提交 91f98315 编写于 作者: S seiriosPlus

add UT

上级 ae90249d
...@@ -31,7 +31,6 @@ from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler.distribu ...@@ -31,7 +31,6 @@ from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler.distribu
class TestCommunicator(unittest.TestCase): class TestCommunicator(unittest.TestCase):
def net(self): def net(self):
x = fluid.layers.data(name='x', shape=[1], dtype='float32') x = fluid.layers.data(name='x', shape=[1], dtype='float32')
# y_predict = fluid.layers.fc(input=x, size=1, act=None)
y = fluid.layers.data(name='y', shape=[1], dtype='float32') y = fluid.layers.data(name='y', shape=[1], dtype='float32')
cost = fluid.layers.square_error_cost(input=x, label=y) cost = fluid.layers.square_error_cost(input=x, label=y)
......
...@@ -28,9 +28,7 @@ import paddle.distributed.fleet as fleet ...@@ -28,9 +28,7 @@ import paddle.distributed.fleet as fleet
class TestCommunicator(unittest.TestCase): class TestCommunicator(unittest.TestCase):
def net(self): def net(self):
x = fluid.layers.data(name='x', shape=[1], dtype='float32') x = fluid.layers.data(name='x', shape=[1], dtype='float32')
# y_predict = fluid.layers.fc(input=x, size=1, act=None)
y = fluid.layers.data(name='y', shape=[1], dtype='float32') y = fluid.layers.data(name='y', shape=[1], dtype='float32')
cost = fluid.layers.square_error_cost(input=x, label=y) cost = fluid.layers.square_error_cost(input=x, label=y)
avg_cost = fluid.layers.mean(cost) avg_cost = fluid.layers.mean(cost)
return avg_cost return avg_cost
......
...@@ -42,16 +42,11 @@ class TestFleetGradientMergeMetaOptimizer(unittest.TestCase): ...@@ -42,16 +42,11 @@ class TestFleetGradientMergeMetaOptimizer(unittest.TestCase):
paddle.fluid.framework.switch_startup_program(startup_program) paddle.fluid.framework.switch_startup_program(startup_program)
fleet.init(role_maker.PaddleCloudRoleMaker()) fleet.init(role_maker.PaddleCloudRoleMaker())
input_x = paddle.fluid.layers.data(
name="x", shape=[32], dtype='float32')
input_y = paddle.fluid.layers.data(name="y", shape=[1], dtype='int64')
fc_1 = paddle.fluid.layers.fc(input=input_x, size=64, act='tanh') x = paddle.fluid.layers.data(name='x', shape=[1], dtype='float32')
fc_2 = paddle.fluid.layers.fc(input=fc_1, size=64, act='tanh') y = paddle.fluid.layers.data(name='y', shape=[1], dtype='float32')
prediction = paddle.fluid.layers.fc(input=[fc_2], size=2, act='softmax') cost = paddle.fluid.layers.square_error_cost(input=x, label=y)
cost = paddle.fluid.layers.cross_entropy( avg_cost = paddle.fluid.layers.mean(cost)
input=prediction, label=input_y)
avg_cost = paddle.fluid.layers.mean(x=cost)
strategy = paddle.distributed.fleet.DistributedStrategy() strategy = paddle.distributed.fleet.DistributedStrategy()
strategy.a_sync = True strategy.a_sync = True
......
...@@ -34,16 +34,11 @@ class TestFleetGradientMergeMetaOptimizer(unittest.TestCase): ...@@ -34,16 +34,11 @@ class TestFleetGradientMergeMetaOptimizer(unittest.TestCase):
def test_gradient_merge_optimizer(self): def test_gradient_merge_optimizer(self):
fleet.init(role_maker.PaddleCloudRoleMaker()) fleet.init(role_maker.PaddleCloudRoleMaker())
input_x = paddle.fluid.layers.data(
name="x", shape=[32], dtype='float32')
input_y = paddle.fluid.layers.data(name="y", shape=[1], dtype='int64')
fc_1 = paddle.fluid.layers.fc(input=input_x, size=64, act='tanh') x = paddle.fluid.layers.data(name='x', shape=[1], dtype='float32')
fc_2 = paddle.fluid.layers.fc(input=fc_1, size=64, act='tanh') y = paddle.fluid.layers.data(name='y', shape=[1], dtype='float32')
prediction = paddle.fluid.layers.fc(input=[fc_2], size=2, act='softmax') cost = paddle.fluid.layers.square_error_cost(input=x, label=y)
cost = paddle.fluid.layers.cross_entropy( avg_cost = paddle.fluid.layers.mean(cost)
input=prediction, label=input_y)
avg_cost = paddle.fluid.layers.mean(x=cost)
strategy = paddle.distributed.fleet.DistributedStrategy() strategy = paddle.distributed.fleet.DistributedStrategy()
strategy.a_sync = False strategy.a_sync = False
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册