未验证 提交 9215ad96 编写于 作者: S Steffy-zxf 提交者: GitHub

Update code examples for api2.0

Update code examples for api2.0 
上级 1d95a0fb
...@@ -8670,10 +8670,6 @@ def random_crop(x, shape, seed=None): ...@@ -8670,10 +8670,6 @@ def random_crop(x, shape, seed=None):
def log(x, name=None): def log(x, name=None):
""" """
:alias_main: paddle.log
:alias: paddle.log,paddle.tensor.log,paddle.tensor.math.log
:old_api: paddle.fluid.layers.log
Calculates the natural log of the given input tensor, element-wise. Calculates the natural log of the given input tensor, element-wise.
.. math:: .. math::
...@@ -8681,31 +8677,23 @@ def log(x, name=None): ...@@ -8681,31 +8677,23 @@ def log(x, name=None):
Out = \\ln(x) Out = \\ln(x)
Args: Args:
x (Variable): Input LoDTensor or Tensor. Must be one of the following types: float32, float64. x (Tensor): Input Tensor. Must be one of the following types: float32, float64.
name (str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` name (str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
Returns: Returns:
Variable: The natural log of the input LoDTensor or Tensor computed element-wise. Tensor: The natural log of the input Tensor computed element-wise.
Examples: Examples:
.. code-block:: python .. code-block:: python
import paddle.fluid as fluid import paddle
import numpy as np
# Graph Organizing
x = fluid.layers.data(name="x", shape=[1], dtype="float32")
res = fluid.layers.log(x)
# Create an executor using CPU as an example
exe = fluid.Executor(fluid.CPUPlace())
# Execute x = [[2,3,4], [7,8,9]]
x_i = np.array([[1], [2]]).astype(np.float32) x = paddle.to_tensor(x, dtype='float32')
res_val, = exe.run(fluid.default_main_program(), feed={'x':x_i}, fetch_list=[res]) res = paddle.log(x)
print(res_val) # [[0.], [0.6931472]] # [[0.693147, 1.09861, 1.38629], [1.94591, 2.07944, 2.19722]]
""" """
if in_dygraph_mode(): if in_dygraph_mode():
return core.ops.log(x) return core.ops.log(x)
...@@ -8846,33 +8834,36 @@ def mean_iou(input, label, num_classes): ...@@ -8846,33 +8834,36 @@ def mean_iou(input, label, num_classes):
Parameters: Parameters:
input (Variable): A n-D Tensor of prediction results for semantic labels with type int32 or int64. input (Tensor): A n-D Tensor of prediction results for semantic labels with type int32 or int64.
label (Variable): A Tensor of ground truth labels with type int32 or int64. label (Tensor): A Tensor of ground truth labels with type int32 or int64.
Its shape should be the same as input. Its shape should be the same as input.
num_classes (int32): The possible number of labels. num_classes (int32): The possible number of labels.
Returns: Returns:
Three Variables. Three Tensors.
- mean_iou(Variable) : A 1-D Tensor representing the mean intersection-over-union with shape [1]. \ - mean_iou(Tensor) : A 1-D Tensor representing the mean intersection-over-union with shape [1]. \
Data type is float32. Data type is float32.
- out_wrong(Variable) : A 1-D Tensor with shape [num_classes]. Data type is int32. \ - out_wrong(Tensor) : A 1-D Tensor with shape [num_classes]. Data type is int32. \
The wrong numbers of each class. The wrong numbers of each class.
- out_correct(Variable): A 1-D Tensor with shape [num_classes]. Data type is int32. The correct numbers of each class. - out_correct(Tensor): A 1-D Tensor with shape [num_classes]. Data type is int32. The correct numbers of each class.
Examples: Examples:
.. code-block:: python .. code-block:: python
import paddle.fluid as fluid import paddle
iou_shape = [None, 32, 32]
iou_shape = [64, 32, 32]
num_classes = 5 num_classes = 5
predict = fluid.data(name='predict', shape=iou_shape, dtype='int64') predict = paddle.randint(low=0, high=255, shape=iou_shape, dtype='int64')
label = fluid.data(name='label', shape=iou_shape, dtype='int64') label = paddle.randint(low=0, high=255, shape=iou_shape, dtype='int64')
mean_iou, out_wrong, out_correct = fluid.layers.mean_iou(predict, label, mean_iou, out_wrong, out_correct = paddle.metric.mean_iou(predict, label, num_classes)
num_classes)
""" """
if in_dygraph_mode():
return core.ops.mean_iou(input, label, 'num_classes', num_classes)
helper = LayerHelper('mean_iou', **locals()) helper = LayerHelper('mean_iou', **locals())
check_variable_and_dtype(input, 'Predictions', ['int32', 'int64'], check_variable_and_dtype(input, 'Predictions', ['int32', 'int64'],
'mean_iou') 'mean_iou')
...@@ -11387,10 +11378,6 @@ def _elementwise_op(helper): ...@@ -11387,10 +11378,6 @@ def _elementwise_op(helper):
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None): def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
""" """
:alias_main: paddle.scale
:alias: paddle.scale,paddle.tensor.scale,paddle.tensor.math.scale
:old_api: paddle.fluid.layers.scale
Scale operator. Scale operator.
