Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
922f0868
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
922f0868
编写于
12月 19, 2022
作者:
Z
zhangyikun02
提交者:
GitHub
12月 19, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add diag_v2 op for xpu, test=kunlun (#49088)
上级
b50dbe0b
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
390 addition
and
1 deletion
+390
-1
cmake/external/xpu.cmake
cmake/external/xpu.cmake
+1
-1
paddle/phi/backends/xpu/xpu2_op_list.cc
paddle/phi/backends/xpu/xpu2_op_list.cc
+5
-0
paddle/phi/kernels/xpu/diag_kernel.cc
paddle/phi/kernels/xpu/diag_kernel.cc
+60
-0
python/paddle/fluid/tests/unittests/xpu/test_diag_v2_op_xpu.py
...n/paddle/fluid/tests/unittests/xpu/test_diag_v2_op_xpu.py
+324
-0
未找到文件。
cmake/external/xpu.cmake
浏览文件 @
922f0868
...
...
@@ -10,7 +10,7 @@ set(XPU_RT_LIB_NAME "libxpurt.so")
if
(
NOT DEFINED XPU_BASE_URL
)
set
(
XPU_BASE_URL_WITHOUT_DATE
"https://baidu-kunlun-product.su.bcebos.com/KL-SDK/klsdk-dev"
)
set
(
XPU_BASE_URL
"
${
XPU_BASE_URL_WITHOUT_DATE
}
/202212
01
"
)
set
(
XPU_BASE_URL
"
${
XPU_BASE_URL_WITHOUT_DATE
}
/202212
15
"
)
else
()
set
(
XPU_BASE_URL
"
${
XPU_BASE_URL
}
"
)
endif
()
...
...
paddle/phi/backends/xpu/xpu2_op_list.cc
浏览文件 @
922f0868
...
...
@@ -122,6 +122,11 @@ XPUOpMap& get_kl2_ops() {
{
"deformable_conv"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
})},
{
"depthwise_conv2d_grad"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
})},
{
"depthwise_conv2d"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
})},
{
"diag_v2"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
,
phi
::
DataType
::
FLOAT16
,
phi
::
DataType
::
INT32
,
phi
::
DataType
::
INT64
})},
{
"dropout_grad"
,
XPUKernelSet
({
phi
::
DataType
::
FLOAT32
,
phi
::
DataType
::
FLOAT16
})},
{
"dropout"
,
...
...
paddle/phi/kernels/xpu/diag_kernel.cc
0 → 100644
浏览文件 @
922f0868
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/diag_kernel.h"
#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "paddle/phi/backends/xpu/xpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
DiagKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
int
offset
,
float
padding_value
,
DenseTensor
*
out
)
{
using
XPUType
=
typename
XPUTypeTrait
<
T
>::
Type
;
auto
*
x_data
=
reinterpret_cast
<
const
XPUType
*>
(
x
.
data
<
T
>
());
dev_ctx
.
template
Alloc
<
T
>(
out
);
auto
*
out_data
=
reinterpret_cast
<
XPUType
*>
(
out
->
data
<
T
>
());
auto
x_shape
=
vectorize
<
int
>
(
x
.
dims
());
auto
out_shape
=
vectorize
<
int
>
(
out
->
dims
());
if
(
x
.
dims
().
size
()
==
0
)
{
x_shape
=
std
::
vector
<
int
>
({
1
});
}
int
r
=
xpu
::
diag
<
XPUType
>
(
dev_ctx
.
x_context
(),
x_data
,
out_data
,
x_shape
,
out_shape
,
offset
,
padding_value
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"diag"
);
}
}
// namespace phi
PD_REGISTER_KERNEL
(
diag
,
XPU
,
ALL_LAYOUT
,
phi
::
DiagKernel
,
phi
::
dtype
::
float16
,
int
,
float
,
int64_t
)
{}
python/paddle/fluid/tests/unittests/xpu/test_diag_v2_op_xpu.py
0 → 100644
浏览文件 @
922f0868
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
sys
import
unittest
sys
.
path
.
append
(
".."
)
import
numpy
as
np
from
op_test_xpu
import
XPUOpTest
from
xpu.get_test_cover_info
import
(
XPUOpTestWrapper
,
create_test_class
,
get_xpu_op_support_types
,
)
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid
import
Program
,
program_guard
from
paddle.fluid.framework
import
_test_eager_guard
paddle
.
enable_static
()
class
XPUTestDiagV2Op
(
XPUOpTestWrapper
):
def
__init__
(
self
):
self
.
op_name
=
'diag_v2'
self
.
use_dynamic_create_class
=
False
class
TestDiagV2Op
(
XPUOpTest
):
def
setUp
(
self
):
self
.
op_type
=
"diag_v2"
self
.
dtype
=
self
.
in_type
self
.
place
=
paddle
.
