提交 9153223a 编写于 作者: S sneaxiy

Merge branch 'complete_py_reader_python' of https://github.com/sneaxiy/Paddle...

Merge branch 'complete_py_reader_python' of https://github.com/sneaxiy/Paddle into complete_py_reader_python
......@@ -103,6 +103,11 @@ if(ANDROID OR IOS)
add_definitions(-DPADDLE_MOBILE_INFERENCE)
endif()
if (APPLE OR WIN32)
set(WITH_MKL OFF CACHE STRING
"Disable MKL for building on mac and windows" FORCE)
endif()
set(THIRD_PARTY_PATH "${CMAKE_BINARY_DIR}/third_party" CACHE STRING
"A path setting third party libraries download & build directories.")
......
......@@ -50,6 +50,7 @@ ExternalProject_Add(
UPDATE_COMMAND ""
CONFIGURE_COMMAND ""
BUILD_IN_SOURCE 1
PATCH_COMMAND git apply ${PADDLE_SOURCE_DIR}/patches/grpc/fix_too_early_destory.patch
# NOTE(yuyang18):
# Disable -Werror, otherwise the compile will fail in MacOS.
# It seems that we cannot configure that by make command.
......
Fixed-point quantization uses lower bits, for example, 2-bit, 3-bit or 8-bit fixed point to represent weights and activations, which usually are in singe-precision float-point with 32 bits. The fixed-point representation has advantages in reducing memory bandwidth, lowering power consumption and computational resources as well as the model storage requirements. It is especially important for the inference in embedded-device deployment.
According to some experiments, the apporach to quantize the model trained in float point directly works effectively on the large models, like the VGG model having many parameters. But the accuracy drops a lot for the small model. In order to improve the tradeoff between accuracy and latency, many quantized training apporaches are proposed.
This document is to design a quantized training framework on Fluid. The first part will introduce how to quantize, The second part will describe the quantized training framework. The last part will illustrate how to calculate the quantization scale.
### How to quantize
There are many ways to quantize the float value to fixed-point value. For example:
$$ r = min(max(x, a), b)$$
$$ s = \frac{b - a}{n - 1} $$
$$ q = \left \lfloor \frac{r - a}{s} \right \rceil $$
where, $x$ is the float value to be quantized, $[a, b]$ is the quantization range, $a$ is the minimum value and $b$ is the maximal value. $\left \lfloor \right \rceil$ denotes rounding to the nearest integer. If the quantization level is $k$, $n$ is $2^k$, for example, $k$ is 8 and $n$ is 256. $q$ is the quantized integer.
The quantization we applied is parameterized by the number of quantization levels and maximum absolute value:
$$ M = max(abs(x)) $$
$$ q = \left \lfloor \frac{x}{M} * (n - 1) \right \rceil $$
where, $x$ is the float value to be quantized, $M$ is maximum absolute value. $\left \lfloor \right \rceil$ denotes rounding to the nearest integer. For 8 bit quantization, $n=2^{8}=256$. $q$ is the quantized integer.
Wether the *min-max* quantization or *max-abs* quantization, they also can be represent:
$q = scale * r + b$
We call *min-max*, *max-abs* as the quantization arguments, also call them quantization scale or quantization range.
How to calculate the quantization scale (or maximum absolute value) for inference will be described in the last part.
### Training Framework
#### Forward pass
The forward pass is simulated quantization, see Figure 1.
The training framework is as following figure.
<p align="center">
<img src="quantization_forward.png" width="300" height="340"><br/>
Figure 1. Forward in training with simulated quantization.
</p>
- Firstly, both input and weight will be quantized to 8-bit integers.
- Second, do the multiplication (or convolution) operation with integers.
- Third, dequantize the multiplication (or convolution) results to 32-bit float point.
- Finally, do bias-addition in float type of 32 bit. Here, the bias is not quantized.
For general matrix multiplication (GEMM), quantize for $X$ and $W$:
$$ X_q = \left \lfloor \frac{X}{X_m} * (n - 1) \right \rceil $$
$$ W_q = \left \lfloor \frac{W}{W_m} * (n - 1) \right \rceil $$
Do GEMM:
$$ Y = X_q * W_q $$
Dequantize $Y$:
$$
\begin{align}
Y_{dq} &=\frac{Y}{(n - 1) * (n - 1)} * X_m * W_m \\\
&=\frac{X_q * W_q}{(n - 1) * (n - 1)} * X_m * W_m \\\
&=(\frac{X_q}{n - 1} * X_m) * (\frac{W_q}{n - 1} * W_m)
\end{align}
$$
From these formulas, dequantization also can be moved before GEMM, do dequantization for $Xq$ and $Wq$ at first, then do GEMM. The forward workflow in training is equivalent to following framework.
<p align="center">
<img src="quantization_equivalent_forward.png" width="300" height="330"><br/>
Figure 2. Equivalent forward in training with simulated quantization.
</p>
We use this equivalent workflow in the training. In our desigin, there is a quantization transpiler to insert the quantization operator and the de-quantization operator in the Fluid `ProgramDesc`. Since the outputs of quantization and de-quantization operator are still in floating point, they are called faked quantization and de-quantization operator. And the training framework is called simulated quantization.
#### Backward pass
See Figure 3. The gradients are calculated by dequantized weights and activations. All inputs and outputs are float point with 32-bit. And in the weight updating process, the gradients will be added to the original weight, not the quantized or dequantized weights.
<p align="center">
<img src="quantization_backward_and_optimization.png"><br/>
Figure 3. Backward and weight updating in training with simulated quantization.
</p>
So the quantization transipler will change some inputs of the corresponding backward operators.
### How to calculate quantization scale
There are two strategies to calculate quantization scale, we call them dynamic and static strategy. The dynamic strategy calculates the quantization scale value each iteration. The static strategy keeps the quantization scale for different inputs.
For weights, we apply the dynamic strategy in the training, that is to say, the quantization scale will be recalculated during each iteration until the traning is finished.
For activations, the quantization scales are estimated during training, then used in inference. There are several different ways to estimate them:
1. Calculate the mean of maximum absolute during a window.
2. Calculate the max of maximum absolute during a window.
3. Calculate the running mean of maximum absolute during a window, as follows:
$$ Vt = (1 - k) * V + k * V_{t-1} $$
where, $V$ is the maximum absolute value of current batch, $Vt$ is the running mean value. $k$ is a factor, such as 0.9.
......@@ -45,14 +45,31 @@ endfunction(inference_api_test)
cc_library(paddle_inference_api
SRCS paddle_inference_api.cc paddle_inference_api_impl.cc
DEPS ${FLUID_CORE_MODULES} ${GLOB_OP_LIB})
if(NOT APPLE)
set(LINK_FLAGS "-Wl,--retain-symbols-file ${CMAKE_CURRENT_SOURCE_DIR}/paddle_inference_api.sym")
set_target_properties(paddle_inference_api PROPERTIES LINK_FLAGS "${LINK_FLAGS}")
endif()
# Here the shared library doesn't depend on other fluid libraries, or double free will occur.
cc_library(paddle_inference_api_shared SHARED
SRCS paddle_inference_api.cc paddle_inference_api_impl.cc)
add_dependencies(paddle_inference_api_shared ${FLUID_CORE_MODULES} ${GLOB_OP_LIB})
set_target_properties(paddle_inference_api_shared PROPERTIES OUTPUT_NAME paddle_inference_api)
if(NOT APPLE)
set(LINK_FLAGS "-fPIC -fvisibility=hidden")
set(LINK_FLAGS "-Wl,--version-script ${CMAKE_CURRENT_SOURCE_DIR}/paddle_inference_api.map")
set_target_properties(paddle_inference_api_shared PROPERTIES LINK_FLAGS "${LINK_FLAGS}")
FILE(WRITE ${CMAKE_CURRENT_BINARY_DIR}/check_symbol.cmake
"execute_process(COMMAND bash -c \"${CMAKE_CURRENT_SOURCE_DIR}/check_symbol.sh"
" ${CMAKE_CURRENT_BINARY_DIR}/libpaddle_inference_api.so\" RESULT_VARIABLE symbol_res)\n"
"if(NOT \"\${symbol_res}\" STREQUAL \"0\")\n"
" message(FATAL_ERROR \"Check symbol failed.\")\n"
"endif()\n")
add_custom_command(
OUTPUT "${CMAKE_CURRENT_BINARY_DIR}/.check_symbol"
COMMAND ${CMAKE_COMMAND} -P "${CMAKE_CURRENT_BINARY_DIR}/check_symbol.cmake"
DEPENDS paddle_inference_api_shared)
add_custom_target(check_symbol ALL DEPENDS "${CMAKE_CURRENT_BINARY_DIR}/.check_symbol")
endif()
cc_test(test_paddle_inference_api
......
