Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
9191e743
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
9191e743
编写于
11月 14, 2022
作者:
L
LiYuRio
提交者:
GitHub
11月 14, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
remove heter and hccl (#47918)
上级
05a47f39
变更
10
隐藏空白更改
内联
并排
Showing
10 changed file
with
1 addition
and
1391 deletion
+1
-1391
paddle/fluid/distributed/collective/CMakeLists.txt
paddle/fluid/distributed/collective/CMakeLists.txt
+0
-44
paddle/fluid/distributed/collective/ProcessGroupHCCL.cc
paddle/fluid/distributed/collective/ProcessGroupHCCL.cc
+0
-276
paddle/fluid/distributed/collective/ProcessGroupHCCL.h
paddle/fluid/distributed/collective/ProcessGroupHCCL.h
+0
-131
paddle/fluid/distributed/collective/ProcessGroupHeter.cc
paddle/fluid/distributed/collective/ProcessGroupHeter.cc
+0
-393
paddle/fluid/distributed/collective/ProcessGroupHeter.h
paddle/fluid/distributed/collective/ProcessGroupHeter.h
+0
-140
paddle/fluid/pybind/CMakeLists.txt
paddle/fluid/pybind/CMakeLists.txt
+0
-9
paddle/fluid/pybind/distributed_py.cc
paddle/fluid/pybind/distributed_py.cc
+0
-65
python/paddle/distributed/collective.py
python/paddle/distributed/collective.py
+1
-52
python/paddle/fluid/tests/unittests/npu/process_group_hccl.py
...on/paddle/fluid/tests/unittests/npu/process_group_hccl.py
+0
-253
python/paddle/fluid/tests/unittests/npu/test_collective_process_group_hccl.py
...tests/unittests/npu/test_collective_process_group_hccl.py
+0
-28
未找到文件。
paddle/fluid/distributed/collective/CMakeLists.txt
浏览文件 @
9191e743
...
...
@@ -30,18 +30,6 @@ if(WITH_NCCL OR WITH_RCCL)
device_context
${
DEVICE_EVENT_LIBS
}
dense_tensor
)
if
(
WITH_DISTRIBUTE AND WITH_PSCORE
)
if
(
CMAKE_CXX_COMPILER_VERSION VERSION_GREATER 7.0
)
set
(
DISTRIBUTE_COMPILE_FLAGS
"
${
DISTRIBUTE_COMPILE_FLAGS
}
-faligned-new"
)
set_source_files_properties
(
ProcessGroupHeter.cc PROPERTIES COMPILE_FLAGS
${
DISTRIBUTE_COMPILE_FLAGS
}
)
endif
()
cc_library
(
processgroup_heter
SRCS ProcessGroupHeter.cc NCCLTools.cc Common.cc
DEPS place enforce collective_helper device_context phi_api eager_api
)
endif
()
endif
()
if
(
WITH_XPU_BKCL
)
...
...
@@ -59,38 +47,6 @@ if(WITH_MPI)
DEPS collective_helper device_context
)
endif
()
if
(
WITH_ASCEND_CL
)
cc_library
(
processgroup_hccl
SRCS ProcessGroupHCCL.cc HCCLTools.cc Common.cc
DEPS place
npu_stream
enforce
collective_helper
device_context
phi_api
eager_api
)
if
(
WITH_DISTRIBUTE AND WITH_PSCORE
)
if
(
CMAKE_CXX_COMPILER_VERSION VERSION_GREATER 7.0
)
set
(
DISTRIBUTE_COMPILE_FLAGS
"
${
DISTRIBUTE_COMPILE_FLAGS
}
-faligned-new"
)
set_source_files_properties
(
ProcessGroupHeter.cc PROPERTIES COMPILE_FLAGS
${
DISTRIBUTE_COMPILE_FLAGS
}
)
endif
()
cc_library
(
processgroup_heter
SRCS ProcessGroupHeter.cc HCCLTools.cc Common.cc
DEPS place
npu_stream
enforce
collective_helper
device_context
phi_api
eager_api
)
endif
()
endif
()
if
(
WITH_CUSTOM_DEVICE
)
cc_library
(
processgroup_custom
...
...
paddle/fluid/distributed/collective/ProcessGroupHCCL.cc
已删除
100644 → 0
浏览文件 @
05a47f39
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/distributed/collective/ProcessGroupHCCL.h"
#include "paddle/fluid/distributed/collective/Common.h"
#include "paddle/fluid/distributed/collective/HCCLTools.h"
#include "paddle/fluid/memory/malloc.h"
#include "paddle/fluid/platform/device/npu/hccl_helper.h"
#include "paddle/fluid/platform/device/npu/npu_info.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/phi/api/include/api.h"
#include "paddle/phi/common/place.h"
DECLARE_bool
(
hccl_blocking_wait
);
// DECLARE_bool(use_stream_safe_npu_allocator);
constexpr
int64_t
kWaitBlockTImeout
=
10
;
namespace
paddle
{
namespace
distributed
{
void
SyncDefaultStream
(
const
std
::
vector
<
Place
>&
places
,
std
::
vector
<
NPUEventManager
>&
hcclEvents
,
// NOLINT
std
::
vector
<
std
::
unique_ptr
<
NPUDeviceContext
>>&
dev_ctx
)
{
// NOLINT
for
(
size_t
i
=
0
;
i
<
places
.
size
();
++
i
)
{
auto
*
default_ctx
=
static_cast
<
platform
::
NPUDeviceContext
*>
(
platform
::
DeviceContextPool
::
Instance
().
Get
(
places
[
i
]));
hcclEvents
[
i
].
Record
(
*
dev_ctx
[
i
]);
hcclEvents
[
i
].
Block
(
*
default_ctx
);
}
}
std
::
shared_ptr
<
ProcessGroupHCCL
::
HCCLTask
>
ProcessGroupHCCL
::
CreateTask
(
std
::
vector
<
Place
>
places
,
int
rank
,
CommType
comm_type
,
const
std
::
vector
<
phi
::
DenseTensor
>&
inputs
)
{
return
std
::
make_shared
<
ProcessGroupHCCL
::
HCCLTask
>
(
places
,
rank
,
comm_type
,
inputs
);
}
ProcessGroupHCCL
::
HCCLTask
::
HCCLTask
(
const
std
::
vector
<
Place
>&
places
,
int
rank
,
CommType
CommType
,
const
std
::
vector
<
phi
::
DenseTensor
>&
inputs
)
:
Task
(
rank
,
inputs
,
CommType
),
places_
(
places
)
{
control_events_
.
resize
(
places
.
size
());
hcclComms_
.
resize
(
places
.
size
());
}
ProcessGroupHCCL
::
HCCLTask
::~
HCCLTask
()
{}
void
ProcessGroupHCCL
::
HCCLTask
::
SetOutputs
(
std
::
vector
<
phi
::
DenseTensor
>&
outputs
)
{
// NOLINT
outputs_
=
std
::
make_shared
<
std
::
vector
<
phi
::
DenseTensor
>>
(
outputs
);
}
void
ProcessGroupHCCL
::
HCCLTask
::
SynchronizeStreams
()
{
for
(
size_t
i
=
0
;
i
<
places_
.
size
();
++
i
)
{
auto
*
default_ctx
=
static_cast
<
platform
::
NPUDeviceContext
*>
(
platform
::
DeviceContextPool
::
Instance
().
Get
(
places_
[
i
]));
platform
::
NPUStreamWaitEvent
(
default_ctx
->
stream
(),
control_events_
[
i
].
GetRawNPUEvent
());
}
}
bool
ProcessGroupHCCL
::
HCCLTask
::
IsCompleted
()
{
for
(
size_t
i
=
0
;
i
<
places_
.
size
();
++
i
)
{
if
(
!
control_events_
[
i
].
Query
())
{
return
false
;
}
}
return
true
;
}
// TODO(sandyhouse): Add timeout for wait, now timeout unused
bool
ProcessGroupHCCL
::
HCCLTask
::
Wait
(
std
::
chrono
::
milliseconds
timeout
)
{
SynchronizeStreams
();
// NOTE(sandyhouse): It will block host for sync
while
(
!
