_count
);
}
}
void
CPUQuantizePass
::
QuantizePriorBox
(
Graph
*
graph
)
const
{
GraphPatternDetector
gpd
;
auto
pattern
=
gpd
.
mutable_pattern
();
patterns
::
PriorBox
prior_box_pattern
{
pattern
,
name_scope_
};
prior_box_pattern
();
int
quantize_prior_box_count
=
0
;
auto
handler
=
[
&
](
const
GraphPatternDetector
::
subgraph_t
&
subgraph
,
Graph
*
g
)
{
VLOG
(
4
)
<<
"Quantize prior_box op"
;
GET_IR_NODE_FROM_SUBGRAPH
(
prior_box_op
,
prior_box_op
,
prior_box_pattern
);
auto
*
prior_box_op_desc
=
prior_box_op
->
Op
();
// skip if should not be quantized
if
(
!
prior_box_op_desc
->
HasAttr
(
"use_quantizer"
)
||
!
boost
::
get
<
bool
>
(
prior_box_op_desc
->
GetAttr
(
"use_quantizer"
)))
return
;
GET_IR_NODE_FROM_SUBGRAPH
(
prior_box_input
,
prior_box_input
,
prior_box_pattern
);
// get scales calculated after warmup, they scale variables to MAX=1.0
auto
scales
=
Get
<
VarQuantScale
>
(
"quant_var_scales"
);
auto
input_scale
=
scales
[
prior_box_input
->
Name
()].
second
.
data
<
double
>
()[
0
];
bool
is_input_unsigned
=
scales
[
prior_box_input
->
Name
()].
first
;
QuantizeInput
(
g
,
prior_box_op
,
prior_box_input
,
"Input"
,
input_scale
,
is_input_unsigned
);
++
quantize_prior_box_count
;
};
gpd
(
graph
,
handler
);
AddStatis
(
quantize_prior_box_count
);
PrettyLogDetail
(
"--- quantized %d prior_box ops"
,
quantize_prior_box_count
);
}
void
CPUQuantizePass
::
ApplyImpl
(
ir
::
Graph
*
graph
)
const
{
void
CPUQuantizePass
::
ApplyImpl
(
ir
::
Graph
*
graph
)
const
{
VLOG
(
3
)
<<
"Quantizing the graph."
;
VLOG
(
3
)
<<
"Quantizing the graph."
;
PADDLE_ENFORCE
(
graph
);
PADDLE_ENFORCE
(
graph
);
...
@@ -317,6 +356,7 @@ void CPUQuantizePass::ApplyImpl(ir::Graph* graph) const {
...
@@ -317,6 +356,7 @@ void CPUQuantizePass::ApplyImpl(ir::Graph* graph) const {
QuantizeConv
(
graph
,
true
/* with_residual_data */
);
QuantizeConv
(
graph
,
true
/* with_residual_data */
);
QuantizePool
(
graph
);
QuantizePool
(
graph
);
QuantizeConcat
(
graph
);
QuantizeConcat
(
graph
);
QuantizePriorBox
(
graph
);
}
}
}
// namespace ir
}
// namespace ir
...
...
paddle/fluid/framework/ir/mkldnn/cpu_quantize_pass.h
浏览文件 @
9252e8fa
...
@@ -50,6 +50,8 @@ class CPUQuantizePass : public FusePassBase {
...
@@ -50,6 +50,8 @@ class CPUQuantizePass : public FusePassBase {
void
QuantizeConcat
(
Graph
*
graph
)
const
;
void
QuantizeConcat
(
Graph
*
graph
)
const
;
void
QuantizePriorBox
(
Graph
*
graph
)
const
;
void
QuantizeInput
(
Graph
*
g
,
Node
*
op
,
Node
*
input
,
std
::
string
input_name
,
void
QuantizeInput
(
Graph
*
g
,
Node
*
op
,
Node
*
input
,
std
::
string
input_name
,
double
scale_to_one
,
bool
is_unsigned
,
double
scale_to_one
,
bool
is_unsigned
,
std
::
string
scale_attr_name
=
""
)
const
;
std
::
string
scale_attr_name
=
""
)
const
;
...