#!/bin/bash
lib=$1
if [ $# -ne 1 ]; then echo "No input library"; exit -1 ; fi
num_paddle_syms=$(nm -D --defined-only ${lib} | grep paddle | wc -l)
num_google_syms=$(nm -D --defined-only ${lib} | grep google | wc -l)
if [ $num_paddle_syms -le 0 ]; then echo "Have no paddle symbols"; exit -1 ; fi
if [ $num_google_syms -ge 1 ]; then echo "Have some google symbols"; exit -1 ; fi
exit 0
......@@ -13,8 +13,6 @@
# limitations under the License.
#
inference_api_test(simple_on_word2vec ARGS test_word2vec)
option(WITH_INFERENCE_DEMO "Compile with Inference demo" OFF)
if(NOT WITH_INFERENCE_DEMO)
return()
......
cmake_minimum_required(VERSION 3.0)
project(cpp_inference_demo CXX C)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++11")
if(NOT DEFINED PADDLE_LIB)
message(FATAL_ERROR "please set PADDLE_LIB with -DPADDLE_LIB=/path/paddle/lib")
endif()
if(NOT DEFINED DEMO_NAME)
message(FATAL_ERROR "please set DEMO_NAME with -DDEMO_NAME=demo_name")
endif()
option(WITH_MKL "Compile demo with MKL/OpenBlas support, default use MKL." ON)
option(WITH_GPU "Compile demo with GPU/CPU, default use CPU." OFF)
option(WITH_STATIC_LIB "Compile demo with static/shared library, default use static." ON)
if(WITH_GPU)
set(CUDA_LIB "/usr/local/cuda/lib64/" CACHE STRING "CUDA Library")
endif()
include_directories("${PADDLE_LIB}")
include_directories("${PADDLE_LIB}/third_party/install/protobuf/include")
include_directories("${PADDLE_LIB}/third_party/install/glog/include")
include_directories("${PADDLE_LIB}/third_party/install/gflags/include")
include_directories("${PADDLE_LIB}/third_party/install/snappy/include")
include_directories("${PADDLE_LIB}/third_party/install/snappystream/include")
include_directories("${PADDLE_LIB}/third_party/install/zlib/include")
include_directories("${PADDLE_LIB}/third_party/boost")
include_directories("${PADDLE_LIB}/third_party/eigen3")
link_directories("${PADDLE_LIB}/third_party/install/snappy/lib")
link_directories("${PADDLE_LIB}/third_party/install/snappystream/lib")
link_directories("${PADDLE_LIB}/third_party/install/protobuf/lib")
link_directories("${PADDLE_LIB}/third_party/install/glog/lib")
link_directories("${PADDLE_LIB}/third_party/install/gflags/lib")
link_directories("${PADDLE_LIB}/third_party/install/zlib/lib")
add_executable(${DEMO_NAME} ${DEMO_NAME}.cc)
if(WITH_MKL)
include_directories("${PADDLE_LIB}/third_party/install/mklml/include")
set(MATH_LIB ${PADDLE_LIB}/third_party/install/mklml/lib/libmklml_intel.so
${PADDLE_LIB}/third_party/install/mklml/lib/libiomp5.so)
set(MKLDNN_PATH "${PADDLE_LIB}/third_party/install/mkldnn")
if(EXISTS ${MKLDNN_PATH})
include_directories("${MKLDNN_PATH}/include")
set(MKLDNN_LIB ${MKLDNN_PATH}/lib/libmkldnn.so.0)
endif()
else()
set(MATH_LIB ${PADDLE_LIB}/third_party/install/openblas/lib/libopenblas.a)
endif()
if(WITH_STATIC_LIB)
set(DEPS
"-Wl,--whole-archive"
${PADDLE_LIB}/paddle/fluid/inference/libpaddle_fluid.a
"-Wl,--no-whole-archive"
${PADDLE_LIB}/contrib/inference/libpaddle_inference_api.a)
else()
# Note: libpaddle_inference_api.so must put before libpaddle_fluid.so
set(DEPS
${PADDLE_LIB}/contrib/inference/libpaddle_inference_api.so
${PADDLE_LIB}/paddle/fluid/inference/libpaddle_fluid.so)
endif()
set(EXTERNAL_LIB "-lrt -ldl -lpthread")
set(DEPS ${DEPS}
${MATH_LIB} ${MKLDNN_LIB}
glog gflags protobuf snappystream snappy z
${EXTERNAL_LIB})
if(WITH_GPU)
set(DEPS ${DEPS} ${CUDA_LIB}/libcudart.so)
endif()
target_link_libraries(${DEMO_NAME} ${DEPS})
set -x
PADDLE_ROOT=$1
WITH_MKL=$2
WITH_GPU=$3
if [ $3 == "ON" ]; then
use_gpu_list='true false'
else
use_gpu_list='false'
fi
mkdir -p build
cd build
for WITH_STATIC_LIB in false; do
rm -rf *
cmake .. -DPADDLE_LIB=${PADDLE_ROOT}/build/fluid_install_dir/ \
-DWITH_MKL=$WITH_MKL \
-DDEMO_NAME=simple_on_word2vec \
-DWITH_GPU=$WITH_GPU \
-DWITH_STATIC_LIB=$WITH_STATIC_LIB
make
for use_gpu in $use_gpu_list; do
./simple_on_word2vec \
--dirname=${PADDLE_ROOT}/build/python/paddle/fluid/tests/book/word2vec.inference.model \
--use_gpu=$use_gpu
done
done
if [ $? -eq 0 ]; then
exit 0
else
echo "inference demo runs fail."
exit 1
fi
set +x
......@@ -16,21 +16,27 @@ limitations under the License. */
* This file contains a simple demo for how to take a model for inference.
*/
#include <gflags/gflags.h>
#include <glog/logging.h>
#include <gtest/gtest.h>
#include <memory>
#include <thread>
#include "paddle/contrib/inference/paddle_inference_api.h"
#include "contrib/inference/paddle_inference_api.h"
#include "paddle/fluid/platform/enforce.h"
DEFINE_string(dirname, "", "Directory of the inference model.");
DEFINE_bool(use_gpu, false, "Whether use gpu.");
namespace paddle {
namespace demo {
DEFINE_string(dirname, "", "Directory of the inference model.");
void Main(bool use_gpu) {
//# 1. Create PaddlePredictor with a config.
NativeConfig config;
config.model_dir = FLAGS_dirname + "word2vec.inference.model";
if (FLAGS_dirname.empty()) {
LOG(INFO) << "Usage: ./simple_on_word2vec --dirname=path/to/your/model";
exit(1);
}
config.model_dir = FLAGS_dirname;
config.use_gpu = use_gpu;
config.fraction_of_gpu_memory = 0.15;
config.device = 0;
......@@ -54,12 +60,16 @@ void Main(bool use_gpu) {
CHECK(predictor->Run(slots, &outputs));
//# 4. Get output.
ASSERT_EQ(outputs.size(), 1UL);
LOG(INFO) << "output buffer size: " << outputs.front().data.length();
PADDLE_ENFORCE(outputs.size(), 1UL);
// Check the output buffer size and result of each tid.
PADDLE_ENFORCE(outputs.front().data.length(), 33168UL);
float result[5] = {
0.00129761, 0.00151112, 0.000423564, 0.00108815, 0.000932706};
const size_t num_elements = outputs.front().data.length() / sizeof(float);
// The outputs' buffers are in CPU memory.
for (size_t i = 0; i < std::min(5UL, num_elements); i++) {
LOG(INFO) << static_cast<float*>(outputs.front().data.data())[i];
PADDLE_ENFORCE(static_cast<float*>(outputs.front().data.data())[i],
result[i]);
}
}
}
......@@ -68,7 +78,7 @@ void MainThreads(int num_threads, bool use_gpu) {
// Multi-threads only support on CPU
// 0. Create PaddlePredictor with a config.