IsCompleted
())
{
std
::
this_thread
::
sleep_for
(
std
::
chrono
::
milliseconds
(
kWaitBlockTImeout
));
}
return
true
;
}
// Same as Wait
void
ProcessGroupHCCL
::
HCCLTask
::
Synchronize
()
{
Wait
(
kWaitTimeout
);
}
ProcessGroupHCCL
::
ProcessGroupHCCL
(
const
std
::
shared_ptr
<
Store
>&
store
,
int
rank
,
int
size
,
const
platform
::
Place
&
place
,
int
gid
)
:
ProcessGroup
(
rank
,
size
,
place
,
gid
),
store_
(
store
)
{
platform
::
SetNPUDeviceId
(
place_
.
device
);
}
void
ProcessGroupHCCL
::
BroadcastUniqueHCCLID
(
std
::
vector
<
HcclRootInfo
>&
hccl_ids
)
{
// NOLINT
if
(
rank_
==
0
)
{
for
(
size_t
i
=
0
;
i
<
hccl_ids
.
size
();
i
++
)
{
auto
key
=
"ProcessGroupHCCL/hccl_ids/"
+
std
::
to_string
(
i
);
auto
hccl_id
=
std
::
vector
<
uint8_t
>
(
reinterpret_cast
<
uint8_t
*>
(
&
hccl_ids
[
i
]),
reinterpret_cast
<
uint8_t
*>
(
&
hccl_ids
[
i
])
+
sizeof
(
HcclRootInfo
));
store_
->
set
(
key
,
hccl_id
);
}
}
else
{
for
(
size_t
i
=
0
;
i
<
hccl_ids
.
size
();
i
++
)
{
auto
key
=
"ProcessGroupHCCL/hccl_ids/"
+
std
::
to_string
(
i
);
auto
ret
=
store_
->
get
(
key
);
std
::
memcpy
(
&
hccl_ids
[
i
],
ret
.
data
(),
ret
.
size
());
}
}
}
// create HCCLManager cache for places_key
void
ProcessGroupHCCL
::
CreateHCCLManagerCache
(
const
std
::
string
&
places_key
,
const
std
::
vector
<
Place
>&
places
)
{
PADDLE_ENFORCE_EQ
(
places_key
.
empty
(),
false
,
platform
::
errors
::
PreconditionNotMet
(
"Not able to create/get the HCCL Communicator since "
"the NPU place are not known"
));
std
::
vector
<
std
::
shared_ptr
<
HCCLCommManager
>>
hccl_comms
;
hccl_comms
.
resize
(
places
.
size
());
// using vector just for broadcast
std
::
vector
<
HcclRootInfo
>
hccl_ids
;
hccl_ids
.
resize
(
1
);
auto
&
hccl_id
=
hccl_ids
.
front
();
if
(
rank_
==
0
)
{
PADDLE_ENFORCE_NPU_SUCCESS
(
platform
::
dynload
::
HcclGetRootInfo
(
&
hccl_id
));
}
BroadcastUniqueHCCLID
(
hccl_ids
);
VLOG
(
3
)
<<
"init hccl rank: "
<<
rank_
<<
", nranks: "
<<
size_
<<
", place: "
<<
places_key
<<
", hccl uniqueid: "
<<
SerializeHCCLUniqueId
(
hccl_id
);
std
::
vector
<
std
::
unique_ptr
<
NPUDeviceContext
>>
dev_ctx
;
dev_ctx
.
resize
(
places
.
size
());
std
::
unique_ptr
<
HcclComm
[]
>
comms
(
new
HcclComm
[
places
.
size
()]);
for
(
size_t
i
=
0
;
i
<
places
.
size
();
++
i
)
{
platform
::
NPUDeviceGuard
guard
(
places
[
i
].
GetDeviceId
());
hccl_comms
[
i
]
=
HCCLCommManager
::
Create
(
GetSize
(),
GetRank
(),
&
hccl_id
,
comms
.
get
()
+
i
);
dev_ctx
[
i
].
reset
(
new
NPUDeviceContext
(
places
[
i
]));
}
std
::
vector
<
NPUEventManager
>
events
;
events
.
resize
(
places
.
size
());
// These caches will be useful to process sync/wait/communicate
places_to_events_
.
emplace
(
places_key
,
std
::
move
(
events
));
places_to_hcclcomm_
.
emplace
(
places_key
,
std
::
move
(
hccl_comms
));
places_to_ctx_
.
emplace
(
places_key
,
std
::
move
(
dev_ctx
));
}
template
<
typename
Fn
>
std
::
shared_ptr
<
ProcessGroup
::
Task
>
ProcessGroupHCCL
::
Collective
(
std
::
vector
<
phi
::
DenseTensor
>&
inputs
,
std
::
vector
<
phi
::
DenseTensor
>&
outputs
,
Fn
fn
,
CommType
op_type
)
{
const
auto
places
=
GetPlaceList
(
inputs
);
const
auto
key
=
GetKeyFromPlaces
(
places
);
{
std
::
lock_guard
<
std
::
mutex
>
lock
(
mutex_
);
if
(
places_to_hcclcomm_
.
find
(
key
)
==
places_to_hcclcomm_
.
end
())
{
CreateHCCLManagerCache
(
key
,
places
);
}
}
auto
&
hccl_comms
=
places_to_hcclcomm_
[
key
];
SyncDefaultStream
(
places
,
places_to_events_
[
key
],
places_to_ctx_
[
key
]);
auto
task
=
CreateTask
(
places
,
rank_
,
op_type
,
inputs
);
for
(
size_t
i
=
0
;
i
<
inputs
.
size
();
++
i
)
{
platform
::
NPUDeviceGuard
guard
(
places
[
i
].
GetDeviceId
());
const
auto
&
hccl_stream
=
places_to_ctx_
[
key
][
i
]
->
stream
();
fn
(
inputs
[
i
],
outputs
[
i
],
hccl_comms
[
i
]
->
GetHcclComm
(),
hccl_stream
);
}
for
(
size_t
i
=
0
;
i
<
inputs
.
size
();
++
i
)
{
platform
::
NPUDeviceGuard
guard
(
places
[
i
].
GetDeviceId
());
task
->
control_events_
[
i
].
Record
(
*
places_to_ctx_
[
key
][
i
]);
}
return
task
;
}
std
::
shared_ptr
<
ProcessGroup
::
Task
>
ProcessGroupHCCL
::
AllReduce
(
std
::
vector
<
phi
::
DenseTensor
>&
in_tensors
,
// NOLINT
std
::
vector
<
phi
::
DenseTensor
>&
out_tensors
,
// NOLINT
const
AllreduceOptions
&
opts
)
{
return
Collective
(
in_tensors
,
out_tensors
,
[
&
](
phi
::
DenseTensor
&
input
,
phi
::
DenseTensor
&
output
,
HcclComm
comm
,
const
aclrtStream
&
stream
)
{
return
platform
::
dynload
::
HcclAllReduce
(
input
.
data
(),
output
.
data
(),
input
.
numel
(),
platform
::
ToHCCLDataType
(
input
.
dtype
()),
ToHCCLRedType
(
opts
.
reduce_op
),
comm
,
stream
);
},
CommType
::
ALLREDUCE
);
}
std
::
shared_ptr
<
ProcessGroup
::
Task
>
ProcessGroupHCCL
::
Broadcast
(
std
::
vector
<
phi
::
DenseTensor
>&
in_tensors
,
// NOLINT
std
::
vector
<
phi
::
DenseTensor
>&
out_tensors
,
// NOLINT
const
BroadcastOptions
&
opts
)
{
// PADDLE_ENFORCE_EQ(
// CheckTensorsInNPUPlace(tensors), true,
// platform::errors::InvalidArgument("All inputs should be in
// CudaPlace."));
return
Collective
(
in_tensors
,
out_tensors
,
[
&
](
phi
::
DenseTensor
&
input
,
phi
::
DenseTensor
&
output
,
HcclComm
comm
,
const
aclrtStream
&
stream
)
{
int
root
=
opts
.
source_rank
*
in_tensors
.
size
()
+
opts
.
source_root
;
if
(
rank_
==
root
)
{
return
platform
::
dynload
::
HcclBroadcast
(
input
.
data
(),
input
.
numel
(),
platform
::
ToHCCLDataType
(
input
.
dtype
()),
root
,
comm
,
stream
);
}
else
{
return
platform
::
dynload
::
HcclBroadcast
(
output
.
data
(),
output
.
numel
(),
platform
::
ToHCCLDataType
(
output
.
