未验证 提交 9246b93c 编写于 作者: S Sanbu 提交者: GitHub

Support static graph code-gen for temporal_shift (#52686)

上级 cb6de765
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/temporal_shift_op.h"
#include <memory>
#include <string>
#include <vector>
#include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/infermeta/unary.h"
namespace paddle {
namespace operators {
class TemporalShiftOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
phi::KernelKey GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
return phi::KernelKey(OperatorWithKernel::IndicateVarDataType(ctx, "X"),
ctx.GetPlace());
}
};
class TemporalShiftOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("X",
"The input tensor of temporal shift operator. "
"This is a 4-D tensor with shape of [N*T, C, H, W] "
"or [N*T, H, W, C]. "
"While N is the batch size, T is the temporal segment "
"number, C is the channel number, H is the height of "
"features and W is the width of features. "
"The data type is float16, float32 and float64");
AddOutput("Out",
"The output tensor of temporal shift operator. "
"This is a 4-D tensor in the same shape with Input(X).");
AddAttr<int>("seg_num",
"The temporal segment number, this should be a positive "
"integer.");
AddAttr<float>(
"shift_ratio",
"The shift ratio of the channels, the first :attr:`shift_ratio` part "
"of channels will be shifted by -1 along the temporal dimension, "
"and the second :attr:`shift_ratio` part of channels will be shifted "
"by 1 along the temporal dimension. :attr:`shift_ratio` should be in "
"range [0, 0.5]. Default 0.25.")
.SetDefault(0.25);
AddAttr<std::string>(
"data_format",
"(string, default NCHW) Only used in "
"an optional string from: \"NHWC\", \"NCHW\". "
"Specify that the data format of the input and output data is "
"channel_first or channel_last.")
.SetDefault("NCHW");
AddComment(R"DOC(
This operator calculates the temporal shifting features for Input(X).
Input(X) should be in shape of [N*T, C, H, W] or [N*T, H, W, C], while
N is the batch size, T is the temporal segment number specified by
:attr:`seg_num`, C is the channel number, H and W is the height and
width of features.
Temporal Shifting is calculated as follows when data format is NCHW:
Step 1: Reshape Input(X) to [N, T, C, H, W].
Step 2: Pad 0 to reshaping result in the 2nd(T) dimension with
padding width as 1 on each side, padding result will be in shape
of [N, T+2, C, H, W].
Step 3: Assume :attr:`shift_ratio` is :math:`1/4`, slice padding
result as follows:
$$
slice1 = x[:, :T, :C/4, :, :]
$$
$$
slice2 = x[:, 2:T+2, C/4:C/2, :, :]
$$
$$
slice3 = x[:, 1:T+1, C/2:, :, :]
$$
Step 4: Concatenate three slices along the 3rd(C) dimension and
reshape result to [N*T, C, H, W].
For details of temporal shifting, please refer to paper:
`Temporal Shift Module <http://arxiv.org/abs/1811.08383>`_ .