NativeConfig config;
config.model_dir = FLAGS_dirname + "word2vec.inference.model";
config.model_dir = FLAGS_dirname;
config.use_gpu = use_gpu;
config.fraction_of_gpu_memory = 0.15;
config.device = 0;
......@@ -94,14 +104,17 @@ void MainThreads(int num_threads, bool use_gpu) {
CHECK(predictor->Run(inputs, &outputs));
// 4. Get output.
ASSERT_EQ(outputs.size(), 1UL);
LOG(INFO) << "TID: " << tid << ", "
<< "output buffer size: " << outputs.front().data.length();
PADDLE_ENFORCE(outputs.size(), 1UL);
// Check the output buffer size and result of each tid.
PADDLE_ENFORCE(outputs.front().data.length(), 33168UL);
float result[5] = {
0.00129761, 0.00151112, 0.000423564, 0.00108815, 0.000932706};
const size_t num_elements =
outputs.front().data.length() / sizeof(float);
// The outputs' buffers are in CPU memory.
for (size_t i = 0; i < std::min(5UL, num_elements); i++) {
LOG(INFO) << static_cast<float*>(outputs.front().data.data())[i];
PADDLE_ENFORCE(static_cast<float*>(outputs.front().data.data())[i],
result[i]);
}
}
});
......@@ -111,15 +124,18 @@ void MainThreads(int num_threads, bool use_gpu) {
}
}
TEST(demo, word2vec_cpu) { Main(false /*use_gpu*/); }
TEST(demo_multi_threads, word2vec_cpu_1) { MainThreads(1, false /*use_gpu*/); }
TEST(demo_multi_threads, word2vec_cpu_4) { MainThreads(4, false /*use_gpu*/); }
#ifdef PADDLE_WITH_CUDA
TEST(demo, word2vec_gpu) { Main(true /*use_gpu*/); }
TEST(demo_multi_threads, word2vec_gpu_1) { MainThreads(1, true /*use_gpu*/); }
TEST(demo_multi_threads, word2vec_gpu_4) { MainThreads(4, true /*use_gpu*/); }
#endif
} // namespace demo
} // namespace paddle
int main(int argc, char** argv) {
google::ParseCommandLineFlags(&argc, &argv, true);
paddle::demo::Main(false /* use_gpu*/);
paddle::demo::MainThreads(1, false /* use_gpu*/);
paddle::demo::MainThreads(4, false /* use_gpu*/);
if (FLAGS_use_gpu) {
paddle::demo::Main(true /*use_gpu*/);
paddle::demo::MainThreads(1, true /*use_gpu*/);
paddle::demo::MainThreads(4, true /*use_gpu*/);
}
return 0;
}
......@@ -54,7 +54,6 @@ FeedFetchList ScopeBufferedSSAGraphExecutor::Run(
}
}
}
std::vector<framework::LoDTensor> fetch_data;
std::exception_ptr eptr;
try {
......@@ -62,6 +61,7 @@ FeedFetchList ScopeBufferedSSAGraphExecutor::Run(
} catch (...) {
eptr = std::current_exception();
}
drop_scope_counter_ += 1;
if (!fetch_tensors.empty() ||
drop_scope_counter_ == strategy_.num_iteration_per_drop_scope_) {
......@@ -76,7 +76,6 @@ FeedFetchList ScopeBufferedSSAGraphExecutor::Run(
scope->DeleteScope(local_scope);
}
}
if (eptr) {
std::rethrow_exception(eptr);
} else {
......
......@@ -78,6 +78,7 @@ FeedFetchList ThreadedSSAGraphExecutor::Run(
set.clear();
};
// Clean run context
run_op_futures_.clear();
exception_.reset();
......@@ -109,11 +110,9 @@ FeedFetchList ThreadedSSAGraphExecutor::Run(
std::exception *exp = exception_.get();
if (dynamic_cast<platform::EOFException *>(exp)) {
auto e = *static_cast<platform::EOFException *>(exp);
exception_.reset();
throw e;
} else if (dynamic_cast<platform::EnforceNotMet *>(exp)) {
auto e = *static_cast<platform::EnforceNotMet *>(exp);
exception_.reset();
throw e;
} else {
LOG(FATAL) << "Unknown exception.";
......
......@@ -78,6 +78,7 @@ class ThreadedSSAGraphExecutor : public SSAGraphExecutor {
private:
ExecutionStrategy strategy_;
// use std::list because clear(), push_back, and for_each are O(1)
std::list<std::future<void>> run_op_futures_;
};
......
......@@ -13,6 +13,12 @@ endif()
# Create static library
cc_library(paddle_fluid DEPS ${fluid_modules} paddle_fluid_api)
if(NOT APPLE)
# TODO(liuyiqu: Temporarily disable the link flag because it is not support on Mac.
set(LINK_FLAGS "-Wl,--retain-symbols-file ${CMAKE_CURRENT_SOURCE_DIR}/paddle_fluid.sym")
set_target_properties(paddle_fluid PROPERTIES LINK_FLAGS "${LINK_FLAGS}")
endif()
# Create shared library
cc_library(paddle_fluid_shared SHARED
SRCS io.cc
......
......@@ -90,6 +90,20 @@ std::string DataFlowGraph::DotString() const {
return dot.Build();
}
std::string DataFlowGraph::HumanReadableInfo(bool show_values,
bool show_functions) const {
std::stringstream values, functions;
for (auto &n : nodes.nodes()) {
if (show_values && n->IsValue()) {
values << n->repr() << "\n";
}
if (show_functions && n->IsFunction()) {
functions << n->repr() << "\n";
}
}
return "Values:\n" + values.str() + "\n\n" + "Functions:\n" + functions.str();
}
//
// NodesBFSIterator
//
......@@ -146,7 +160,7 @@ bool GraphTraits<DataFlowGraph>::NodesBFSIterator::operator==(
if ((!queue_.empty()) && (!other.queue_.empty())) {
return queue_.front() == other.queue_.front() &&
visited_.size() == other.visited_.size(); // here need to check the
// equality of queue and
// equality of queue and
// visited. Just a light but week implementation.
}
return false;
......@@ -208,6 +222,76 @@ Node *GraphTraits<DataFlowGraph>::NodesDFSIterator::operator->() {
return stack_.top();
}
GraphTraits<DataFlowGraph>::NodesTSIterator::NodesTSIterator(
const std::vector<Node *> &source) {
PADDLE_ENFORCE(!source.empty(),
"Start points of topological sorting should not be empty!");
std::unordered_set<Node *> visited;
std::unordered_set<Node *> to_visit{source.begin(), source.end()};
std::vector<Node *> inlink_visited;
while (!to_visit.empty()) {
std::vector<Node *> queue(to_visit.begin(), to_visit.end());
for (auto *p : queue) {
inlink_visited.clear();
std::copy_if(p->inlinks.begin(), p->inlinks.end(),
std::back_inserter(inlink_visited),
[&](Node *x) { return visited.count(x); });
if (inlink_visited.size() == p->inlinks.size()) {
sorted_.push_back(p);
for (auto *_ : p->outlinks) {
if (!visited.count(_)) {
to_visit.insert(_);
}
}
to_visit.erase(p);
visited.insert(p);
}
}
}
}
GraphTraits<DataFlowGraph>::NodesTSIterator::NodesTSIterator(
const paddle::inference::analysis::GraphTraits<
DataFlowGraph>::NodesTSIterator &other)
: sorted_(other.sorted_), cursor_(other.cursor_) {}
Node &GraphTraits<DataFlowGraph>::NodesTSIterator::operator*() {
PADDLE_ENFORCE_LT(cursor_, sorted_.size());
return *sorted_[cursor_];
}
paddle::inference::analysis::GraphTraits<DataFlowGraph>::NodesTSIterator
&GraphTraits<DataFlowGraph>::NodesTSIterator::operator++() {
if (++cursor_ >= sorted_.size()) {
sorted_.clear();
cursor_ = 0;
}
return *this;
}
paddle::inference::analysis::GraphTraits<DataFlowGraph>::NodesTSIterator &
GraphTraits<DataFlowGraph>::NodesTSIterator::operator=(
const paddle::inference::analysis::GraphTraits<
DataFlowGraph>::NodesTSIterator &other) {
cursor_ = other.cursor_;
sorted_ = other.sorted_;
return *this;
}
bool GraphTraits<DataFlowGraph>::NodesTSIterator::operator==(
const paddle::inference::analysis::GraphTraits<
DataFlowGraph>::NodesTSIterator &other) {
return sorted_ == other.sorted_ && cursor_ == other.cursor_;
}
Node *GraphTraits<DataFlowGraph>::NodesTSIterator::operator->() {
PADDLE_ENFORCE_LT(cursor_, sorted_.size());
return sorted_[cursor_];
}
} // namespace analysis
} // namespace inference
} // namespace paddle
......@@ -48,6 +48,9 @@ struct DataFlowGraph {
// Output a DOT graph file for debug.
std::string DotString() const;
std::string HumanReadableInfo(bool show_values = true,
bool show_functions = true) const;
private:
// Remove duplicate edges and so on.
void Clean();
......@@ -107,6 +110,32 @@ struct GraphTraits<DataFlowGraph> {
std::unordered_set<Node *> visited_;
};
// Topological sorting iterator on nodes.
struct NodesTSIterator
: public std::iterator<std::forward_iterator_tag, Node *> {
NodesTSIterator() = default;
explicit NodesTSIterator(const std::vector<Node *> &source);
NodesTSIterator(NodesTSIterator &&other)
: sorted_(std::move(other.sorted_)), cursor_(other.cursor_) {
other.cursor_ = 0;
}
NodesTSIterator(const NodesTSIterator &other);
Node &operator*();
NodesTSIterator &operator++();
// TODO(Superjomn) current implementation just compare the first
// element, need to compare the graph and all the elements in the queue and
// set.