...
paddle/fluid/inference/api/mkldnn_quantizer_config.cc
浏览文件 @
9252e8fa
...
@@ -29,6 +29,11 @@ MkldnnQuantizerConfig::MkldnnQuantizerConfig() {
...
@@ -29,6 +29,11 @@ MkldnnQuantizerConfig::MkldnnQuantizerConfig() {
rules_
[
"concat"
][
"X"
]
=
ScaleAlgo
::
KL
;
rules_
[
"concat"
][
"X"
]
=
ScaleAlgo
::
KL
;
rules_
[
"concat"
][
"Out"
]
=
ScaleAlgo
::
KL
;
rules_
[
"concat"
][
"Out"
]
=
ScaleAlgo
::
KL
;
rules_
[
"prior_box"
][
"Input"
]
=
ScaleAlgo
::
KL
;
rules_
[
"prior_box"
][
"Image"
]
=
ScaleAlgo
::
NONE
;
rules_
[
"prior_box"
][
"Boxes"
]
=
ScaleAlgo
::
NONE
;
rules_
[
"prior_box"
][
"Variances"
]
=
ScaleAlgo
::
NONE
;
}
}
ScaleAlgo
MkldnnQuantizerConfig
::
scale_algo
(
ScaleAlgo
MkldnnQuantizerConfig
::
scale_algo
(
...
...
paddle/fluid/operators/detection/prior_box_op.cc
浏览文件 @
9252e8fa
...
@@ -14,6 +14,10 @@ limitations under the License. */
...
@@ -14,6 +14,10 @@ limitations under the License. */
#include "paddle/fluid/operators/detection/prior_box_op.h"
#include "paddle/fluid/operators/detection/prior_box_op.h"
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
namespace
paddle
{
namespace
paddle
{
namespace
operators
{
namespace
operators
{
...
@@ -71,8 +75,30 @@ class PriorBoxOp : public framework::OperatorWithKernel {
...
@@ -71,8 +75,30 @@ class PriorBoxOp : public framework::OperatorWithKernel {
protected:
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
auto
input_input_type
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Input"
)
->
type
();
ctx
.
Input
<
framework
::
Tensor
>
(
"Input"
)
->
type
(),
ctx
.
device_context
());
framework
::
LibraryType
library_
{
framework
::
LibraryType
::
kPlain
};
framework
::
DataLayout
layout_
=
framework
::
DataLayout
::
kAnyLayout
;
#ifdef PADDLE_WITH_MKLDNN
if
(
library_
==
framework
::
LibraryType
::
kPlain
&&
platform
::
CanMKLDNNBeUsed
(
ctx
))
{
library_
=
framework
::
LibraryType
::
kMKLDNN
;
layout_
=
framework
::
DataLayout
::
kMKLDNN
;
auto
input_image_type
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Image"
)
->
type
();
int
customized_type_value
=
framework
::
OpKernelType
::
kDefaultCustomizedTypeValue
;
if
(
input_image_type
==
framework
::
DataTypeTrait
<
float
>::
DataType
)
{
customized_type_value
=
kPriorBoxFLOAT
;
}
else
if
(
input_image_type
==
framework
::
DataTypeTrait
<
double
>::
DataType
)
{
customized_type_value
=
kPriorBoxDOUBLE
;
}
return
framework
::
OpKernelType
(
input_input_type
,
ctx
.
GetPlace
(),
layout_
,
library_
,
customized_type_value
);
}
#endif
return
framework
::
OpKernelType
(
input_input_type
,
ctx
.
GetPlace
(),
layout_
,
library_
);
}
}
};
};
...