)DOC");
}
};
class TemporalShiftOpGrad : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(framework::InferShapeContext* ctx) const override {
if (ctx->HasOutput(framework::GradVarName("X"))) {
ctx->SetOutputDim(framework::GradVarName("X"),
ctx->GetInputDim(framework::GradVarName("Out")));
}
}
phi::KernelKey GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
return phi::KernelKey(OperatorWithKernel::IndicateVarDataType(
ctx, framework::GradVarName("Out")),
ctx.GetPlace());
}
};
template <typename T>
class TemporalShiftGradOpMaker : public framework::SingleGradOpMaker<T> {
public:
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
protected:
void Apply(GradOpPtr<T> op) const override {
op->SetType("temporal_shift_grad");
op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
op->SetAttrMap(this->Attrs());
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
DECLARE_INFER_SHAPE_FUNCTOR(temporal_shift,
TemporalShiftInferShapeFunctor,
PD_INFER_META(phi::TemporalShiftInferMeta));
REGISTER_OPERATOR(temporal_shift,
ops::TemporalShiftOp,
ops::TemporalShiftOpMaker,
ops::TemporalShiftGradOpMaker<paddle::framework::OpDesc>,
ops::TemporalShiftGradOpMaker<paddle::imperative::OpBase>,
TemporalShiftInferShapeFunctor);
REGISTER_OPERATOR(temporal_shift_grad, ops::TemporalShiftOpGrad);
REGISTER_OP_CPU_KERNEL(temporal_shift,
ops::TemporalShiftKernel<float>,
ops::TemporalShiftKernel<double>);
REGISTER_OP_CPU_KERNEL(temporal_shift_grad,
ops::TemporalShiftGradKernel<float>,
ops::TemporalShiftGradKernel<double>);
...@@ -1863,6 +1863,17 @@ ...@@ -1863,6 +1863,17 @@
inplace : (grad_x_grad_forward -> grad_out_forward_grad) inplace : (grad_x_grad_forward -> grad_out_forward_grad)
optional : grad_out_new_grad, grad_out_grad_grad optional : grad_out_new_grad, grad_out_grad_grad
- backward_op : temporal_shift_grad
forward : temporal_shift(Tensor x, int seg_num, float shift_ratio = 0.25f, str data_format = "NCHW") -> Tensor(out)
args : (Tensor out_grad, int seg_num, float shift_ratio, str data_format)
output : Tensor(x_grad)
infer_meta :
func : UnchangedInferMeta
param : [out_grad]
kernel :
func : temporal_shift_grad
data_type : out_grad
- backward_op : thresholded_relu_grad - backward_op : thresholded_relu_grad
forward : thresholded_relu (Tensor x, float threshold) -> Tensor(out) forward : thresholded_relu (Tensor x, float threshold) -> Tensor(out)
args : (Tensor x, Tensor out_grad, float threshold) args : (Tensor x, Tensor out_grad, float threshold)
......
...@@ -1031,16 +1031,6 @@ ...@@ -1031,16 +1031,6 @@
data_type : out_grad data_type : out_grad
optional : reserve_space optional : reserve_space
- backward_op : temporal_shift_grad
forward : temporal_shift(Tensor x, int seg_num, float shift_ratio, str data_format_str) -> Tensor(out)
args : (Tensor out_grad, int seg_num, float shift_ratio, str data_format_str)
output : Tensor(x_grad)
infer_meta :
func : UnchangedInferMeta
param : [out_grad]
kernel :
func : temporal_shift_grad
- backward_op : tile_double_grad - backward_op : tile_double_grad
forward : tile_grad (Tensor x, Tensor grad_out, IntArray repeat_times) -> Tensor(grad_x) forward : tile_grad (Tensor x, Tensor grad_out, IntArray repeat_times) -> Tensor(grad_x)
args : (Tensor grad_x_grad, IntArray repeat_times) args : (Tensor grad_x_grad, IntArray repeat_times)
......
...@@ -1229,15 +1229,6 @@ ...@@ -1229,15 +1229,6 @@
backward : sync_batch_norm_grad backward : sync_batch_norm_grad
inplace : (mean -> mean_out), (variance -> variance_out) inplace : (mean -> mean_out), (variance -> variance_out)
- op : temporal_shift
args : (Tensor x, int seg_num, float shift_ratio, str data_format_str)
output : Tensor
infer_meta :
func : TemporalShiftInferMeta
kernel :
func : temporal_shift
backward : temporal_shift_grad
- op : tile - op : tile
args : (Tensor x, IntArray repeat_times = {}) args : (Tensor x, IntArray repeat_times = {})
output : Tensor(out) output : Tensor(out)
......