NodesTSIterator &operator=(const NodesTSIterator &other);
bool operator==(const NodesTSIterator &other);
bool operator!=(const NodesTSIterator &other) { return !(*this == other); }
Node *operator->();
private:
std::vector<Node *> sorted_;
int cursor_{0};
};
explicit GraphTraits(DataFlowGraph *graph) : graph_(graph) {}
// default use BFS to visit the nodes.
......@@ -119,17 +148,24 @@ struct GraphTraits<DataFlowGraph> {
iterator_range<NodesDFSIterator> nodes_in_DFS() {
return iterator_range<NodesDFSIterator>(nodes_dfs_begin(), nodes_dfs_end());
}
iterator_range<NodesTSIterator> nodes_in_TS() {
return iterator_range<NodesTSIterator>(nodes_ts_begin(), nodes_ts_end());
}
private:
NodesBFSIterator nodes_bfs_begin() {
return NodesBFSIterator(graph_->inputs);
}
NodesBFSIterator nodes_bfs_end() { return NodesBFSIterator(); }
NodesDFSIterator nodes_dfs_begin() {
return NodesDFSIterator(graph_->inputs);
}
NodesDFSIterator nodes_dfs_end() { return NodesDFSIterator(); }
NodesTSIterator nodes_ts_begin() { return NodesTSIterator(graph_->inputs); }
NodesTSIterator nodes_ts_end() { return NodesTSIterator(); }
private:
DataFlowGraph *graph_;
};
......
......@@ -24,11 +24,11 @@ TEST(DataFlowGraph, BFS) {
auto dfg = ProgramDescToDFG(desc);
dfg.Build();
for (auto* in : dfg.inputs) {
for (auto *in : dfg.inputs) {
LOG(INFO) << "inputs: " << in->name() << " "
<< static_cast<int>(in->type());
}
for (auto* out : dfg.outputs) {
for (auto *out : dfg.outputs) {
LOG(INFO) << "outputs: " << out->name() << " "
<< static_cast<int>(out->type());
}
......@@ -57,6 +57,71 @@ TEST(DataFlowGraph, DFS) {
ASSERT_EQ(count, dfg.nodes.size());
}
// Topological sorting.
/*
* Graph topology
* inputs: 0, 1, 2
* 0 -> 4
* 0 -> 5
* 1 -> 6
* 2 -> 7
* 4 -> 5
* 4 -> 7
* 4 -> 3
* 7 -> 3
*/
TEST(DataFlowGraph, TS) {
DataFlowGraph graph;
for (int i = 0; i < 8; i++) {
auto *node = graph.nodes.Create(Node::Type::kValue);
node->SetName("node-" + std::to_string(i));
}
auto add_link = [&](int i, int j) {
Node *source = graph.nodes.GetMutable(i);
Node *target = graph.nodes.GetMutable(j);
target->inlinks.push_back(source);
source->outlinks.push_back(target);
};
graph.inputs.push_back(graph.nodes.GetMutable(0));
graph.inputs.push_back(graph.nodes.GetMutable(1));
graph.inputs.push_back(graph.nodes.GetMutable(2));
add_link(0, 4);
add_link(0, 5);
add_link(1, 6);
add_link(2, 7);
add_link(4, 5);
add_link(4, 7);
add_link(4, 3);
add_link(7, 3);
auto its = GraphTraits<DataFlowGraph>(&graph).nodes_in_TS();
std::vector<int> sorted_ids;
for (auto it = its.begin(); it != its.end(); ++it) {
LOG(INFO) << it->name();
sorted_ids.push_back(it->id());
}
// Assert a occurs prior to b in the sorted_ids.
auto assert_positive_sequence_pair = [&](int a, int b) {
auto a_offset = std::find(sorted_ids.begin(), sorted_ids.end(), a);
auto b_offset = std::find(sorted_ids.begin(), sorted_ids.end(), b);
ASSERT_LT(a_offset, b_offset);
};
assert_positive_sequence_pair(2, 7);
assert_positive_sequence_pair(7, 3);
assert_positive_sequence_pair(4, 3);
assert_positive_sequence_pair(0, 4);
assert_positive_sequence_pair(0, 5);
assert_positive_sequence_pair(1, 6);
assert_positive_sequence_pair(4, 5);
assert_positive_sequence_pair(4, 7);
}
} // namespace analysis
} // namespace inference
} // namespace paddle
......@@ -265,6 +265,8 @@ op_library(recurrent_op DEPS executor)
op_library(warpctc_op DEPS dynload_warpctc sequence_padding sequence_scale)
op_library(cos_sim_op DEPS cos_sim_functor)
op_library(parallel_do_op DEPS executor)
op_library(unsqueeze_op DEPS reshape_op)
op_library(squeeze_op DEPS reshape_op)
if (WITH_GPU)
op_library(conv_op DEPS vol2col depthwise_conv im2col)
......