dtype
()),
root
,
comm
,
stream
);
}
},
CommType
::
BROADCAST
);
}
}
// namespace distributed
}
// namespace paddle
paddle/fluid/distributed/collective/ProcessGroupHCCL.h
已删除
100644 → 0
浏览文件 @
05a47f39
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <chrono>
#include <map>
#include <memory>
#include <string>
#include <unordered_map>
#include <vector>
#include "paddle/fluid/distributed/collective/HCCLTools.h"
#include "paddle/fluid/distributed/collective/ProcessGroup.h"
#include "paddle/fluid/distributed/store/store.h"
#include "paddle/fluid/platform/device/npu/npu_stream.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/gen_comm_id_helper.h"
#include "paddle/fluid/platform/place.h"
namespace
paddle
{
namespace
distributed
{
using
Place
=
paddle
::
platform
::
Place
;
using
NPUStream
=
platform
::
stream
::
NPUStream
;
using
NPUDeviceContext
=
paddle
::
platform
::
NPUDeviceContext
;
class
ProcessGroupHCCL
:
public
ProcessGroup
{
public:
class
HCCLTask
:
public
ProcessGroup
::
Task
,
public
std
::
enable_shared_from_this
<
HCCLTask
>
{
public:
HCCLTask
(
const
std
::
vector
<
Place
>&
places
,
int
rank
,
CommType
CommType
,
const
std
::
vector
<
phi
::
DenseTensor
>&
inputs
);
bool
IsCompleted
();
void
SynchronizeStreams
();
bool
Wait
(
std
::
chrono
::
milliseconds
timeout
=
kWaitTimeout
);
void
Synchronize
();
void
SetOutputs
(
std
::
vector
<
phi
::
DenseTensor
>&
outputs
);
// NOLINT
virtual
~
HCCLTask
();
std
::
vector
<
NPUEventManager
>
control_events_
;
protected:
std
::
vector
<
Place
>
places_
;
std
::
vector
<
std
::
shared_ptr
<
HCCLCommManager
>>
hcclComms_
;
std
::
shared_ptr
<
std
::
vector
<
phi
::
DenseTensor
>>
outputs_
;
private:
};
ProcessGroupHCCL
(
const
std
::
shared_ptr
<
Store
>&
store
,
int
rank
,
int
size
,
const
platform
::
Place
&
place
,
int
gid
);
std
::
string
GetBackendName
()
const
override
{
return
"HCCL"
;
}
std
::
shared_ptr
<
ProcessGroup
::
Task
>
AllReduce
(
std
::
vector
<
phi
::
DenseTensor
>&
in_tensors
,
std
::
vector
<
phi
::
DenseTensor
>&
out_tensors
,
const
AllreduceOptions
&
=
AllreduceOptions
())
override
;
std
::
shared_ptr
<
ProcessGroup
::
Task
>
Broadcast
(
std
::
vector
<
phi
::
DenseTensor
>&
in_tensors
,
std
::
vector
<
phi
::
DenseTensor
>&
out_tensors
,
const
BroadcastOptions
&
=
BroadcastOptions
())
override
;
protected:
virtual
std
::
shared_ptr
<
ProcessGroupHCCL
::
HCCLTask
>
CreateTask
(
std
::
vector
<
Place
>
places
,
int
rank
,
CommType
opType
,
const
std
::
vector
<
phi
::
DenseTensor
>&
inputs
);
std
::
shared_ptr
<
Store
>
store_
;
std
::
shared_ptr
<
HCCLCommManager
>
hccl_comm_
;
std
::
mutex
mutex_
;
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
std
::
shared_ptr
<
HCCLCommManager
>>>
places_to_hcclcomm_
;
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
NPUEventManager
>>
places_to_events_
;
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
std
::
unique_ptr
<
NPUDeviceContext
>>>
places_to_ctx_
;
std
::
set
<
int
>
used_place_ids_
;
private:
void
BcastHCCLId
(
std
::
vector
<
HcclRootInfo
>&
hccl_ids
,
// NOLINT
int
root
,
// NOLINT
int
server_fd
);
void
BroadcastUniqueHCCLID
(
std
::
vector
<
HcclRootInfo
>&
hccl_ids
);
// NOLINT
template
<
typename
Fn
>
std
::
shared_ptr
<
ProcessGroup
::
Task
>
Collective
(
std
::
vector
<
phi
::
DenseTensor
>&
inputs
,
// NOLINT
std
::
vector
<
phi
::
DenseTensor
>&
outputs
,
// NOLINT
Fn
fn
,
CommType
op_type
);
void
CreateHCCLManagerCache
(
const
std
::
string
&
places_key
,
const
std
::
vector
<
Place
>&
places
);
};
}
// namespace distributed
}
// namespace paddle
paddle/fluid/distributed/collective/ProcessGroupHeter.cc
已删除
100644 → 0
浏览文件 @
05a47f39
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/distributed/collective/ProcessGroupHeter.h"
#include <chrono>
#include "paddle/fluid/platform/device/gpu/nccl_helper.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/phi/api/include/api.h"
#include "paddle/phi/common/place.h"
constexpr
int64_t
kWaitBlockTImeout
=
10
;
namespace
paddle
{
namespace
distributed
{
using
Place
=
paddle
::
platform
::
Place
;
int
ProcessGroupHeter
::
send_count
=
0
;
int
ProcessGroupHeter
::
recv_count
=
0
;
std
::
shared_ptr
<
ProcessGroupHeter
::
HeterTask
>
ProcessGroupHeter
::
CreateTask
(
int
rank
,
CommType
comm_type
,
const
std
::
vector
<
phi
::
DenseTensor
>&
inputs
)
{
return
std
::
make_shared
<
ProcessGroupHeter
::
HeterTask
>
(
rank
,
comm_type
,
inputs
);
}
ProcessGroupHeter
::
HeterTask
::
HeterTask
(
int
rank
,
CommType
CommType
,
const
std
::
vector
<
phi
::
DenseTensor
>&
inputs
)
:
Task
(
rank
,
inputs
,
CommType
)
{}
ProcessGroupHeter
::
HeterTask
::~
HeterTask
()
{}
bool
ProcessGroupHeter
::
HeterTask
::
IsCompleted
()
{
return
true
;
}
// TODO(sheniang03): Add timeout for wait, now timeout unused
bool
ProcessGroupHeter
::
HeterTask
::
Wait
(
std
::
chrono
::
milliseconds
timeout
)
{
return
true
;
}
ProcessGroupHeter
::
ProcessGroupHeter
(
const
std
::
shared_ptr
<
Store
>&
store
,
int
rank
,
int
size
,
const
platform
::
Place
&
place
,
int
gid
,
int
local_rank
,
int
local_size
,
int
gloo_rank
,
int
gloo_size
,
bool
with_switch
,
std
::
string
switch_endpoint
,
int
src_rank
,
int
dst_rank
)
:
ProcessGroup
(
rank
,
size
,
place
,
gid
),
store_
(
store
),
local_rank_
(
local_rank
),
local_size_
(
local_size
),
gloo_rank_
(
gloo_rank
),
gloo_size_
(
gloo_size
),
with_switch_
(
with_switch
),
switch_endpoint_
(
switch_endpoint
),
src_rank_
(
src_rank
),
dst_rank_
(
dst_rank
)
{
return
;
#ifdef PADDLE_WITH_CUSTOM
if
(
paddle
::
platform
::
is_custom_place
(
place_
))
{
inner_pg_
=
std
::
make_shared
<
ProcessGroupCustom
>
(
store
,
local_rank
,
local_size
,
place_
,
IGNORE_ID
);
}
else
{
#endif
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
inner_pg_
=
std
::
make_shared
<
ProcessGroupNCCL
>
(
store
,
local_rank
,
local_size
,
place_
,
IGNORE_ID
);
#elif defined(PADDLE_WITH_ASCEND_CL)
inner_pg_
=
std
::
make_shared
<
ProcessGroupHCCL
>
(
store
,
local_rank
,
local_size
,
place_
,
IGNORE_ID
);
#else
PADDLE_THROW
(
platform
::
errors
::
Unavailable
(
"ProcessGroupHeter only supports NCCL, RCCL and HCCL now."