XPUPlace
(
0
)
self
.
python_api
=
paddle
.
diag
self
.
x
=
np
.
random
.
rand
(
10
,
10
).
astype
(
self
.
dtype
)
self
.
offset
=
0
self
.
padding_value
=
0.0
self
.
out
=
np
.
diag
(
self
.
x
,
self
.
offset
)
self
.
init_config
()
self
.
inputs
=
{
'X'
:
self
.
x
}
self
.
attrs
=
{
'offset'
:
self
.
offset
,
'padding_value'
:
self
.
padding_value
,
}
self
.
outputs
=
{
'Out'
:
self
.
out
}
def
test_check_output
(
self
):
paddle
.
enable_static
()
self
.
check_output
(
check_eager
=
False
)
def
test_check_grad
(
self
):
paddle
.
enable_static
()
self
.
check_grad
([
'X'
],
'Out'
,
check_eager
=
False
)
def
init_config
(
self
):
pass
class
TestDiagV2OpCase1
(
TestDiagV2Op
):
def
init_config
(
self
):
self
.
offset
=
1
self
.
out
=
np
.
diag
(
self
.
x
,
self
.
offset
)
class
TestDiagV2OpCase2
(
TestDiagV2Op
):
def
init_config
(
self
):
self
.
offset
=
-
1
self
.
out
=
np
.
diag
(
self
.
x
,
self
.
offset
)
class
TestDiagV2OpCase3
(
TestDiagV2Op
):
def
init_config
(
self
):
self
.
x
=
np
.
random
.
rand
(
100
).
astype
(
self
.
dtype
)
self
.
padding_value
=
2
n
=
self
.
x
.
size
self
.
out
=
(
self
.
padding_value
*
np
.
ones
((
n
,
n
))
+
np
.
diag
(
self
.
x
,
self
.
offset
)
-
np
.
diag
(
self
.
padding_value
*
np
.
ones
(
n
))
)
class
TestDiagV2Error
(
unittest
.
TestCase
):
def
test_errors
(
self
):
paddle
.
enable_static
()
with
program_guard
(
Program
(),
Program
()):
def
test_diag_v2_type
():
x
=
[
1
,
2
,
3
]
output
=
paddle
.
diag
(
x
)
self
.
assertRaises
(
TypeError
,
test_diag_v2_type
)
x
=
paddle
.
static
.
data
(
'data'
,
[
3
,
3
])
self
.
assertRaises
(
TypeError
,
paddle
.
diag
,
x
,
offset
=
2.5
)
self
.
assertRaises
(
TypeError
,
paddle
.
diag
,
x
,
padding_value
=
[
9
])
x
=
paddle
.
static
.
data
(
'data2'
,
[
3
,
3
,
3
])
self
.
assertRaises
(
ValueError
,
paddle
.
diag
,
x
)
class
TestDiagV2API
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
dtype
=
self
.
in_type
self
.
input_np
=
np
.
random
.
random
(
size
=
(
10
,
10
)).
astype
(
self
.
dtype
)
self
.
expected0
=
np
.
diag
(
self
.
input_np
)
self
.
expected1
=
np
.
diag
(
self
.
input_np
,
k
=
1
)
self
.
expected2
=
np
.
diag
(
self
.
input_np
,
k
=-
1
)
self
.
input_np2
=
np
.
random
.
rand
(
100
).
astype
(
self
.
dtype
)
self
.
offset
=
0
self
.
padding_value
=
8
n
=
self
.
input_np2
.
size
self
.
expected3
=
(
self
.
padding_value
*
np
.
ones
((
n
,
n
))
+
np
.
diag
(
self
.
input_np2
,
self
.
offset
)
-
np
.
diag
(
self
.
padding_value
*
np
.
ones
(
n
))
)
self
.
input_np3
=
np
.
random
.
randint
(
-
10
,
10
,
size
=
(
100
)).
astype
(
self
.
dtype
)
self
.
padding_value
=
8.0
n
=
self
.
input_np3
.
size
self
.
expected4
=
(
self
.
padding_value
*
np
.
ones
((
n
,
n
))
+
np
.
diag
(
self
.
input_np3
,
self
.
offset
)
-
np
.
diag
(
self
.
padding_value
*
np
.
ones
(
n
))
)
self
.
padding_value
=
-
8
self
.
expected5
=
(
self
.
padding_value
*
np
.
ones
((
n
,
n
))
+
np
.
diag
(
self
.
input_np3
,
self
.