......@@ -29,6 +29,79 @@ using mkldnn::stream;
using platform::to_void_cast;
using platform::GetMKLDNNFormat;
class ConvMKLDNNHandler : public platform::MKLDNNHandler {
public:
ConvMKLDNNHandler(
std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd,
const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
const std::string& base_key)
: platform::MKLDNNHandler(dev_ctx, engine, base_key) {
conv_pd_ = conv_pd;
}
std::shared_ptr<mkldnn::memory> AcquireDstMemoryFromPrimitive(void* ptr) {
return this->AcquireMemoryFromPrimitive(conv_pd_->dst_primitive_desc(), ptr,
"@dst_mem_p");
}
std::shared_ptr<mkldnn::memory> AcquireSrcMemoryFromPrimitive(
const std::shared_ptr<mkldnn::memory> user_memory_p,
std::vector<mkldnn::primitive>& pipeline) {
auto src_pd = conv_pd_->src_primitive_desc();
auto user_pd = user_memory_p->get_primitive_desc();
return this->AcquireMemory(src_pd, user_pd, user_memory_p, "@src_mem_p",
pipeline);
}
std::shared_ptr<mkldnn::memory> AcquireWeightsMemoryFromPrimitive(
const std::shared_ptr<mkldnn::memory> user_weights_memory_p,
std::vector<mkldnn::primitive>& pipeline) {
auto user_weights_pd = user_weights_memory_p->get_primitive_desc();
auto weights_pd = conv_pd_->weights_primitive_desc();
return this->AcquireMemory(weights_pd, user_weights_pd,
user_weights_memory_p, "@weights_mem_p",
pipeline);
}
std::shared_ptr<mkldnn::convolution_forward> AcquireConvolution(
std::shared_ptr<mkldnn::memory> src_memory_p,
std::shared_ptr<mkldnn::memory> weights_memory_p,
std::shared_ptr<mkldnn::memory> dst_memory_p) {
auto prim_key = key_ + "@conv_p";
auto prim_desc_key = key_ + "@conv_pd";
auto conv_p = std::static_pointer_cast<mkldnn::convolution_forward>(
dev_ctx_.GetBlob(prim_key));
PADDLE_ENFORCE((conv_p != nullptr) || (is_reusing_ == false),
"Fail to find convolution primitive in device context");
if (conv_p == nullptr) {
conv_p = std::make_shared<mkldnn::convolution_forward>(
*conv_pd_, *(src_memory_p), *(weights_memory_p.get()),
*(dst_memory_p.get()));
dev_ctx_.SetBlob(prim_key, conv_p);
} else {
is_reusing_ = true;
}
return conv_p;
}
// Generate keys for storing/retriving primitives for this operator
// TODO(jczaja): Make hashing function more optimial
static std::string GetHash(memory::dims& input_dims,
memory::dims& weights_dims,
std::vector<int>& strides,
std::vector<int>& paddings,
std::vector<int>& dilations, int groups,
const std::string& suffix) {
return dims2str(input_dims) + dims2str(weights_dims) + dims2str(strides) +
dims2str(paddings) + dims2str(dilations) + std::to_string(groups) +
suffix;
}
private:
std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd_;
};
template <typename T>
class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
public:
......@@ -36,10 +109,6 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
"It must use CPUPlace.");
// Get unique name for index
const std::string key = ctx.op().Output("Output");
const std::string key_conv_pd = key + "@conv_pd";
auto& dev_ctx =
ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
const auto& mkldnn_engine = dev_ctx.GetEngine();
......@@ -80,68 +149,62 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
paddle::framework::vectorize2int(filter->dims());
std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());
// create mkldnn memory from input tensors (data/weights)
auto user_src_memory = memory(
{{{src_tz}, memory::data_type::f32, input->format()}, mkldnn_engine},
to_void_cast(input_data));
auto user_weights_memory =
memory({{{weights_tz}, memory::data_type::f32, filter->format()},
mkldnn_engine},
to_void_cast(filter_data));
// Get unique name for storing MKLDNN primitives
const std::string key = ConvMKLDNNHandler::GetHash(
src_tz, weights_tz, strides, paddings, dilations, groups,
ctx.op().Output("Output"));
const std::string key_conv_pd = key + "@conv_pd";
std::vector<primitive> pipeline;
auto user_src_md = platform::MKLDNNMemDesc(
{src_tz}, platform::MKLDNNGetDataType<T>(), input->format());
auto user_weights_md = platform::MKLDNNMemDesc(
{weights_tz}, platform::MKLDNNGetDataType<T>(), filter->format());
/* create memory descriptor for convolution without specified format
* ('any') which lets a primitive (convolution in this case) choose
* the memory format preferred for best performance
*/
auto src_md = platform::MKLDNNMemDesc(src_tz, memory::data_type::f32,
memory::format::any);
auto src_md = platform::MKLDNNMemDesc(
src_tz, platform::MKLDNNGetDataType<T>(), memory::format::any);
auto weights_md = platform::MKLDNNMemDesc(
weights_tz, memory::data_type::f32, memory::format::any);
auto dst_md = platform::MKLDNNMemDesc(dst_tz, memory::data_type::f32,
memory::format::any);
weights_tz, platform::MKLDNNGetDataType<T>(), memory::format::any);
auto dst_md = platform::MKLDNNMemDesc(
dst_tz, platform::MKLDNNGetDataType<T>(), memory::format::any);
// create a conv primitive descriptor and save it for usage in backward
std::shared_ptr<conv_fwd::primitive_desc> conv_pd = ConvFwdPrimitiveDesc(
src_md, weights_md, dst_md, strides, paddings, mkldnn_engine);
// Save conv_pd/src_memory/weights_memory for backward pass
dev_ctx.SetBlob(key_conv_pd, conv_pd);
// create reorder primitive if the input format is not the preferred one
auto src_memory = user_src_memory;
primitive reorder_src;
bool is_src_reordered = false;
if (memory::primitive_desc(conv_pd->src_primitive_desc()) !=
user_src_memory.get_primitive_desc()) {
src_memory = memory(conv_pd->src_primitive_desc());
reorder_src = reorder(user_src_memory, src_memory);
is_src_reordered = true;
}
auto weights_memory = user_weights_memory;
primitive reorder_weights;
bool is_weights_reordered = false;
if (memory::primitive_desc(conv_pd->weights_primitive_desc()) !=
user_weights_memory.get_primitive_desc()) {
weights_memory = memory(conv_pd->weights_primitive_desc());
reorder_weights = reorder(user_weights_memory, weights_memory);
is_weights_reordered = true;
}
ConvMKLDNNHandler handler(conv_pd, dev_ctx, mkldnn_engine, key);
// create memory primitive for conv dst
auto dst_memory = memory(conv_pd->dst_primitive_desc(), output_data);
// create mkldnn memory from input tensors (data/weights)
auto user_src_memory_p =
handler.AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
auto user_weights_memory_p = handler.AcquireWeightsMemory(
user_weights_md, to_void_cast<T>(filter_data));
// create reorder primitive if the input format is not the preferred one
auto src_memory_p =
handler.AcquireSrcMemoryFromPrimitive(user_src_memory_p, pipeline);
auto weights_memory_p = handler.AcquireWeightsMemoryFromPrimitive(
user_weights_memory_p, pipeline);
auto dst_memory_p =
handler.AcquireDstMemoryFromPrimitive(to_void_cast<T>(output_data));
// create convolution op primitive
auto conv_prim = conv_fwd(*conv_pd, src_memory, weights_memory, dst_memory);
auto conv_p = handler.AcquireConvolution(src_memory_p, weights_memory_p,
dst_memory_p);
// push primitive to stream and wait until it's executed
std::vector<primitive> pipeline;
if (is_src_reordered) pipeline.push_back(reorder_src);
if (is_weights_reordered) pipeline.push_back(reorder_weights);
pipeline.push_back(conv_prim);
pipeline.push_back(*conv_p);
stream(stream::kind::eager).submit(pipeline).wait();
// Save conv_pd/src_memory/weights_memory for backward pass
dev_ctx.SetBlob(key_conv_pd, conv_pd);
output->set_layout(DataLayout::kMKLDNN);
output->set_format(GetMKLDNNFormat(dst_memory));
output->set_format(GetMKLDNNFormat(*dst_memory_p));
}
private:
......@@ -197,13 +260,10 @@ class ConvMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
if (!input_grad && !filter_grad) return;
// Get an unique name from "argument" name of "Output" variable
// This name will be used as key when saving info into device context
const std::string key = ctx.op().Input("Output");
const std::string key_conv_pd = key + "@conv_pd";
std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
int groups = ctx.Attr<int>("groups");
const T* input_data = input->data<T>();
const T* filter_data = filter->data<T>();
......@@ -223,6 +283,14 @@ class ConvMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
paddle::framework::vectorize2int(filter->dims());
std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());
// Get an unique name from "argument" name of "Output" variable
// This name will be used as key when saving info into device context
const std::string key =
ConvMKLDNNHandler::GetHash(src_tz, weights_tz, strides, paddings,
dilations, groups, ctx.op().Input("Output"));
const std::string key_conv_pd = key + "@conv_pd";
// create mkldnn memory from input tensors (input/weights/output_grad)
auto user_src_memory = memory(
{{{src_tz}, memory::data_type::f32, input->format()}, mkldnn_engine},
......
......@@ -27,7 +27,8 @@ anchor_generator_op.cu)
detection_library(target_assign_op SRCS target_assign_op.cc
target_assign_op.cu)
detection_library(polygon_box_transform_op SRCS polygon_box_transform_op.cc
polygon_box_transform_op.cu)
polygon_box_transform_op.cu)
detection_library(rpn_target_assign_op SRCS rpn_target_assign_op.cc)
# Export local libraries to parent
set(DETECTION_LIBRARY ${LOCAL_DETECTION_LIBS} PARENT_SCOPE)
......@@ -149,6 +149,13 @@ class PriorBoxOpMaker : public framework::OpProtoAndCheckerMaker {
"(float) "
"Prior boxes center offset.")
.SetDefault(0.5);
AddAttr<bool>(
"min_max_aspect_ratios_order",
"(bool) If set True, the output prior box is in order of"
"[min, max, aspect_ratios], which is consistent with Caffe."
"Please note, this order affects the weights order of convolution layer"
"followed by and does not affect the final detection results.")
.SetDefault(false);
AddComment(R"DOC(
Prior box operator
Generate prior boxes for SSD(Single Shot MultiBox Detector) algorithm.
......