));
#endif
#ifdef PADDLE_WITH_CUSTOM
}
#endif
if
(
local_rank_
==
0
&&
!
with_switch_
)
{
auto
opts
=
ProcessGroupGloo
::
GlooOptions
::
create
();
opts
->
device
=
ProcessGroupGloo
::
createDefaultDevice
();
inter_pg_
=
std
::
make_shared
<
ProcessGroupGloo
>
(
store
,
gloo_rank_
,
gloo_size_
,
place_
,
IGNORE_ID
,
opts
);
}
}
template
<
typename
T
>
static
void
_do_add
(
T
*
dst
,
T
*
src
,
size_t
size
)
{
for
(
size_t
i
=
0
;
i
<
size
;
i
++
)
{
*
dst
+=
*
src
;
dst
++
;
src
++
;
}
}
std
::
shared_ptr
<
ProcessGroup
::
Task
>
ProcessGroupHeter
::
AllReduce
(
std
::
vector
<
phi
::
DenseTensor
>&
in_tensors
,
std
::
vector
<
phi
::
DenseTensor
>&
out_tensors
,
const
AllreduceOptions
&
opts
)
{
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
PADDLE_ENFORCE_EQ
(
CheckTensorsInCudaPlace
(
in_tensors
),
true
,
platform
::
errors
::
InvalidArgument
(
"All inputs should be in CudaPlace."
));
PADDLE_ENFORCE_EQ
(
CheckTensorsInCudaPlace
(
out_tensors
),
true
,
platform
::
errors
::
InvalidArgument
(
"All outputs should be in CudaPlace."
));
#endif
// Step1: do allreduce in inner cluster
auto
task
=
inner_pg_
->
AllReduce
(
in_tensors
,
in_tensors
,
opts
);
task
->
Wait
();
// Step2: copy tensors to CPU
if
(
local_rank_
==
0
)
{
std
::
vector
<
phi
::
DenseTensor
>
cpu_tensors
;
cpu_tensors
.
reserve
(
in_tensors
.
size
());
phi
::
DenseTensor
cpu_tensor
;
for
(
size_t
i
=
0
;
i
<
in_tensors
.
size
();
i
++
)
{
auto
gpu_tensor
=
in_tensors
[
i
];
cpu_tensor
.
Resize
(
gpu_tensor
.
dims
());
framework
::
TensorCopySync
(
gpu_tensor
,
platform
::
CPUPlace
(),
&
cpu_tensor
);
cpu_tensors
.
push_back
(
cpu_tensor
);
}
// Step3: do inter cluster allreduce
if
(
with_switch_
)
{
if
(
local_rank_
==
0
)
{
HeterClient
*
client_
=
HeterClient
::
GetInstance
({
switch_endpoint_
},
{},
0
).
get
();
auto
dense_cpu_tensor
=
cpu_tensors
[
0
];
std
::
vector
<
int64_t
>
send_size
;
send_size
.
push_back
(
dense_cpu_tensor
.
numel
());
int
ret
=
client_
->
Send
(
gid_
,
{
dense_cpu_tensor
.
name
()},
send_size
,
dense_cpu_tensor
.
data
(),
dense_cpu_tensor
.
numel
()
*
framework
::
DataTypeSize
(
dense_cpu_tensor
.
dtype
()));
PADDLE_ENFORCE_EQ
(
ret
,
0
,
platform
::
errors
::
PreconditionNotMet
(
"Send to the switch module error."
));
phi
::
DenseTensor
cpu_tensor2
;
cpu_tensor2
.
AllocateFrom
(
std
::
make_unique
<
paddle
::
experimental
::
DefaultAllocator
>
(
paddle
::
platform
::
CPUPlace
())
.
get
(),
dense_cpu_tensor
.
dtype
(),
dense_cpu_tensor
.
numel
());
ret
=
client_
->
Recv
(
gid_
,
{
dense_cpu_tensor
.
name
()},
cpu_tensor2
.
data
(),
cpu_tensor2
.
numel
()
*
framework
::
DataTypeSize
(
cpu_tensor2
.
dtype
()));
PADDLE_ENFORCE_EQ
(
ret
,
0
,
platform
::
errors
::
PreconditionNotMet
(
"Recv from the switch module error."
));
switch
(
dense_cpu_tensor
.
dtype
())
{
case
DataType
::
FLOAT32
:
_do_add
<
float
>
(
reinterpret_cast
<
float
*>
(
dense_cpu_tensor
.
data
()),
reinterpret_cast
<
float
*>
(
cpu_tensor2
.
data
()),
dense_cpu_tensor
.
numel
());
break
;
case
DataType
::
FLOAT64
:
_do_add
<
double
>
(
reinterpret_cast
<
double
*>
(
dense_cpu_tensor
.
data
()),
reinterpret_cast
<
double
*>
(
cpu_tensor2
.
data
()),
dense_cpu_tensor
.
numel
());
break
;
case
DataType
::
INT32
:
_do_add
<
int
>
(
reinterpret_cast
<
int
*>
(
dense_cpu_tensor
.
data
()),
reinterpret_cast
<
int
*>
(
cpu_tensor2
.
data
()),
dense_cpu_tensor
.
numel
());
break
;
default:
PADDLE_THROW
(
platform
::
errors
::
PreconditionNotMet
(
"Unsupported data type (%s) to do add."
,
framework
::
DataType2String
(
dense_cpu_tensor
.
dtype
())));
}
}
}
else
{
auto
gloo_task
=
inter_pg_
->
AllReduce
(
cpu_tensors
,
cpu_tensors
,
opts
);
gloo_task
->
Wait
();
}
// Step4: copy cpu tensors to gpu
// copy cpu tensors to gpu
for
(
size_t
i
=
0
;
i
<
in_tensors
.
size
();
i
++
)
{
auto
gpu_tensor
=
out_tensors
[
i
];
auto
cpu_tensor
=
cpu_tensors
[
i
];
framework
::
TensorCopySync
(
cpu_tensor
,
cpu_tensor
.
place
(),
&
gpu_tensor
);
}
}
// Step5: broadcast among inner cluster
auto
b_opts
=
BroadcastOptions
();
b_opts
.
source_rank
=
0
;
auto
broadcast_task
=
inner_pg_
->
Broadcast
(
out_tensors
,
out_tensors
,
b_opts
);
broadcast_task
->
Wait
();
return
CreateTask
(
rank_
,
CommType
::
ALLREDUCE
,
in_tensors
);
}
std
::
shared_ptr
<
ProcessGroup
::
Task
>
ProcessGroupHeter
::
Broadcast
(
std
::
vector
<
phi
::
DenseTensor
>&
in_tensors
,
std
::
vector
<
phi
::
DenseTensor
>&
out_tensors
,
const
BroadcastOptions
&
opts
)
{
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
PADDLE_ENFORCE_EQ
(
CheckTensorsInCudaPlace
(
in_tensors
),
true
,
platform
::
errors
::
InvalidArgument
(
"All inputs should be in CudaPlace."
));
PADDLE_ENFORCE_EQ
(
CheckTensorsInCudaPlace
(
out_tensors
),
true
,
platform
::
errors
::
InvalidArgument
(
"All outputs should be in CudaPlace."
));
#endif
// Step1: do broadcast in inner cluster
auto
b_opts
=
BroadcastOptions
();
b_opts
.
source_rank
=
0
;
inner_pg_
->
Broadcast
(
in_tensors
,
out_tensors
,
b_opts
);
if
(
local_rank_
==
0
)
{
std
::
vector
<
phi
::
DenseTensor
>
cpu_tensors
;
cpu_tensors
.
reserve
(
in_tensors
.
size
());
for
(
size_t
i
=
0
;
i
<
in_tensors
.
size
();
i
++
)
{
auto
gpu_tensor
=
in_tensors
[
i
];
phi
::
DenseTensor
cpu_tensor
;
cpu_tensor
.
Resize
(
gpu_tensor
.
dims
());
framework
::
TensorCopySync
(
gpu_tensor
,
platform
::
CPUPlace
(),
&
cpu_tensor
);
cpu_tensors
.
push_back
(
cpu_tensor
);
}
if
(
with_switch_
)
{
if
(
local_rank_
==
0
)
{
HeterClient
*
client_
=
HeterClient
::
GetInstance
({
switch_endpoint_
},
{},
0
).
get
();
auto
dense_cpu_tensor
=
cpu_tensors
[
0
];
if
(
gloo_rank_
==
0
)
{
std
::
vector
<
int64_t
>
send_size
;
send_size
.
push_back
(
dense_cpu_tensor
.
numel
());
int
ret
=
client_
->
Send
(
gid_
,
{
dense_cpu_tensor
.
name
()},
send_size
,
dense_cpu_tensor
.
data
(),
dense_cpu_tensor
.
numel
()
*
framework
::
DataTypeSize
(
dense_cpu_tensor
.
dtype
()));
PADDLE_ENFORCE_EQ
(
ret
,
0
,
platform
::
errors
::
PreconditionNotMet
(
"Send to the switch module error."