Putting scale and bias to the input Tensor as following: Putting scale and bias to the input Tensor as following:
...@@ -11406,52 +11393,33 @@ def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None): ...@@ -11406,52 +11393,33 @@ def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
Out=scale*(X+bias) Out=scale*(X+bias)
Args: Args:
x(Variable): Input N-D Tensor of scale operator. Data type can be float32, float64, int8, int16, int32, int64, uint8. x(Tensor): Input N-D Tensor of scale operator. Data type can be float32, float64, int8, int16, int32, int64, uint8.
scale(float|Variable): The scale factor of the input, it should be a float number or a Variable with shape [1] and data type as float32. scale(float|Tensor): The scale factor of the input, it should be a float number or a Tensor with shape [1] and data type as float32.
bias(float): The bias to be put on the input. bias(float): The bias to be put on the input.
bias_after_scale(bool): Apply bias addition after or before scaling. It is useful for numeric stability in some circumstances. bias_after_scale(bool): Apply bias addition after or before scaling. It is useful for numeric stability in some circumstances.
act(str, optional): Activation applied to the output such as tanh, softmax, sigmoid, relu. act(str, optional): Activation applied to the output such as tanh, softmax, sigmoid, relu.
name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
Returns: Returns:
Variable(Tensor|LoDTensor): Output tensor of scale operator, with shape and data type same as input. Tensor: Output tensor of scale operator, with shape and data type same as input.
Examples: Examples:
.. code-block:: python .. code-block:: python
# scale as a float32 number
import paddle
import paddle.fluid as fluid data = paddle.randn(shape=[2,3], dtype='float32')
import numpy as np res = paddle.scale(data, scale=2.0, bias=1.0)
inputs = fluid.layers.data(name="x", shape=[2, 3], dtype='float32')
output = fluid.layers.scale(inputs, scale = 2.0, bias = 1.0)
exe = fluid.Executor(fluid.CPUPlace())
exe.run(fluid.default_startup_program())
img = np.array([[1, 2, 3], [4, 5, 6]]).astype(np.float32)
res = exe.run(fluid.default_main_program(), feed={'x':img}, fetch_list=[output])
print(res) # [array([[ 3., 5., 7.], [ 9., 11., 13.]], dtype=float32)]
.. code-block:: python .. code-block:: python
# scale with parameter scale as Variable # scale with parameter scale as a Tensor
import paddle.fluid as fluid import paddle
import numpy as np
inputs = fluid.layers.data(name="x", shape=[2, 3], dtype='float32')
scale = fluid.layers.data(name="scale", shape=[1], dtype='float32',
append_batch_size=False)
output = fluid.layers.scale(inputs, scale = scale, bias = 1.0)
exe = fluid.Executor(fluid.CPUPlace())
exe.run(fluid.default_startup_program())
img = np.array([[1, 2, 3], [4, 5, 6]]).astype(np.float32)
scale_np = np.array([2.]).astype(np.float32)
res = exe.run(fluid.default_main_program(), feed={'x':img, 'scale':scale_np}, fetch_list=[output]) data = paddle.randn(shape=[2, 3], dtype='float32')
print(res) # [array([[ 3., 5., 7.], [ 9., 11., 13.]], dtype=float32)] factor = paddle.to_tensor([2], dtype='float32')
res = paddle.scale(data, scale=factor, bias=1.0)
""" """
......
...@@ -190,11 +190,9 @@ Examples: ...@@ -190,11 +190,9 @@ Examples:
.. code-block:: python .. code-block:: python
import paddle import paddle
paddle.disable_static()
x = paddle.to_tensor([0.1, 0.2, 0.3, 0.4]) x = paddle.to_tensor([0.1, 0.2, 0.3, 0.4])
out = paddle.rsqrt(x) out = paddle.rsqrt(x)
print(out.numpy())
# [3.16227766 2.23606798 1.82574186 1.58113883] # [3.16227766 2.23606798 1.82574186 1.58113883]
""") """)
......
...@@ -1237,26 +1237,26 @@ def load_combine(out, file_path): ...@@ -1237,26 +1237,26 @@ def load_combine(out, file_path):
def has_inf(x): def has_inf(x):
""" """
:alias_main: paddle.has_inf
:alias: paddle.has_inf,paddle.tensor.has_inf,paddle.tensor.search.has_inf
:old_api: paddle.fluid.layers.has_inf
Test if any of x contains an infinity number Test if any of x contains an infinity number
Args: Args:
x (Variable): The Tensor/LoDTensor to be checked. x (Tensor): The Tensor to be checked.
Returns: Returns:
Variable: The tensor variable storing the output, only a bool value, indicating that whether there is infinity number in x or not. Tensor: The tensor storing the output, only a bool value, indicating that whether there is infinity number in x or not.