......@@ -28,8 +28,8 @@ __global__ void GenPriorBox(T* out, const T* aspect_ratios, const int height,
const int im_width, const int as_num,
const T offset, const T step_width,
const T step_height, const T* min_sizes,
const T* max_sizes, const int min_num,
bool is_clip) {
const T* max_sizes, const int min_num, bool is_clip,
bool min_max_aspect_ratios_order) {
int num_priors = max_sizes ? as_num * min_num + min_num : as_num * min_num;
int box_num = height * width * num_priors;
for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < box_num;
......@@ -44,14 +44,28 @@ __global__ void GenPriorBox(T* out, const T* aspect_ratios, const int height,
T min_size = min_sizes[m];
if (max_sizes) {
int s = p % (as_num + 1);
if (s < as_num) {
T ar = aspect_ratios[s];
bw = min_size * sqrt(ar) / 2.;
bh = min_size / sqrt(ar) / 2.;
if (!min_max_aspect_ratios_order) {
if (s < as_num) {
T ar = aspect_ratios[s];
bw = min_size * sqrt(ar) / 2.;
bh = min_size / sqrt(ar) / 2.;
} else {
T max_size = max_sizes[m];
bw = sqrt(min_size * max_size) / 2.;
bh = bw;
}
} else {
T max_size = max_sizes[m];
bw = sqrt(min_size * max_size) / 2.;
bh = bw;
if (s == 0) {
bw = bh = min_size / 2.;
} else if (s == 1) {
T max_size = max_sizes[m];
bw = sqrt(min_size * max_size) / 2.;
bh = bw;
} else {
T ar = aspect_ratios[s - 1];
bw = min_size * sqrt(ar) / 2.;
bh = min_size / sqrt(ar) / 2.;
}
}
} else {
int s = p % as_num;
......@@ -94,6 +108,8 @@ class PriorBoxOpCUDAKernel : public framework::OpKernel<T> {
auto variances = ctx.Attr<std::vector<float>>("variances");
auto flip = ctx.Attr<bool>("flip");
auto clip = ctx.Attr<bool>("clip");
auto min_max_aspect_ratios_order =
ctx.Attr<bool>("min_max_aspect_ratios_order");
std::vector<float> aspect_ratios;
ExpandAspectRatios(input_aspect_ratio, flip, &aspect_ratios);
......@@ -149,7 +165,7 @@ class PriorBoxOpCUDAKernel : public framework::OpKernel<T> {
GenPriorBox<T><<<grid, block, 0, stream>>>(
boxes->data<T>(), r.data<T>(), height, width, im_height, im_width,
aspect_ratios.size(), offset, step_width, step_height, min.data<T>(),
max_data, min_num, clip);
max_data, min_num, clip, min_max_aspect_ratios_order);
framework::Tensor v;
framework::TensorFromVector(variances, ctx.device_context(), &v);
......
......@@ -68,6 +68,8 @@ class PriorBoxOpKernel : public framework::OpKernel<T> {
auto variances = ctx.Attr<std::vector<float>>("variances");
auto flip = ctx.Attr<bool>("flip");
auto clip = ctx.Attr<bool>("clip");
auto min_max_aspect_ratios_order =
ctx.Attr<bool>("min_max_aspect_ratios_order");
std::vector<float> aspect_ratios;
ExpandAspectRatios(input_aspect_ratio, flip, &aspect_ratios);
......@@ -108,26 +110,59 @@ class PriorBoxOpKernel : public framework::OpKernel<T> {
int idx = 0;
for (size_t s = 0; s < min_sizes.size(); ++s) {
auto min_size = min_sizes[s];
// priors with different aspect ratios
for (size_t r = 0; r < aspect_ratios.size(); ++r) {
float ar = aspect_ratios[r];
box_width = min_size * sqrt(ar) / 2.;
box_height = min_size / sqrt(ar) / 2.;
e_boxes(h, w, idx, 0) = (center_x - box_width) / img_width;
e_boxes(h, w, idx, 1) = (center_y - box_height) / img_height;
e_boxes(h, w, idx, 2) = (center_x + box_width) / img_width;
e_boxes(h, w, idx, 3) = (center_y + box_height) / img_height;
idx++;
}
if (max_sizes.size() > 0) {
auto max_size = max_sizes[s];
// square prior with size sqrt(minSize * maxSize)
box_width = box_height = sqrt(min_size * max_size) / 2.;
if (min_max_aspect_ratios_order) {
box_width = box_height = min_size / 2.;
e_boxes(h, w, idx, 0) = (center_x - box_width) / img_width;
e_boxes(h, w, idx, 1) = (center_y - box_height) / img_height;
e_boxes(h, w, idx, 2) = (center_x + box_width) / img_width;
e_boxes(h, w, idx, 3) = (center_y + box_height) / img_height;
idx++;
if (max_sizes.size() > 0) {
auto max_size = max_sizes[s];
// square prior with size sqrt(minSize * maxSize)
box_width = box_height = sqrt(min_size * max_size) / 2.;
e_boxes(h, w, idx, 0) = (center_x - box_width) / img_width;
e_boxes(h, w, idx, 1) = (center_y - box_height) / img_height;
e_boxes(h, w, idx, 2) = (center_x + box_width) / img_width;
e_boxes(h, w, idx, 3) = (center_y + box_height) / img_height;
idx++;
}
// priors with different aspect ratios
for (size_t r = 0; r < aspect_ratios.size(); ++r) {
float ar = aspect_ratios[r];
if (fabs(ar - 1.) < 1e-6) {
continue;
}
box_width = min_size * sqrt(ar) / 2.;
box_height = min_size / sqrt(ar) / 2.;
e_boxes(h, w, idx, 0) = (center_x - box_width) / img_width;
e_boxes(h, w, idx, 1) = (center_y - box_height) / img_height;
e_boxes(h, w, idx, 2) = (center_x + box_width) / img_width;
e_boxes(h, w, idx, 3) = (center_y + box_height) / img_height;
idx++;
}
} else {
// priors with different aspect ratios
for (size_t r = 0; r < aspect_ratios.size(); ++r) {
float ar = aspect_ratios[r];
box_width = min_size * sqrt(ar) / 2.;
box_height = min_size / sqrt(ar) / 2.;
e_boxes(h, w, idx, 0) = (center_x - box_width) / img_width;
e_boxes(h, w, idx, 1) = (center_y - box_height) / img_height;
e_boxes(h, w, idx, 2) = (center_x + box_width) / img_width;
e_boxes(h, w, idx, 3) = (center_y + box_height) / img_height;
idx++;
}
if (max_sizes.size() > 0) {
auto max_size = max_sizes[s];
// square prior with size sqrt(minSize * maxSize)
box_width = box_height = sqrt(min_size * max_size) / 2.;
e_boxes(h, w, idx, 0) = (center_x - box_width) / img_width;
e_boxes(h, w, idx, 1) = (center_y - box_height) / img_height;
e_boxes(h, w, idx, 2) = (center_x + box_width) / img_width;
e_boxes(h, w, idx, 3) = (center_y + box_height) / img_height;
idx++;
}
}
}
}
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <random>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
template <typename T, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;
class RpnTargetAssignOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("DistMat"),
"Input(DistMat) of RpnTargetAssignOp should not be null");
PADDLE_ENFORCE(
ctx->HasOutput("LocationIndex"),
"Output(LocationIndex) of RpnTargetAssignOp should not be null");
PADDLE_ENFORCE(
ctx->HasOutput("ScoreIndex"),
"Output(ScoreIndex) of RpnTargetAssignOp should not be null");
PADDLE_ENFORCE(
ctx->HasOutput("TargetLabel"),
"Output(TargetLabel) of RpnTargetAssignOp should not be null");
auto in_dims = ctx->GetInputDim("DistMat");
PADDLE_ENFORCE_EQ(in_dims.size(), 2,
"The rank of Input(DistMat) must be 2.");
}
};
template <typename T>
class RpnTargetAssignKernel : public framework::OpKernel<T> {
public:
void ScoreAssign(const T* dist_data, const Tensor& anchor_to_gt_max,
const int row, const int col, const float pos_threshold,
const float neg_threshold, int64_t* target_label_data,
std::vector<int>* fg_inds, std::vector<int>* bg_inds) const {
int fg_offset = fg_inds->size();
int bg_offset = bg_inds->size();
for (int64_t i = 0; i < row; ++i) {
const T* v = dist_data + i * col;
T max_dist = *std::max_element(v, v + col);
for (int64_t j = 0; j < col; ++j) {
T val = dist_data[i * col + j];
if (val == max_dist) target_label_data[j] = 1;
}
}
// Pick the fg/bg and count the number
for (int64_t j = 0; j < col; ++j) {
if (anchor_to_gt_max.data<T>()[j] > pos_threshold) {
target_label_data[j] = 1;
} else if (anchor_to_gt_max.data<T>()[j] < neg_threshold) {
target_label_data[j] = 0;
}
if (target_label_data[j] == 1) {
fg_inds->push_back(fg_offset + j);