offset
)
-
np
.
diag
(
self
.
padding_value
*
np
.
ones
(
n
))
)
self
.
input_np4
=
np
.
random
.
random
(
size
=
(
2000
,
2000
)).
astype
(
self
.
dtype
)
self
.
expected6
=
np
.
diag
(
self
.
input_np4
)
self
.
expected7
=
np
.
diag
(
self
.
input_np4
,
k
=
1
)
self
.
expected8
=
np
.
diag
(
self
.
input_np4
,
k
=-
1
)
self
.
input_np5
=
np
.
random
.
random
(
size
=
(
2000
)).
astype
(
self
.
dtype
)
self
.
expected9
=
np
.
diag
(
self
.
input_np5
)
self
.
expected10
=
np
.
diag
(
self
.
input_np5
,
k
=
1
)
self
.
expected11
=
np
.
diag
(
self
.
input_np5
,
k
=-
1
)
self
.
input_np6
=
np
.
random
.
random
(
size
=
(
2000
,
1500
)).
astype
(
self
.
dtype
)
self
.
expected12
=
np
.
diag
(
self
.
input_np6
,
k
=-
1
)
def
run_imperative
(
self
):
x
=
paddle
.
to_tensor
(
self
.
input_np
)
y
=
paddle
.
diag
(
x
)
np
.
testing
.
assert_allclose
(
y
.
numpy
(),
self
.
expected0
,
rtol
=
1e-05
)
y
=
paddle
.
diag
(
x
,
offset
=
1
)
np
.
testing
.
assert_allclose
(
y
.
numpy
(),
self
.
expected1
,
rtol
=
1e-05
)
y
=
paddle
.
diag
(
x
,
offset
=-
1
)
np
.
testing
.
assert_allclose
(
y
.
numpy
(),
self
.
expected2
,
rtol
=
1e-05
)
x
=
paddle
.
to_tensor
(
self
.
input_np2
)
y
=
paddle
.
diag
(
x
,
padding_value
=
8
)
np
.
testing
.
assert_allclose
(
y
.
numpy
(),
self
.
expected3
,
rtol
=
1e-05
)
x
=
paddle
.
to_tensor
(
self
.
input_np3
)
y
=
paddle
.
diag
(
x
,
padding_value
=
8.0
)
np
.
testing
.
assert_allclose
(
y
.
numpy
(),
self
.
expected4
,
rtol
=
1e-05
)
y
=
paddle
.
diag
(
x
,
padding_value
=-
8
)
np
.
testing
.
assert_allclose
(
y
.
numpy
(),
self
.
expected5
,
rtol
=
1e-05
)
x
=
paddle
.
to_tensor
(
self
.
input_np4
)
y
=
paddle
.
diag
(
x
)
np
.
testing
.
assert_allclose
(
y
.
numpy
(),
self
.
expected6
,
rtol
=
1e-05
)
y
=
paddle
.
diag
(
x
,
offset
=
1
)
np
.
testing
.
assert_allclose
(
y
.
numpy
(),
self
.
expected7
,
rtol
=
1e-05
)
y
=
paddle
.
diag
(
x
,
offset
=-
1
)
np
.
testing
.
assert_allclose
(
y
.
numpy
(),
self
.
expected8
,
rtol
=
1e-05
)
x
=
paddle
.
to_tensor
(
self
.
input_np5
)
y
=
paddle
.
diag
(
x
)
np
.
testing
.
assert_allclose
(
y
.
numpy
(),
self
.
expected9
,
rtol
=
1e-05
)
y
=
paddle
.
diag
(
x
,
offset
=
1
)
np
.
testing
.
assert_allclose
(
y
.
numpy
(),
self
.
expected10
,
rtol
=
1e-05
)
y
=
paddle
.
diag
(
x
,
offset
=-
1
)
np
.
testing
.
assert_allclose
(
y
.
numpy
(),
self
.
expected11
,
rtol
=
1e-05
)
x
=
paddle
.
to_tensor
(
self
.
input_np6
)
y
=
paddle
.
diag
(
x
,
offset
=-
1
)
np
.
testing
.
assert_allclose
(
y
.
numpy
(),
self
.
expected12
,
rtol
=
1e-05
)
def
run_static
(
self
,
use_gpu
=
False
):
if
self
.
dtype
==
np
.
float16
:
return
np
.
random
.
seed
(
1024
)
x
=
paddle
.
static
.
data
(
name
=
'input'
,
shape
=
[
10
,
10
],
dtype
=
self
.
dtype
)
x2
=
paddle
.
static
.
data
(
name
=
'input2'
,
shape
=
[
100
],
dtype
=
self
.