@@ -155,6 +181,15 @@ class PriorBoxOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -155,6 +181,15 @@ class PriorBoxOpMaker : public framework::OpProtoAndCheckerMaker {
"Please note, this order affects the weights order of convolution layer"
"Please note, this order affects the weights order of convolution layer"
"followed by and does not affect the final detection results."
)
"followed by and does not affect the final detection results."
)
.
SetDefault
(
false
);
.
SetDefault
(
false
);
AddAttr
<
bool
>
(
"use_mkldnn"
,
"(bool, default false) Only used in mkldnn kernel"
)
.
SetDefault
(
false
);
AddAttr
<
bool
>
(
"use_quantizer"
,
"(bool, default false) "
"Set to true for operators that should be quantized and use "
"int8 kernel. "
"Only used on CPU."
)
.
SetDefault
(
false
);
AddComment
(
R"DOC(
AddComment
(
R"DOC(
Prior box operator
Prior box operator
Generate prior boxes for SSD(Single Shot MultiBox Detector) algorithm.
Generate prior boxes for SSD(Single Shot MultiBox Detector) algorithm.
...
@@ -176,5 +211,35 @@ namespace ops = paddle::operators;
...
@@ -176,5 +211,35 @@ namespace ops = paddle::operators;
REGISTER_OPERATOR
(
prior_box
,
ops
::
PriorBoxOp
,
ops
::
PriorBoxOpMaker
,
REGISTER_OPERATOR
(
prior_box
,
ops
::
PriorBoxOp
,
ops
::
PriorBoxOpMaker
,
paddle
::
framework
::
EmptyGradOpMaker
);
paddle
::
framework
::
EmptyGradOpMaker
);
REGISTER_OP_CPU_KERNEL
(
prior_box
,
ops
::
PriorBoxOpKernel
<
float
>
,
REGISTER_OP_CPU_KERNEL
(
prior_box
,
ops
::
PriorBoxOpKernel
<
float
,
float
>
,
ops
::
PriorBoxOpKernel
<
double
>
);
ops
::
PriorBoxOpKernel
<
double
,
double
>
);
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE
(
prior_box
,
MKLDNN
,
::
paddle
::
platform
::
CPUPlace
,
FF
,
ops
::
kPriorBoxFLOAT
,
ops
::
PriorBoxOpKernel
<
float
,
float
>
);
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE
(
prior_box
,
MKLDNN
,
::
paddle
::
platform
::
CPUPlace
,
DD
,
ops
::
kPriorBoxDOUBLE
,
ops
::
PriorBoxOpKernel
<
double
,
double
>
);
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE
(
prior_box
,
MKLDNN
,
::
paddle
::
platform
::
CPUPlace
,
U8F
,
ops
::
kPriorBoxFLOAT
,
ops
::
PriorBoxOpKernel
<
uint8_t
,
float
>
);
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE
(
prior_box
,
MKLDNN
,
::
paddle
::
platform
::
CPUPlace
,
S8F
,
ops
::
kPriorBoxFLOAT
,
ops
::
PriorBoxOpKernel
<
int8_t
,
float
>
);
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE
(
prior_box
,
MKLDNN
,
::
paddle
::
platform
::
CPUPlace
,
U8D
,
ops
::
kPriorBoxDOUBLE
,
ops
::
PriorBoxOpKernel
<
uint8_t
,
double
>
);
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE
(
prior_box
,
MKLDNN
,
::
paddle
::
platform
::
CPUPlace
,
S8D
,
ops
::
kPriorBoxDOUBLE
,
ops
::
PriorBoxOpKernel
<
int8_t
,
double
>
);
paddle/fluid/operators/detection/prior_box_op.h
浏览文件 @
9252e8fa
...
@@ -22,6 +22,9 @@ limitations under the License. */
...