));
}
else
{
int
ret
=
client_
->
Recv
(
gid_
,
{
dense_cpu_tensor
.
name
()},
dense_cpu_tensor
.
data
(),
dense_cpu_tensor
.
numel
()
*
framework
::
DataTypeSize
(
dense_cpu_tensor
.
dtype
()));
PADDLE_ENFORCE_EQ
(
ret
,
0
,
platform
::
errors
::
PreconditionNotMet
(
"Receive from the switch module error."
));
}
}
}
else
{
auto
gloo_task
=
inter_pg_
->
Broadcast
(
cpu_tensors
,
cpu_tensors
,
opts
);
gloo_task
->
Wait
();
}
for
(
size_t
i
=
0
;
i
<
in_tensors
.
size
();
i
++
)
{
auto
gpu_tensor
=
out_tensors
[
i
];
auto
cpu_tensor
=
cpu_tensors
[
i
];
framework
::
TensorCopySync
(
cpu_tensor
,
gpu_tensor
.
place
(),
&
gpu_tensor
);
}
}
auto
broadcast_task
=
inner_pg_
->
Broadcast
(
out_tensors
,
out_tensors
,
b_opts
);
broadcast_task
->
Wait
();
return
CreateTask
(
rank_
,
CommType
::
BROADCAST
,
in_tensors
);
}
std
::
shared_ptr
<
ProcessGroup
::
Task
>
ProcessGroupHeter
::
Send
(
std
::
vector
<
phi
::
DenseTensor
>&
in_tensors
,
int
peer
)
{
PADDLE_ENFORCE_EQ
(
in_tensors
.
size
(),
1
,
platform
::
errors
::
PreconditionNotMet
(
"For each send operation, there can only be one tensor to send."
));
// Copy Tensor to cpu
auto
start
=
std
::
chrono
::
high_resolution_clock
::
now
();
phi
::
DenseTensor
cpu_tensor
;
auto
&
gpu_tensor
=
in_tensors
[
0
];
framework
::
TensorCopySync
(
gpu_tensor
,
platform
::
CPUPlace
(),
&
cpu_tensor
);
PADDLE_ENFORCE_EQ
(
with_switch_
,
true
,
platform
::
errors
::
PreconditionNotMet
(
"Gloo does not support the send operation."
));
auto
end
=
std
::
chrono
::
high_resolution_clock
::
now
();
std
::
chrono
::
duration
<
double
>
diff
=
end
-
start
;
VLOG
(
2
)
<<
"Time to copy tensor of dims("
<<
cpu_tensor
.
dims
()
<<
") from gpu to cpu for send "
<<
std
::
setw
(
9
)
<<
" is: "
<<
diff
.
count
()
<<
" s"
<<
std
::
endl
;
// Send to switch
HeterClient
*
client_
=
HeterClient
::
GetInstance
({
switch_endpoint_
},
{},
0
).
get
();
int64_t
tensor_size
=
cpu_tensor
.
numel
()
*
framework
::
DataTypeSize
(
cpu_tensor
.
dtype
());
std
::
vector
<
int64_t
>
send_size
;
send_size
.
push_back
(
tensor_size
);
auto
id
=
src_rank_
*
10000
+
dst_rank_
;
std
::
string
tensor_name
=
std
::
to_string
(
gid_
)
+
"_id_"
+
std
::
to_string
(
id
)
+
std
::
string
(
"_"
)
+
std
::
to_string
(
send_count
++
);
VLOG
(
2
)
<<
"tensor_name:"
<<
tensor_name
;
int
ret
=
client_
->
Send
(
gid_
,
{
tensor_name
},
send_size
,
cpu_tensor
.
data
(),
tensor_size
);
PADDLE_ENFORCE_EQ
(
ret
,
0
,
platform
::
errors
::
PreconditionNotMet
(
"Send to the switch module error."
));
return
CreateTask
(
rank_
,
CommType
::
SEND
,
in_tensors
);
}
std
::
shared_ptr
<
ProcessGroup
::
Task
>
ProcessGroupHeter
::
Recv
(
std
::
vector
<
phi
::
DenseTensor
>&
out_tensors
,
int
peer
)
{
PADDLE_ENFORCE_EQ
(
out_tensors
.
size
(),
1
,
platform
::
errors
::
PreconditionNotMet
(
"For each rece operation, there can only be one tensor to receive."
));
// Copy Tensor to cpu
phi
::
DenseTensor
cpu_tensor
;
auto
&
gpu_tensor
=
out_tensors
[
0
];
cpu_tensor
.
Resize
(
gpu_tensor
.
dims
());
cpu_tensor
.
set_layout
(
gpu_tensor
.
layout
());
cpu_tensor
.
mutable_data
(
platform
::
CPUPlace
(),
gpu_tensor
.
dtype
());
PADDLE_ENFORCE_EQ
(
with_switch_
,
true
,
platform
::
errors
::
PreconditionNotMet
(
"Gloo does not support the send operation."
));
// recv from switch
HeterClient
*
client_
=
HeterClient
::
GetInstance
({
switch_endpoint_
},
{},
0
).
get
();
auto
id
=
src_rank_
*
10000
+
dst_rank_
;
std
::
string
tensor_name
=
std
::
to_string
(
gid_
)
+
"_id_"
+
std
::
to_string
(
id
)
+
std
::
string
(
"_"
)
+
std
::
to_string
(
recv_count
++
);
VLOG
(
2
)
<<
"tensor_name: "
<<
tensor_name
;
auto
start
=
std
::
chrono
::
high_resolution_clock
::
now
();
int
ret
=
client_
->
Recv
(
gid_
,
{
tensor_name
},
cpu_tensor
.
data
(),
cpu_tensor
.
numel
()
*
framework
::
DataTypeSize
(
cpu_tensor
.
dtype
()));
PADDLE_ENFORCE_EQ
(
ret
,
0
,
platform
::
errors
::
PreconditionNotMet
(
"receive to the switch module error."
));
auto
end
=
std
::
chrono
::
high_resolution_clock
::
now
();
std
::
chrono
::
duration
<
double
>
diff
=
end
-
start
;
double
goodput
=
cpu_tensor
.
numel
()
*
framework
::
DataTypeSize
(
cpu_tensor
.
dtype
())
/
diff
.
count
();
VLOG
(
2
)
<<
"Goodput: "
<<
goodput
<<
"B/s"
<<
std
::
endl
;
start
=
std
::
chrono
::
high_resolution_clock
::
now
();
framework
::
TensorCopySync
(
cpu_tensor
,
gpu_tensor
.
place
(),
&
gpu_tensor
);
end
=
std
::
chrono
::
high_resolution_clock
::
now
();
diff
=
end
-
start
;
VLOG
(
2
)
<<
"Time to copy tensor of dims("
<<
cpu_tensor
.
dims
()
<<
") from cpu to gpu for recv "
<<
std
::
setw
(
9
)
<<
" is: "
<<
diff
.