} else if (target_label_data[j] == 0) {
bg_inds->push_back(bg_offset + j);
}
}
}
void ReservoirSampling(const int num, const int offset,
std::minstd_rand engine,
std::vector<int>* inds) const {
std::uniform_real_distribution<float> uniform(0, 1);
const int64_t size = static_cast<int64_t>(inds->size());
if (size > num) {
for (int64_t i = num; i < size; ++i) {
int rng_ind = std::floor(uniform(engine) * i);
if (rng_ind < num)
std::iter_swap(inds->begin() + rng_ind + offset,
inds->begin() + i + offset);
}
}
}
void RpnTargetAssign(const framework::ExecutionContext& ctx,
const Tensor& dist, const float pos_threshold,
const float neg_threshold, const int rpn_batch_size,
const int fg_num, std::minstd_rand engine,
std::vector<int>* fg_inds, std::vector<int>* bg_inds,
int64_t* target_label_data) const {
auto* dist_data = dist.data<T>();
int64_t row = dist.dims()[0];
int64_t col = dist.dims()[1];
int fg_offset = fg_inds->size();
int bg_offset = bg_inds->size();
// Calculate the max IoU between anchors and gt boxes
Tensor anchor_to_gt_max;
anchor_to_gt_max.mutable_data<T>(
framework::make_ddim({static_cast<int64_t>(col), 1}),
platform::CPUPlace());
auto& place = *ctx.template device_context<platform::CPUDeviceContext>()
.eigen_device();
auto x = EigenMatrix<T>::From(dist);
auto x_col_max = EigenMatrix<T>::From(anchor_to_gt_max);
x_col_max.device(place) =
x.maximum(Eigen::DSizes<int, 1>(0))
.reshape(Eigen::DSizes<int, 2>(static_cast<int64_t>(col), 1));
// Follow the Faster RCNN's implementation
ScoreAssign(dist_data, anchor_to_gt_max, row, col, pos_threshold,
neg_threshold, target_label_data, fg_inds, bg_inds);
// Reservoir Sampling
ReservoirSampling(fg_num, fg_offset, engine, fg_inds);
int bg_num = rpn_batch_size - fg_inds->size();
ReservoirSampling(bg_num, bg_offset, engine, bg_inds);
}
void Compute(const framework::ExecutionContext& context) const override {
auto* dist = context.Input<LoDTensor>("DistMat");
auto* loc_index = context.Output<Tensor>("LocationIndex");
auto* score_index = context.Output<Tensor>("ScoreIndex");
auto* tgt_lbl = context.Output<Tensor>("TargetLabel");
auto col = dist->dims()[1];
int64_t n = dist->lod().size() == 0UL
? 1
: static_cast<int64_t>(dist->lod().back().size() - 1);
if (dist->lod().size()) {
PADDLE_ENFORCE_EQ(dist->lod().size(), 1UL,
"Only support 1 level of LoD.");
}
int rpn_batch_size = context.Attr<int>("rpn_batch_size_per_im");
float pos_threshold = context.Attr<float>("rpn_positive_overlap");
float neg_threshold = context.Attr<float>("rpn_negative_overlap");
float fg_fraction = context.Attr<float>("fg_fraction");
int fg_num = static_cast<int>(rpn_batch_size * fg_fraction);
int64_t* target_label_data =
tgt_lbl->mutable_data<int64_t>({n * col, 1}, context.GetPlace());
auto& dev_ctx = context.device_context<platform::CPUDeviceContext>();
math::SetConstant<platform::CPUDeviceContext, int64_t> iset;
iset(dev_ctx, tgt_lbl, static_cast<int>(-1));
std::vector<int> fg_inds;
std::vector<int> bg_inds;
std::random_device rnd;
std::minstd_rand engine;
int seed =
context.Attr<bool>("fix_seed") ? context.Attr<int>("seed") : rnd();
engine.seed(seed);
if (n == 1) {
RpnTargetAssign(context, *dist, pos_threshold, neg_threshold,
rpn_batch_size, fg_num, engine, &fg_inds, &bg_inds,
target_label_data);
} else {
auto lod = dist->lod().back();
for (size_t i = 0; i < lod.size() - 1; ++i) {
Tensor one_ins = dist->Slice(lod[i], lod[i + 1]);
RpnTargetAssign(context, one_ins, pos_threshold, neg_threshold,
rpn_batch_size, fg_num, engine, &fg_inds, &bg_inds,
target_label_data + i * col);
}
}
int* loc_index_data = loc_index->mutable_data<int>(
{static_cast<int>(fg_inds.size())}, context.GetPlace());
int* score_index_data = score_index->mutable_data<int>(
{static_cast<int>(fg_inds.size() + bg_inds.size())},
context.GetPlace());
memcpy(loc_index_data, reinterpret_cast<int*>(&fg_inds[0]),
fg_inds.size() * sizeof(int));
memcpy(score_index_data, reinterpret_cast<int*>(&fg_inds[0]),
fg_inds.size() * sizeof(int));
memcpy(score_index_data + fg_inds.size(),
reinterpret_cast<int*>(&bg_inds[0]), bg_inds.size() * sizeof(int));
}
};
class RpnTargetAssignOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput(
"DistMat",
"(LoDTensor or Tensor) this input is a 2-D LoDTensor with shape "
"[K, M]. It is pair-wise distance matrix between the entities "
"represented by each row and each column. For example, assumed one "
"entity is A with shape [K], another entity is B with shape [M]. The "
"DistMat[i][j] is the distance between A[i] and B[j]. The bigger "
"the distance is, the better macthing the pairs are. Please note, "
"This tensor can contain LoD information to represent a batch of "
"inputs. One instance of this batch can contain different numbers of "
"entities.");
AddAttr<float>(
"rpn_positive_overlap",
"Minimum overlap required between an anchor and ground-truth "
"box for the (anchor, gt box) pair to be a positive example.")
.SetDefault(0.7);
AddAttr<float>(
"rpn_negative_overlap",
"Maximum overlap allowed between an anchor and ground-truth "
"box for the (anchor, gt box) pair to be a negative examples.")
.SetDefault(0.3);
AddAttr<float>(
"fg_fraction",
"Target fraction of RoI minibatch that "
"is labeled foreground (i.e. class > 0), 0-th class is background.")
.SetDefault(0.25);
AddAttr<int>("rpn_batch_size_per_im",
"Total number of RPN examples per image.")
.SetDefault(256);
AddAttr<bool>("fix_seed",
"A flag indicating whether to use a fixed seed to generate "
"random mask. NOTE: DO NOT set this flag to true in "
"training. Setting this flag to true is only useful in "
"unittest.")
.SetDefault(false);
AddAttr<int>("seed", "RpnTargetAssign random seed.").SetDefault(0);
AddOutput(
"LocationIndex",
"(Tensor), The indexes of foreground anchors in all RPN anchors, the "
"shape of the LocationIndex is [F], F depends on the value of input "
"tensor and attributes.");
AddOutput(
"ScoreIndex",
"(Tensor), The indexes of foreground and background anchors in all "
"RPN anchors(The rest anchors are ignored). The shape of the "
"ScoreIndex is [F + B], F and B depend on the value of input "
"tensor and attributes.");
AddOutput("TargetLabel",
"(Tensor<int64_t>), The target labels of each anchor with shape "
"[K * M, 1], "
"K and M is the same as they are in DistMat.");
AddComment(R"DOC(
This operator can be, for given the IoU between the ground truth bboxes and the
anchors, to assign classification and regression targets to each prediction.
The Score index and LocationIndex will be generated according to the DistMat.
The rest anchors would not contibute to the RPN training loss
ScoreIndex is composed of foreground anchor indexes(positive labels) and
background anchor indexes(negative labels). LocationIndex is exactly same
as the foreground anchor indexes since we can not assign regression target to
the background anchors.
The classification targets(TargetLabel) is a binary class label (of being
an object or not). Following the paper of Faster-RCNN, the positive labels
are two kinds of anchors: (i) the anchor/anchors with the highest IoU
overlap with a ground-truth box, or (ii) an anchor that has an IoU overlap
higher than rpn_positive_overlap(0.7) with any ground-truth box. Note that
a single ground-truth box may assign positive labels to multiple anchors.