@@ -22,6 +22,9 @@ limitations under the License. */
namespace
paddle
{
namespace
paddle
{
namespace
operators
{
namespace
operators
{
constexpr
int
kPriorBoxFLOAT
=
1
;
constexpr
int
kPriorBoxDOUBLE
=
2
;
inline
void
ExpandAspectRatios
(
const
std
::
vector
<
float
>&
input_aspect_ratior
,
inline
void
ExpandAspectRatios
(
const
std
::
vector
<
float
>&
input_aspect_ratior
,
bool
flip
,
bool
flip
,
std
::
vector
<
float
>*
output_aspect_ratior
)
{
std
::
vector
<
float
>*
output_aspect_ratior
)
{
...
@@ -46,7 +49,7 @@ inline void ExpandAspectRatios(const std::vector<float>& input_aspect_ratior,
...
@@ -46,7 +49,7 @@ inline void ExpandAspectRatios(const std::vector<float>& input_aspect_ratior,
}
}
}
}
template
<
typename
T
>
template
<
typename
T
,
typename
K
>
class
PriorBoxOpKernel
:
public
framework
::
OpKernel
<
T
>
{
class
PriorBoxOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
...
@@ -67,9 +70,9 @@ class PriorBoxOpKernel : public framework::OpKernel<T> {
...
@@ -67,9 +70,9 @@ class PriorBoxOpKernel : public framework::OpKernel<T> {
std
::
vector
<
float
>
aspect_ratios
;
std
::
vector
<
float
>
aspect_ratios
;
ExpandAspectRatios
(
input_aspect_ratio
,
flip
,
&
aspect_ratios
);
ExpandAspectRatios
(
input_aspect_ratio
,
flip
,
&
aspect_ratios
);
T
step_w
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"step_w"
));
K
step_w
=
static_cast
<
K
>
(
ctx
.
Attr
<
float
>
(
"step_w"
));
T
step_h
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"step_h"
));
K
step_h
=
static_cast
<
K
>
(
ctx
.
Attr
<
float
>
(
"step_h"
));
T
offset
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"offset"
));
K
offset
=
static_cast
<
K
>
(
ctx
.
Attr
<
float
>
(
"offset"
));
auto
img_width
=
image
->
dims
()[
3
];
auto
img_width
=
image
->
dims
()[
3
];
auto
img_height
=
image
->
dims
()[
2
];
auto
img_height
=
image
->
dims
()[
2
];
...
@@ -77,10 +80,10 @@ class PriorBoxOpKernel : public framework::OpKernel<T> {
...
@@ -77,10 +80,10 @@ class PriorBoxOpKernel : public framework::OpKernel<T> {
auto
feature_width
=
input
->
dims
()[
3
];
auto
feature_width
=
input
->
dims
()[
3
];
auto
feature_height
=
input
->
dims
()[
2
];
auto
feature_height
=
input
->
dims
()[
2
];
T
step_width
,
step_height
;
K
step_width
,
step_height
;
if
(
step_w
==
0
||
step_h
==
0
)
{
if
(
step_w
==
0
||
step_h
==
0
)
{
step_width
=
static_cast
<
T
>
(
img_width
)
/
feature_width
;
step_width
=
static_cast
<
K
>
(
img_width
)
/
feature_width
;
step_height
=
static_cast
<
T
>
(
img_height
)
/
feature_height
;
step_height
=
static_cast
<
K
>
(
img_height
)
/
feature_height
;
}
else
{
}
else
{
step_width
=
step_w
;
step_width
=
step_w
;
step_height
=
step_h
;
step_height
=
step_h
;
...
@@ -91,15 +94,15 @@ class PriorBoxOpKernel : public framework::OpKernel<T> {
...
@@ -91,15 +94,15 @@ class PriorBoxOpKernel : public framework::OpKernel<T> {
num_priors
+=
max_sizes
.
size
();
num_priors
+=
max_sizes
.
size
();
}
}
boxes
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
boxes
->
mutable_data
<
K
>
(
ctx
.
GetPlace
());
vars
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
vars
->
mutable_data
<
K
>
(
ctx
.