count
()
<<
" s"
<<
std
::
endl
;
return
CreateTask
(
rank_
,
CommType
::
RECV
,
out_tensors
);
}
}
// namespace distributed
}
// namespace paddle
paddle/fluid/distributed/collective/ProcessGroupHeter.h
已删除
100644 → 0
浏览文件 @
05a47f39
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <chrono>
#include <map>
#include <memory>
#include <string>
#include <unordered_map>
#include <vector>
#include "paddle/fluid/distributed/collective/ProcessGroup.h"
#include "paddle/fluid/distributed/collective/ProcessGroupGloo.h"
#include "paddle/fluid/platform/device_context.h"
#ifdef PADDLE_WITH_GLOO
#include "paddle/fluid/framework/fleet/gloo_wrapper.h"
#endif
#include "paddle/fluid/distributed/store/store.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/gen_comm_id_helper.h"
#include "paddle/fluid/platform/place.h"
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
#include "paddle/fluid/distributed/collective/NCCLTools.h"
#include "paddle/fluid/distributed/collective/ProcessGroupNCCL.h"
#include "paddle/fluid/platform/cuda_device_guard.h"
#endif
#if defined(PADDLE_WITH_ASCEND_CL)
#include "paddle/fluid/distributed/collective/HCCLTools.h"
#include "paddle/fluid/distributed/collective/ProcessGroupHCCL.h"
#endif
#if defined(PADDLE_WITH_CUSTOM_DEVICE)
#include "paddle/fluid/distributed/collective/CustomCCLTools.h"
#include "paddle/fluid/distributed/collective/ProcessGroupCustom.h"
#endif
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE) && \
(defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL) || \
defined(PADDLE_WITH_ASCEND_CL))
#include "paddle/fluid/distributed/ps/service/heter_client.h"
#endif
#include "paddle/fluid/distributed/collective/Common.h"
namespace
paddle
{
namespace
distributed
{
using
Place
=
paddle
::
platform
::
Place
;
class
ProcessGroupHeter
:
public
ProcessGroup
{
public:
class
HeterTask
:
public
ProcessGroup
::
Task
,
public
std
::
enable_shared_from_this
<
HeterTask
>
{
public:
HeterTask
(
int
rank
,
CommType
CommType
,
const
std
::
vector
<
phi
::
DenseTensor
>&
);
bool
IsCompleted
();
void
SynchronizeStreams
()
{}
bool
Wait
(
std
::
chrono
::
milliseconds
timeout
=
kWaitTimeout
);
void
Synchronize
()
{}
virtual
~
HeterTask
();
};
ProcessGroupHeter
(
const
std
::
shared_ptr
<
Store
>&
store
,
int
rank
,
int
size
,
const
platform
::
Place
&
place
,
int
gid
,
int
local_rank
,
int
local_size
,
int
gloo_rank
,
int
gloo_size
,
bool
with_switch
,
std
::
string
switch_endpoints
,
int
src_rank
,
int
dst_rank
);
std
::
string
GetBackendName
()
const
override
{
return
"HETER_BACKEND"
;
}
std
::
shared_ptr
<
ProcessGroup
::
Task
>
AllReduce
(
std
::
vector
<
phi
::
DenseTensor
>&
,
std
::
vector
<
phi
::
DenseTensor
>&
,
const
AllreduceOptions
&
=
AllreduceOptions
())
override
;
std
::
shared_ptr
<
ProcessGroup
::
Task
>
Broadcast
(
std
::
vector
<
phi
::
DenseTensor
>&
,
std
::
vector
<
phi
::
DenseTensor
>&
,
const
BroadcastOptions
&
=
BroadcastOptions
())
override
;
std
::
shared_ptr
<
ProcessGroup
::
Task
>
Send
(
std
::
vector
<
phi
::
DenseTensor
>&
in_tensors
,
int
peer
)
override
;
std
::
shared_ptr
<
ProcessGroup
::
Task
>
Recv
(
std
::
vector
<
phi
::
DenseTensor
>&
out_tensors
,
int
peer
)
override
;
protected:
virtual
std
::
shared_ptr
<
ProcessGroupHeter
::
HeterTask
>
CreateTask
(
int
rank
,
CommType
opType
,
const
std
::
vector
<
phi
::
DenseTensor
>&
inputs
);
private:
std
::
shared_ptr
<
Store
>
store_
;
std
::
shared_ptr
<
ProcessGroup
>
inner_pg_
;
std
::
shared_ptr
<
ProcessGroupGloo
>
inter_pg_
;
int
local_rank_
;
int
local_size_
;
int
gloo_rank_
;
int
gloo_size_
;
bool
with_switch_
;
std
::
string
switch_endpoint_
;
int
src_rank_
;
int
dst_rank_
;
static
int
send_count
;
static
int
recv_count
;
};
}
// namespace distributed
}
// namespace paddle
paddle/fluid/pybind/CMakeLists.txt
浏览文件 @
9191e743
...
...
@@ -158,9 +158,6 @@ if(WITH_PYTHON)
set
(
PYBIND_DEPS
${
PYBIND_DEPS
}
processgroup eager_reducer
)
if
(
WITH_NCCL OR WITH_RCCL
)
set
(
PYBIND_DEPS
${
PYBIND_DEPS
}
processgroup_nccl
)
if
(
WITH_PSCORE
)
set
(
PYBIND_DEPS
${
PYBIND_DEPS
}
processgroup_heter
)
endif
()
endif
()
if
(
WITH_XPU_BKCL
)
set
(
PYBIND_DEPS
${
PYBIND_DEPS
}
processgroup_bkcl
)
...
...
@@ -171,12 +168,6 @@ if(WITH_PYTHON)
if
(
WITH_MPI
)
set
(
PYBIND_DEPS
${
PYBIND_DEPS
}
processgroup_mpi
)
endif
()
if
(
WITH_ASCEND_CL
)
set
(
PYBIND_DEPS
${
PYBIND_DEPS
}
processgroup_hccl
)
if
(
WITH_PSCORE
)
set
(
PYBIND_DEPS
${
PYBIND_DEPS
}
processgroup_heter
)
endif
()
endif
()
if
(
WITH_CUSTOM_DEVICE
)
set
(
PYBIND_DEPS
${
PYBIND_DEPS
}
processgroup_custom
)
endif
()
...
...
paddle/fluid/pybind/distributed_py.cc
浏览文件 @
9191e743
...
...
@@ -41,19 +41,10 @@ limitations under the License. */
#include "paddle/fluid/distributed/collective/ProcessGroupMPI.h"
#endif
#if defined(PADDLE_WITH_ASCEND_CL)
#include "paddle/fluid/distributed/collective/ProcessGroupHCCL.h"
#endif
#if defined(PADDLE_WITH_CUSTOM_DEVICE)
#include "paddle/fluid/distributed/collective/ProcessGroupCustom.h"
#endif
#if defined(PADDLE_WITH_GLOO) && defined(PADDLE_WITH_PSCORE) && \
(defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_ASCEND_CL))
#include "paddle/fluid/distributed/collective/ProcessGroupHeter.h"
#endif
#if defined(PADDLE_WITH_GLOO)
#include "paddle/fluid/distributed/collective/ProcessGroupGloo.h"
#include "paddle/fluid/distributed/store/tcp_store.h"
...
...
@@ -1258,62 +1249,6 @@ void BindDistributed(py::module *m) {
py
::
call_guard
<
py
::
gil_scoped_release
>
());
#endif
#if defined(PADDLE_WITH_GLOO) && defined(PADDLE_WITH_PSCORE) && \
(defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_ASCEND_CL))
py
::
class_
<
distributed
::
ProcessGroupHeter
,
std
::
shared_ptr
<
distributed
::
ProcessGroupHeter
>>
(
*
m
,
"ProcessGroupHeter"
,
ProcessGroup
)
.
def
(
py
::
init
<
const
std
::
shared_ptr
<
distributed
::
Store
>
&
,
int
,
int
,
#if defined(PADDLE_WITH_ASCEND_CL)
const
platform
::
NPUPlace
&
,
#else
const
platform
::
CUDAPlace
&
,
#endif
int
,
int
,
int
,
int
,
int
,
bool
,
std
::
string
,
int
,
int
>
(),
py
::
arg
(
"store"
),
py
::
arg
(
"rank"
),
py
::
arg
(
"world_size"
),
py
::
arg
(
"place"
),
py
::
arg
(
"gid"
)
=
0
,
py
::
arg
(
"local_rank"
)
=
0
,
py
::
arg
(
"local_size"
)
=
1
,
py
::
arg
(
"gloo_rank"
)
=
0
,
py
::
arg
(
"gloo_size"
)
=
1
,
py
::
arg
(
"with_switch"
)
=
false
,
py
::
arg
(
"switch_endpoint"
)
=
""
,
py
::
arg
(
"src_rank"
)
=
""
,
py
::
arg
(
"dst_rank"
)
=
""
,
py
::
call_guard
<
py
::
gil_scoped_release
>
());
#endif
#if defined(PADDLE_WITH_ASCEND_CL)
py
::
class_
<
distributed
::
ProcessGroupHCCL
,
std
::
shared_ptr
<
distributed
::
ProcessGroupHCCL
>>
(
*
m
,
"ProcessGroupHCCL"
,
ProcessGroup
)
.
def
(
py
::
init
<
const
std
::
shared_ptr
<
distributed
::
Store
>
&
,
int
,
int
,
const
platform
::
NPUPlace
&
,
int
>
(),
py
::
arg
(
"store"
),
py
::
arg
(
"rank"
),
py
::
arg
(
"world_size"
),
py
::
arg
(
"place"
),
py
::
arg
(
"group_id"
)
=
0
,
py
::
call_guard
<
py
::
gil_scoped_release
>
());
#endif
#if defined(PADDLE_WITH_CUSTOM_DEVICE)
py
::
class_
<
distributed
::
ProcessGroupCustom
,
std
::
shared_ptr
<
distributed
::
ProcessGroupCustom
>>
(
...