Examples: Examples:
.. code-block:: python .. code-block:: python
import paddle.fluid as fluid import paddle
data = fluid.layers.data(name="input", shape=[4, 32, 32], dtype="float32") data = paddle.randn(shape=[4, 32, 32], dtype="float32")
res = fluid.layers.has_inf(data) res = paddle.has_inf(data)
# [False]
""" """
if in_dygraph_mode():
return core.ops.isinf(x)
check_type(x, 'x', (Variable), 'has_inf') check_type(x, 'x', (Variable), 'has_inf')
helper = LayerHelper("isinf", **locals()) helper = LayerHelper("isinf", **locals())
out = helper.create_variable_for_type_inference(dtype=x.dtype) out = helper.create_variable_for_type_inference(dtype=x.dtype)
...@@ -1266,26 +1266,26 @@ def has_inf(x): ...@@ -1266,26 +1266,26 @@ def has_inf(x):
def has_nan(x): def has_nan(x):
""" """
:alias_main: paddle.has_nan
:alias: paddle.has_nan,paddle.tensor.has_nan,paddle.tensor.search.has_nan
:old_api: paddle.fluid.layers.has_nan
Test if any of x contains a NAN Test if any of x contains a NAN
Args: Args:
x (Variable): The Tensor/LoDTensor to be checked. x (Tensor): The Tensor to be checked.
Returns: Returns:
Variable: The tensor variable storing the output, only a bool value, indicating that whether there is NAN in x or not. Tensor: The tensor variable storing the output, only a bool value, indicating that whether there is NAN in x or not.
Examples: Examples:
.. code-block:: python .. code-block:: python
import paddle.fluid as fluid import paddle
data = fluid.layers.data(name="input", shape=[4, 32, 32], dtype="float32") data = paddle.randn(shape=[2,3], dtype="float32")
res = fluid.layers.has_nan(data) res = paddle.has_nan(data)
# [False]
""" """
if in_dygraph_mode():
return core.ops.isnan(x)
check_type(x, 'x', (Variable), 'has_nan') check_type(x, 'x', (Variable), 'has_nan')
helper = LayerHelper("isnan", **locals()) helper = LayerHelper("isnan", **locals())
out = helper.create_variable_for_type_inference(dtype=x.dtype) out = helper.create_variable_for_type_inference(dtype=x.dtype)
......
...@@ -14,6 +14,7 @@ ...@@ -14,6 +14,7 @@
import unittest import unittest
import numpy as np import numpy as np
import paddle
import paddle.fluid as fluid import paddle.fluid as fluid
import paddle.fluid.core as core import paddle.fluid.core as core
from op_test import OpTest from op_test import OpTest
...@@ -132,6 +133,14 @@ class BadInputTest(unittest.TestCase): ...@@ -132,6 +133,14 @@ class BadInputTest(unittest.TestCase):
self.assertRaises(TypeError, test_has_nan_bad_x) self.assertRaises(TypeError, test_has_nan_bad_x)
with fluid.dygraph.guard():
data = paddle.zeros([2, 3])
result = paddle.has_inf(data)
expect_value = np.array([False])
self.assertEqual((result.numpy() == expect_value).all(), True)
result = paddle.has_nan(data)
self.assertEqual((result.numpy() == expect_value).all(), True)
if __name__ == '__main__': if __name__ == '__main__':
unittest.main() unittest.main()
...@@ -1308,33 +1308,25 @@ def min(x, axis=None, keepdim=False, name=None): ...@@ -1308,33 +1308,25 @@ def min(x, axis=None, keepdim=False, name=None):
def log1p(x, name=None): def log1p(x, name=None):
""" """
:alias_main: paddle.log1p
:alias: paddle.log1p,paddle.tensor.log1p,paddle.tensor.math.log1p
Calculates the natural log of the given input tensor, element-wise. Calculates the natural log of the given input tensor, element-wise.
.. math:: .. math::
Out = \\ln(x+1) Out = \\ln(x+1)
Args: Args:
x (Variable): Input LoDTensor or Tensor. Must be one of the following types: float32, float64. x (Tensor): Input Tensor. Must be one of the following types: float32, float64.
name(str, optional): The default value is None. Normally there is no need for name(str, optional): The default value is None. Normally there is no need for
user to set this property. For more information, please refer to :ref:`api_guide_Name` user to set this property. For more information, please refer to :ref:`api_guide_Name`
Returns: Returns:
Variable: The natural log of the input LoDTensor or Tensor computed element-wise. Tensor, the natural log of the input Tensor computed element-wise.
Examples: Examples:
.. code-block:: python .. code-block:: python
import paddle import paddle
import paddle.fluid as fluid
import numpy as np data = paddle.to_tensor([[0], [1]], dtype='float32')
# Graph Organizing res = paddle.log1p(data)
x = fluid.data(name="x", shape=[2,1], dtype="float32") # [[0.], [0.6931472]]
res = paddle.log1p(x)
# Create an executor using CPU as an example
exe = fluid.Executor(fluid.CPUPlace())
# Execute
x_i = np.array([[0], [1]]).astype(np.float32)
res_val, = exe.run(fluid.default_main_program(), feed={'x':x_i}, fetch_list=[res])
print(res_val) # [[0.], [0.6931472]]
""" """
if in_dygraph_mode(): if in_dygraph_mode():
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册