...@@ -2347,3 +2347,10 @@ ...@@ -2347,3 +2347,10 @@
x : X x : X
outputs : outputs :
out : Out out : Out
- op: temporal_shift
backward: temporal_shift_grad
inputs :
x : X
outputs :
out : Out
...@@ -1885,6 +1885,16 @@ ...@@ -1885,6 +1885,16 @@
func : tanh_shrink func : tanh_shrink
backward : tanh_shrink_grad backward : tanh_shrink_grad
- op : temporal_shift
args : (Tensor x, int seg_num, float shift_ratio = 0.25f, str data_format = "NCHW")
output : Tensor(out)
infer_meta :
func : TemporalShiftInferMeta
kernel :
func : temporal_shift
data_type : x
backward : temporal_shift_grad
- op : thresholded_relu - op : thresholded_relu
args : (Tensor x, float threshold = 1.0) args : (Tensor x, float threshold = 1.0)
output : Tensor output : Tensor
......
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/core/compat/op_utils.h"
namespace phi {
KernelSignature TemporalShiftOpArgumentMapping(
const ArgumentMappingContext& ctx) {
return KernelSignature("temporal_shift",
{"X"},
{"seg_num", "shift_ratio", "data_format"},
{"Out"});
}
KernelSignature TemporalShiftGradOpArgumentMapping(
const ArgumentMappingContext& ctx) {
return KernelSignature("temporal_shift_grad",
{"Out@GRAD"},
{"seg_num", "shift_ratio", "data_format"},
{"X@GRAD"});
}
} // namespace phi
PD_REGISTER_ARG_MAPPING_FN(temporal_shift, phi::TemporalShiftOpArgumentMapping);
PD_REGISTER_ARG_MAPPING_FN(temporal_shift_grad,
phi::TemporalShiftGradOpArgumentMapping);
...@@ -28,7 +28,6 @@ from ...fluid.framework import in_dygraph_mode ...@@ -28,7 +28,6 @@ from ...fluid.framework import in_dygraph_mode
from ...fluid.layer_helper import LayerHelper from ...fluid.layer_helper import LayerHelper
from ...framework import convert_np_dtype_to_dtype_, core from ...framework import convert_np_dtype_to_dtype_, core
from ...tensor.creation import assign from ...tensor.creation import assign
from ...tensor.layer_function_generator import templatedoc
__all__ = [] __all__ = []
...@@ -338,13 +337,44 @@ def gather_tree(ids, parents): ...@@ -338,13 +337,44 @@ def gather_tree(ids, parents):
return out return out
@templatedoc()
def temporal_shift(x, seg_num, shift_ratio=0.25, name=None, data_format="NCHW"): def temporal_shift(x, seg_num, shift_ratio=0.25, name=None, data_format="NCHW"):
""" """
**Temporal Shift Operator** **Temporal Shift Operator**
${comment} Calculate the temporal shifting features for Input(X).
Input(X) should be in shape of [N*T, C, H, W] or [N*T, H, W, C], while
N is the batch size, T is the temporal segment number specified by
:attr:`seg_num`, C is the channel number, H and W is the height and
width of features.
Temporal Shifting is calculated as follows when data format is NCHW:
Step 1: Reshape Input(X) to [N, T, C, H, W].
Step 2: Pad 0 to reshaping result in the 2nd(T) dimension with
padding width as 1 on each side, padding result will be in shape
of [N, T+2, C, H, W].
Step 3: Assume :attr:`shift_ratio` is :math:`1/4`, slice padding
result as follows:
$$
slice1 = x[:, :T, :C/4, :, :]
$$
$$
slice2 = x[:, 2:T+2, C/4:C/2, :, :]
$$
$$
slice3 = x[:, 1:T+1, C/2:, :, :]
$$
Step 4: Concatenate three slices along the 3rd(C) dimension and
reshape result to [N*T, C, H, W].
For details of temporal shifting, please refer to paper:
`Temporal Shift Module <http://arxiv.org/abs/1811.08383>`_ .
Args: Args:
x(Tensor): ${x_comment} x(Tensor): ${x_comment}
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册