...
python/paddle/distributed/collective.py
浏览文件 @
9191e743
...
...
@@ -13,7 +13,6 @@
# limitations under the License.
import
numpy
as
np
import
os
import
pickle
import
io
import
datetime
...
...
@@ -148,15 +147,9 @@ def _new_process_group_impl(
group_name
,
pg_options
,
group_id
=
0
,
src_rank
=
None
,
dst_rank
=
None
,
):
pg
=
None
genv
=
_get_global_env
()
if
backend
!=
'heter'
:
assert
src_rank
is
None
and
dst_rank
is
None
,
(
"src_rank and dst_rank "
"can only be set for heter backend."
)
assert
backend
in
_valid_backend_list
,
"Unsupported backend: %s."
%
backend
if
backend
==
"gloo"
:
place
=
core
.
CPUPlace
()
...
...
@@ -164,52 +157,12 @@ def _new_process_group_impl(
elif
backend
==
"nccl"
:
place
=
core
.
CUDAPlace
(
genv
.
device_id
)
pg
=
core
.
ProcessGroupNCCL
(
store
,
rank
,
world_size
,
place
,
group_id
)
elif
backend
==
"hccl"
:
place
=
core
.
NPUPlace
(
genv
.
device_id
)
pg
=
core
.
ProcessGroupHCCL
(
store
,
rank
,
world_size
,
place
,
group_id
)
elif
backend
==
"xccl"
:
place
=
core
.
CustomPlace
(
genv
.
device_type
,
genv
.
device_id
)
pg
=
core
.
ProcessGroupCustom
(
store
,
rank
,
world_size
,
place
,
group_id
)
elif
backend
==
"bkcl"
:
place
=
core
.
XPUPlace
(
genv
.
device_id
)
pg
=
core
.
ProcessGroupBKCL
(
store
,
rank
,
world_size
,
place
,
group_id
)
elif
backend
==
"heter"
:
place
=
None
if
core
.
is_compiled_with_cuda
():
place
=
core
.
CUDAPlace
(
genv
.
device_id
)
elif
core
.
is_compiled_with_npu
():
place
=
core
.
NPUPlace
(
genv
.
device_id
)
cluster_id
=
int
(
os
.
getenv
(
"CLUSTER_ID"
,
"-1"
))
assert
cluster_id
>=
0
,
"please set the CLUSTER_ID variable."
cluster_size
=
os
.
getenv
(
"CLUSTER_SIZE"
,
None
)
assert
cluster_size
,
"please set the CLUSTER_SIZE variable."
cluster_size
=
cluster_size
.
split
(
","
)
cluster_size
=
[
int
(
s
)
for
s
in
cluster_size
]
switch_ep
=
os
.
getenv
(
"CLUSTER_SWITCH"
,
None
)
assert
switch_ep
,
"please set the CLUSTER_SWITCH variable."
cluster_size_cumsum
=
np
.
cumsum
(
cluster_size
)
cluster_offset
=
(
0
if
cluster_id
==
0
else
cluster_size_cumsum
[
cluster_id
-
1
]
)
global_rank
=
cluster_offset
+
rank
global_world_size
=
cluster_size_cumsum
[
-
1
]
global_rank
,
global_world_size
=
_get_global_config
(
backend
,
rank
)
pg
=
core
.
ProcessGroupHeter
(
store
,
rank
=
global_rank
,
world_size
=
global_world_size
,
place
=
place
,
gid
=
group_id
,
local_rank
=
rank
,
local_size
=
world_size
,
gloo_rank
=
cluster_id
,
gloo_size
=
len
(
cluster_size
),
with_switch
=
True
,
switch_endpoint
=
switch_ep
,
src_rank
=
src_rank
,
dst_rank
=
dst_rank
,
)
return
pg
...
...
@@ -316,10 +269,8 @@ def new_group(ranks=None, backend=None, timeout=_default_timeout):
)
size
=
len
(
ranks
)
ranks
=
sorted
(
ranks
)
if
backend
==
'heter'
or
(
size
>
1
and
global_rank
in
ranks
)
:
if
size
>
1
and
global_rank
in
ranks
:
rank
=
0
if
backend
==
'heter'
else
ranks
.
index
(
global_rank
)
src_rank
=
ranks
[
0
]
if
backend
==
'heter'
else
None
dst_rank
=
ranks
[
1
]
if
backend
==
'heter'
else
None
pg
=
_new_process_group_impl
(
backend
,
_default_store
,
...
...
@@ -328,8 +279,6 @@ def new_group(ranks=None, backend=None, timeout=_default_timeout):
group_name
,
pg_options
=
None
,
group_id
=
gid
,
src_rank
=
src_rank
,
dst_rank
=
dst_rank
,
)
else
:
rank
=
-
1
...
...
python/paddle/fluid/tests/unittests/npu/process_group_hccl.py
已删除
100644 → 0
浏览文件 @
05a47f39
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
random
import
numpy
as
np
import
os
import
shutil
import
paddle
from
paddle.fluid
import
core
from
datetime
import
timedelta
import
paddle.fluid.core
as
core
from
paddle.fluid.framework
import
_test_eager_guard
from
paddle.fluid.dygraph.parallel
import
ParallelEnv
def
init_process_group
(
strategy
=
None
):
nranks
=
ParallelEnv
().
nranks
rank
=
ParallelEnv
().
local_rank
is_master
=
True
if
rank
==
0
else
False
store
=
paddle
.
fluid
.
core
.
TCPStore
(
"127.0.0.1"
,
6173
,
is_master
,
nranks
)
pg_group
=
core
.
ProcessGroupHCCL
(
store
,
rank
,
nranks
)
return
pg_group
class
TestProcessGroupFp32
(
unittest
.
TestCase
):
def
setUp
(
self
):
paddle
.
seed
(
2022
)
random
.
seed
(
2022
)
np
.
random
.
seed
(
2022
)
self
.
config
()
def
config
(
self
):
self
.
dtype
=
"float32"
self
.
shape
=
(
2
,
10
,
5
)
def
test_create_process_group_nccl
(
self
):
with
_test_eager_guard
():
paddle
.
set_device
(
'npu:%d'
%
paddle
.
distributed
.
ParallelEnv
().
dev_id
)
pg
=
init_process_group
()
x
=
np
.
random
.
random
(
self
.
shape
).
astype
(
self
.
dtype
)
tensor_x
=
paddle
.
to_tensor
(
x
)
y
=
np
.
random
.
random
(
self
.
shape
).
astype
(
self
.
dtype
)
tensor_y
=
paddle
.
to_tensor
(
y
)
sum_result
=
tensor_x
+
tensor_y
if
pg
.
rank
()
==
0
:
task
=
pg
.
allreduce
(
tensor_x
)
task
.
wait
()
assert
np
.
array_equal
(
tensor_x
,
sum_result
)
else
:
task
=
pg
.
allreduce
(
tensor_y
)
task
.
wait
()
assert
np
.
array_equal
(
tensor_y
,
sum_result
)
print
(
"test allreduce sum api ok"
)
x
=
np
.
random
.
random
(
self
.
shape
).
astype
(
self
.
dtype
)
tensor_x
=
paddle
.
to_tensor
(
x
)
y
=
np
.
random
.
random
(
self
.
shape
).
astype
(
self
.
dtype
)
tensor_y
=
paddle
.
to_tensor
(
y
)
max_result
=
paddle
.
maximum
(
tensor_x
,
tensor_y
)
if
pg
.
rank
()
==
0
:
task
=
pg
.
allreduce
(
tensor_x
,
core
.
ReduceOp
.