GetPlace
());
T
*
b_t
=
boxes
->
data
<
T
>
();
K
*
b_t
=
boxes
->
data
<
K
>
();
for
(
int
h
=
0
;
h
<
feature_height
;
++
h
)
{
for
(
int
h
=
0
;
h
<
feature_height
;
++
h
)
{
for
(
int
w
=
0
;
w
<
feature_width
;
++
w
)
{
for
(
int
w
=
0
;
w
<
feature_width
;
++
w
)
{
T
center_x
=
(
w
+
offset
)
*
step_width
;
K
center_x
=
(
w
+
offset
)
*
step_width
;
T
center_y
=
(
h
+
offset
)
*
step_height
;
K
center_y
=
(
h
+
offset
)
*
step_height
;
T
box_width
,
box_height
;
K
box_width
,
box_height
;
for
(
size_t
s
=
0
;
s
<
min_sizes
.
size
();
++
s
)
{
for
(
size_t
s
=
0
;
s
<
min_sizes
.
size
();
++
s
)
{
auto
min_size
=
min_sizes
[
s
];
auto
min_size
=
min_sizes
[
s
];
if
(
min_max_aspect_ratios_order
)
{
if
(
min_max_aspect_ratios_order
)
{
...
@@ -161,17 +164,17 @@ class PriorBoxOpKernel : public framework::OpKernel<T> {
...
@@ -161,17 +164,17 @@ class PriorBoxOpKernel : public framework::OpKernel<T> {
}
}
if
(
clip
)
{
if
(
clip
)
{
T
*
dt
=
boxes
->
data
<
T
>
();
K
*
dt
=
boxes
->
data
<
K
>
();
std
::
transform
(
dt
,
dt
+
boxes
->
numel
(),
dt
,
[](
T
v
)
->
T
{
std
::
transform
(
dt
,
dt
+
boxes
->
numel
(),
dt
,
[](
K
v
)
->
K
{
return
std
::
min
<
T
>
(
std
::
max
<
T
>
(
v
,
0.
),
1.
);
return
std
::
min
<
K
>
(
std
::
max
<
K
>
(
v
,
0.
),
1.
);
});
});
}
}
framework
::
Tensor
var_t
;
framework
::
Tensor
var_t
;
var_t
.
mutable_data
<
T
>
(
var_t
.
mutable_data
<
K
>
(
framework
::
make_ddim
({
1
,
static_cast
<
int
>
(
variances
.
size
())}),
framework
::
make_ddim
({
1
,
static_cast
<
int
>
(
variances
.
size
())}),
ctx
.
GetPlace
());
ctx
.
GetPlace
());
auto
var_et
=
framework
::
EigenTensor
<
T
,
2
>::
From
(
var_t
);
auto
var_et
=
framework
::
EigenTensor
<
K
,
2
>::
From
(
var_t
);
#ifdef PADDLE_WITH_MKLML
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for
#pragma omp parallel for
...
@@ -184,7 +187,7 @@ class PriorBoxOpKernel : public framework::OpKernel<T> {
...
@@ -184,7 +187,7 @@ class PriorBoxOpKernel : public framework::OpKernel<T> {
auto
var_dim
=
vars
->
dims
();
auto
var_dim
=
vars
->
dims
();
vars
->
Resize
({
box_num
,
static_cast
<
int
>
(
variances
.
size
())});
vars
->
Resize
({
box_num
,
static_cast
<
int
>
(
variances
.
size
())});
auto
e_vars
=
framework
::
EigenMatrix
<
T
,
Eigen
::
RowMajor
>::
From
(
*
vars
);
auto
e_vars
=
framework
::
EigenMatrix
<
K
,
Eigen
::
RowMajor
>::
From
(
*
vars
);
#ifdef PADDLE_WITH_MKLML
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for collapse(2)
#pragma omp parallel for collapse(2)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录