dtype
)
x3
=
paddle
.
static
.
data
(
name
=
'input3'
,
shape
=
[
100
],
dtype
=
self
.
dtype
)
x4
=
paddle
.
static
.
data
(
name
=
'input4'
,
shape
=
[
2000
,
2000
],
dtype
=
self
.
dtype
)
x5
=
paddle
.
static
.
data
(
name
=
'input5'
,
shape
=
[
2000
],
dtype
=
self
.
dtype
)
x6
=
paddle
.
static
.
data
(
name
=
'input6'
,
shape
=
[
2000
,
1500
],
dtype
=
self
.
dtype
)
result0
=
paddle
.
diag
(
x
)
result1
=
paddle
.
diag
(
x
,
offset
=
1
)
result2
=
paddle
.
diag
(
x
,
offset
=-
1
)
result3
=
paddle
.
diag
(
x
,
name
=
'aaa'
)
result4
=
paddle
.
diag
(
x2
,
padding_value
=
8
)
result5
=
paddle
.
diag
(
x3
,
padding_value
=
8.0
)
result6
=
paddle
.
diag
(
x3
,
padding_value
=-
8
)
result7
=
paddle
.
diag
(
x4
)
result8
=
paddle
.
diag
(
x4
,
offset
=
1
)
result9
=
paddle
.
diag
(
x4
,
offset
=-
1
)
result10
=
paddle
.
diag
(
x5
)
result11
=
paddle
.
diag
(
x5
,
offset
=
1
)
result12
=
paddle
.
diag
(
x5
,
offset
=-
1
)
result13
=
paddle
.
diag
(
x6
,
offset
=-
1
)
place
=
fluid
.
XPUPlace
(
0
)
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
fluid
.
default_startup_program
())
(
res0
,
res1
,
res2
,
res4
,
res5
,
res6
,
res7
,
res8
,
res9
,
res10
,
res11
,
res12
,
res13
,
)
=
exe
.
run
(
feed
=
{
"input"
:
self
.
input_np
,
"input2"
:
self
.
input_np2
,
'input3'
:
self
.
input_np3
,
'input4'
:
self
.
input_np4
,
'input5'
:
self
.
input_np5
,
'input6'
:
self
.
input_np6
,
},
fetch_list
=
[
result0
,
result1
,
result2
,
result4
,
result5
,
result6
,
result7
,
result8
,
result9
,
result10
,
result11
,
result12
,
result13
,
],
)
np
.
testing
.
assert_allclose
(
res0
,
self
.
expected0
,
rtol
=
1e-05
)
np
.
testing
.
assert_allclose
(
res1
,
self
.
expected1
,
rtol
=
1e-05
)
np
.
testing
.
assert_allclose
(
res2
,
self
.
expected2
,
rtol
=
1e-05
)
self
.
assertTrue
(
'aaa'
in
result3
.
name
)
np
.
testing
.
assert_allclose
(
res4
,
self
.
expected3
,
rtol
=
1e-05
)
np
.
testing
.
assert_allclose
(
res5
,
self
.
expected4
,
rtol
=
1e-05
)
np
.
testing
.
assert_allclose
(
res6
,
self
.
expected5
,
rtol
=
1e-05
)
np
.
testing
.
assert_allclose
(
res7
,
self
.
expected6
,
rtol
=
1e-05
)
np
.
testing
.
assert_allclose
(
res8
,
self
.
expected7
,
rtol
=
1e-05
)
np
.
testing
.
assert_allclose
(
res9
,
self
.
expected8
,
rtol
=
1e-05
)
np
.
testing
.
assert_allclose
(
res10
,
self
.
expected9
,
rtol
=
1e-05
)
np
.
testing
.
assert_allclose
(
res11
,
self
.
expected10
,
rtol
=
1e-05
)
np
.
testing
.
assert_allclose
(
res12
,
self
.
expected11
,
rtol
=
1e-05
)
np
.
testing
.
assert_allclose
(
res13
,
self
.
expected12
,
rtol
=
1e-05
)
def
test_xpu
(
self
):
paddle
.
disable_static
(
place
=
paddle
.
fluid
.
XPUPlace
(
0
))
self
.
run_imperative
()
with
_test_eager_guard
():
self
.
run_imperative
()
paddle
.
enable_static
()
with
fluid
.
program_guard
(
fluid
.
Program
()):
self
.
run_static
()
support_types
=
get_xpu_op_support_types
(
'diag_v2'
)
for
stype
in
support_types
:
create_test_class
(
globals
(),
XPUTestDiagV2Op
,
stype
)
if
__name__
==
"__main__"
:
paddle
.
enable_static
()
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录