MAX
)
task
.
wait
()
assert
np
.
array_equal
(
tensor_x
,
max_result
)
else
:
task
=
pg
.
allreduce
(
tensor_y
,
core
.
ReduceOp
.
MAX
)
task
.
wait
()
assert
np
.
array_equal
(
tensor_y
,
max_result
)
print
(
"test allreduce max api ok"
)
# test broadcast
# rank 0
x
=
np
.
random
.
random
(
self
.
shape
).
astype
(
self
.
dtype
)
tensor_x
=
paddle
.
to_tensor
(
x
)
# rank 1
y
=
np
.
random
.
random
(
self
.
shape
).
astype
(
self
.
dtype
)
tensor_y
=
paddle
.
to_tensor
(
y
)
broadcast_result
=
paddle
.
assign
(
tensor_x
)
if
pg
.
rank
()
==
0
:
task
=
pg
.
broadcast
(
tensor_x
,
0
)
task
.
synchronize
()
paddle
.
device
.
cuda
.
synchronize
()
assert
task
.
is_completed
()
assert
np
.
array_equal
(
broadcast_result
,
tensor_x
)
else
:
task
=
pg
.
broadcast
(
tensor_y
,
0
)
task
.
synchronize
()
paddle
.
device
.
cuda
.
synchronize
()
assert
task
.
is_completed
()
assert
np
.
array_equal
(
broadcast_result
,
tensor_y
)
print
(
"test broadcast api ok"
)
# test barrier
# rank 0
if
pg
.
rank
()
==
0
:
task
=
pg
.
barrier
()
task
.
wait
()
# rank 1
else
:
task
=
pg
.
barrier
()
task
.
wait
()
print
(
"test barrier api ok
\n
"
)
exit
(
0
)
# test allgather
# rank 0
x
=
np
.
random
.
random
(
self
.
shape
).
astype
(
self
.
dtype
)
y
=
np
.
random
.
random
(
self
.
shape
).
astype
(
self
.
dtype
)
tensor_x
=
paddle
.
to_tensor
(
x
)
tensor_y
=
paddle
.
to_tensor
(
y
)
out_shape
=
list
(
self
.
shape
)
out_shape
[
0
]
*=
2
out
=
np
.
random
.
random
(
out_shape
).
astype
(
self
.
dtype
)
tensor_out
=
paddle
.
to_tensor
(
out
)
if
pg
.
rank
()
==
0
:
task
=
pg
.
all_gather
(
tensor_x
,
tensor_out
)
task
.
wait
()
paddle
.
device
.
cuda
.
synchronize
()
# rank 1
else
:
task
=
pg
.
all_gather
(
tensor_y
,
tensor_out
)
task
.
wait
()
paddle
.
device
.
cuda
.
synchronize
()
out_1
=
paddle
.
slice
(
tensor_out
,
[
0
],
[
0
],
[
out_shape
[
0
]
//
2
])
out_2
=
paddle
.
slice
(
tensor_out
,
[
0
],
[
out_shape
[
0
]
//
2
],
[
out_shape
[
0
]]
)
assert
np
.
array_equal
(
tensor_x
,
out_1
)
assert
np
.
array_equal
(
tensor_y
,
out_2
)
print
(
"test allgather api ok
\n
"
)
# test alltoall
# rank 0
x
=
np
.
random
.
random
(
self
.
shape
).
astype
(
self
.
dtype
)
y
=
np
.
random
.
random
(
self
.
shape
).
astype
(
self
.
dtype
)
out1
=
np
.
random
.
random
(
self
.
shape
).
astype
(
self
.
dtype
)
out2
=
np
.
random
.
random
(
self
.
shape
).
astype
(
self
.
dtype
)
tensor_x
=
paddle
.
to_tensor
(
x
)
tensor_y
=
paddle
.
to_tensor
(
y
)
tensor_out1
=
paddle
.
to_tensor
(
out1
)
tensor_out2
=
paddle
.
to_tensor
(
out2
)
raw_tensor_x_2
=
paddle
.
slice
(
tensor_x
,
[
0
],
[
self
.
shape
[
0
]
//
2
],
[
self
.
shape
[
0
]]
)
raw_tensor_y_1
=
paddle
.
slice
(
tensor_y
,
[
0
],
[
0
],
[
self
.
shape
[
0
]
//
2
]
)
if
pg
.
rank
()
==
0
:
task
=
pg
.
alltoall
(
tensor_x
,
tensor_out1
)
task
.
wait
()
paddle
.
device
.
cuda
.
synchronize
()
# rank 1
else
:
task
=
pg
.
alltoall
(
tensor_y
,
tensor_out2
)
task
.
wait
()
paddle
.
device
.
cuda
.
synchronize
()
out1_2
=
paddle
.
slice
(
tensor_out1
,
[
0
],
[
self
.
shape
[
0
]
//
2
],
[
self
.
shape
[
0
]]
)
out2_1
=
paddle
.
slice
(
tensor_out2
,
[
0
],
[
0
],
[
self
.
shape
[
0
]
//
2
])
if
pg
.
rank
()
==
0
:
assert
np
.
array_equal
(
out1_2
.
numpy
(),
raw_tensor_y_1
.
numpy
())
else
:
assert
np
.
array_equal
(
out2_1
,
raw_tensor_x_2
)
print
(
"test alltoall api ok
\n
"
)
# test Reduce
# rank 0
x
=
np
.
random
.
random
(
self
.
shape
).
astype
(
self
.
dtype
)
y
=
np
.
random
.
random
(
self
.
shape
).
astype
(
self
.
dtype
)
tensor_x
=
paddle
.
to_tensor
(
x
)
tensor_y
=
paddle
.
to_tensor
(
y
)
sum_result
=
tensor_x
+
tensor_y
if
pg
.
rank
()
==
0
:
task
=
pg
.
reduce
(
tensor_x
,
0
)
task
.
wait
()
paddle
.
device
.
cuda
.
synchronize
()
# rank 1
else
:
task
=
pg
.
reduce
(
tensor_y
,
0
)
task
.
wait
()
paddle
.
device
.
cuda
.
synchronize
()
if
pg
.
rank
()
==
0
:
assert
np
.
array_equal
(
tensor_x
,
sum_result
)
print
(
"test reduce sum api ok
\n
"
)
# test Scatter
# rank 0
in_shape
=
list
(
self
.
shape
)
in_shape
[
0
]
*=
2
x
=
np
.
random
.
random
(
in_shape
).
astype
(
self
.
dtype
)
y
=
np
.
random
.
random
(
self
.
shape
).
astype
(
self
.
dtype
)
tensor_x
=
paddle
.
to_tensor
(
x
)
tensor_y
=
paddle
.
to_tensor
(
y
)
if
pg
.
rank
()
==
0
:
task
=
pg
.
scatter
(
tensor_x
,
tensor_y
,
0
)
task
.
wait
()
paddle
.
device
.
cuda
.
synchronize
()
# rank 1
else
:
task
=
pg
.
scatter
(
tensor_x
,
tensor_y
,
0
)
task
.
wait
()
paddle
.
device
.
cuda
.
synchronize
()
out1
=
paddle
.
slice
(
tensor_x
,
[
0
],
[
0
],
[
self
.
shape
[
0
]])
out2
=
paddle
.
slice
(
tensor_x
,
[
0
],
[
self
.
shape
[
0
]],
[
self
.
shape
[
0
]
*
2
]
)
if
pg
.
rank
()
==
0
:
assert
np
.
array_equal
(
tensor_y
,
out1
)
else
:
assert
np
.
array_equal
(
tensor_y
,
out2
)
print
(
"test scatter api ok
\n
"
)
class
TestProcessGroupFp16
(
TestProcessGroupFp32
):
def
setUp
(
self
):
paddle
.
seed
(
2022
)
random
.
seed
(
2022
)
np
.
random
.
seed
(
2022
)
self
.
config
()
def
config
(
self
):
self
.
dtype
=
"float16"
self
.
shape
=
(
4
,
20
,
20
)
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/npu/test_collective_process_group_hccl.py
已删除
100644 → 0
浏览文件 @
05a47f39
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
sys
sys
.
path
.
append
(
".."
)
from
test_parallel_dygraph_dataparallel
import
TestMultipleGpus
class
TestProcessGroup
(
TestMultipleGpus
):
def
test_process_group_nccl
(
self
):
self
.
run_mnist_2gpu
(
'process_group_hccl.py'
)
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录