A non-positive anchor is when its IoU ratio is lower than rpn_negative_overlap
(0.3) for all ground-truth boxes. Anchors that are neither positive nor
negative do not contribute to the training objective.
)DOC");
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(rpn_target_assign, ops::RpnTargetAssignOp,
ops::RpnTargetAssignOpMaker,
paddle::framework::EmptyGradOpMaker);
REGISTER_OP_CPU_KERNEL(rpn_target_assign, ops::RpnTargetAssignKernel<float>,
ops::RpnTargetAssignKernel<double>);
......@@ -59,7 +59,9 @@ GRPCClient::~GRPCClient() {
for (auto& it : channels_) {
it.second.reset();
}
channels_.clear();
}
client_thread_->join();
}
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/fake_quantize_op.h"
#include <string>
namespace paddle {
namespace operators {
class FakeQuantizeOp : public framework::OperatorWithKernel {
public:
FakeQuantizeOp(const std::string &type,
const framework::VariableNameMap &inputs,
const framework::VariableNameMap &outputs,
const framework::AttributeMap &attrs)
: OperatorWithKernel(type, inputs, outputs, attrs) {}
void InferShape(framework::InferShapeContext *ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("X"),
"Input(X) of FakeQuantizeOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("Out"),
"Output(Out) of FakeQuantizeOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("OutMovingScale"),
"OutMovingScale(Out) of FakeQuantizeOp should not be null");
// if (ctx->HasInput("InMovingScale")) {
ctx->SetOutputDim("OutMovingScale", ctx->GetInputDim("InMovingScale"));
//}
// if (ctx->HasInput("InScales")) {
PADDLE_ENFORCE(ctx->HasOutput("OutScales"),
"OutScales(Out) of FakeQuantizeOp should not be null");
ctx->SetOutputDim("OutScales", ctx->GetInputDim("InScales"));
// PADDLE_ENFORCE_EQ(ctx->Inputs("InScales")[0],
// ctx->Outputs("OutScales")[0],
// "Mean and MeanOut should share the same memory");
//}
ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
ctx->ShareLoD("X", /*->*/ "Out");
}
};
class FakeQuantizeOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("X", "(Tensor) Input tensor of scale operator.");
AddInput("InScales", "(Tensor) scale buffer, used in static quantization.")
.AsDispensable();
AddInput("InMovingScale", "Last scale, used in static quantization.")
.AsDispensable();
AddInput("InCurrentIter",
"Last iteration number, used in static quantization.")
.AsDispensable();
AddOutput("Out", "(Tensor) Output of quantized low level tensor.");
AddOutput("OutScales",
"(Tensor) scale buffer, used in static quantization.")
.AsDispensable();
AddOutput("OutMovingScale", " Current scale");
AddOutput("OutCurrentIter", "Current iteration number.").AsDispensable();
AddAttr<std::string>("quantize_type",
"(string, default abs_max)"
"The scaling tpe of the quantize operator.")
.SetDefault("abs_max");
AddAttr<int>("window_size", "(int, default 10000)").SetDefault(10000);
AddAttr<int>("bit_length", "(int, default 8)")
.SetDefault(8)
.AddCustomChecker([](const int &bit_length) {
PADDLE_ENFORCE(bit_length >= 1 && bit_length <= 16,
"'bit_length' should be between 1 and 16.");
});
AddAttr<bool>("is_test", "").SetDefault(false);
AddComment(R"DOC(
FakeQuantize operator
quantize_type = abs_max:
$$scale = max(abs(x))$$
quantize_type = range_abs_max:
$$scale = max(max(abs(x)), history_abs_max)$$
quantize_type = moving_average_abs_max:
$$scale = 0.1*scale+0.9*new_abs_max)$$
$$Out = scale*X$$
)DOC");
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(fake_quantize, ops::FakeQuantizeOp, ops::FakeQuantizeOpMaker,
paddle::framework::EmptyGradOpMaker);
REGISTER_OP_CPU_KERNEL(
fake_quantize,
ops::FakeQuantizeKernel<paddle::platform::CPUDeviceContext, float>,
ops::FakeQuantizeKernel<paddle::platform::CPUDeviceContext, double>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <string>
#include "paddle/fluid/operators/fake_quantize_op.h"
#include "paddle/fluid/platform/cuda_primitives.h"
namespace paddle {
namespace operators {
template <typename T>
__global__ void FindAbsMaxKernel(const int n, const T* in, T* out) {
int bid = threadIdx.x + blockIdx.x * blockDim.x;
int tid = threadIdx.x;
extern __shared__ T shared_max_data[];
if (gridDim.x > 1) {
shared_max_data[tid] = T(0);
for (int i = bid; i < n; i += blockDim.x * gridDim.x) {
T tmp = fabs(in[i]);
if (tmp > shared_max_data[tid]) {
shared_max_data[tid] = tmp;
}
}
} else {
if (bid < n) {
shared_max_data[tid] = fabs(in[bid]);
} else {
shared_max_data[tid] = T(0);
}
}
__syncthreads();
for (int i = blockDim.x / 2; i > 0; i >>= 1) {
if (tid < i && shared_max_data[tid] < shared_max_data[tid + i]) {
shared_max_data[tid] = shared_max_data[tid + i];
}
__syncthreads();
}
if (tid == 0) {
out[blockIdx.x] = shared_max_data[0];
}
}
float FindAbsMaxGpu(const platform::CUDADeviceContext& ctx, const float* array,
int length) {
float host_max;
int kNumTheads = 1024;
int gridDimx = (kNumTheads - 1 + length) / kNumTheads;
gridDimx = (gridDimx > kNumTheads) ? kNumTheads : gridDimx;
framework::Tensor t;
float* device_max = t.mutable_data<float>(framework::make_ddim({gridDimx}),
platform::CUDAPlace());
FindAbsMaxKernel<float><<<gridDimx, kNumTheads, kNumTheads * sizeof(float),
ctx.stream()>>>(length, array, device_max);
FindAbsMaxKernel<
float><<<1, kNumTheads, kNumTheads * sizeof(float), ctx.stream()>>>(
gridDimx, device_max, device_max);
PADDLE_ENFORCE_EQ(
cudaMemcpy(&host_max, device_max, sizeof(float), cudaMemcpyDeviceToHost),
cudaSuccess, "cudaMemcpy failed");
return host_max;
}
template <typename T>
__global__ void ApplySaturateKernel(const int n, const T* in, T* out,
int* num_saturate, const T min,
const T max) {
int bid = threadIdx.x + blockIdx.x * blockDim.x;
int tid = threadIdx.x;
extern __shared__ int shared_count[];
shared_count[tid] = 0;
for (int i = bid; i < n; i += blockDim.x * gridDim.x) {
if (in[i] > max) {
out[i] = max;
shared_count[tid] += 1;
} else if (in[i] < min) {
out[i] = min;
shared_count[tid] += 1;
} else {
out[i] = in[i];
}
}
__syncthreads();
for (int i = blockDim.x / 2; i > 0; i >>= 1) {
if (tid < i) {
shared_count[tid] += shared_count[tid + i];
}
__syncthreads();
}
if (tid == 0) {
num_saturate[blockIdx.x] = shared_count[0];
}
}
template <typename T>
__global__ void ReduceKernel(const int n, const T* in, T* out) {
int tid = threadIdx.x;
extern __shared__ T shared_sum[];
if (tid < n) {
shared_sum[tid] = in[tid];
} else {
shared_sum[tid] = T(0);
}
__syncthreads();
// blockDim.x must >= n
for (int i = (n + 1) / 2; i > 0; i >>= 1) {
if (tid < i) {
shared_sum[tid] += shared_sum[tid + i];
}
__syncthreads();
}
if (tid == 0) {
out[0] = shared_sum[0];
}
}
template <typename T>
int ApplySaturateGpu(const platform::CUDADeviceContext& ctx, const int n,
const T* in, T* out, const T min, const T max) {
int host_num_saturate;
int kNumTheads = 1024;
int gridDimx = (n + kNumTheads - 1) / kNumTheads;
gridDimx = (gridDimx > kNumTheads) ? kNumTheads : gridDimx;
framework::Tensor t;
int* device_num_saturate = t.mutable_data<int>(
framework::make_ddim({gridDimx}), platform::CUDAPlace());
ApplySaturateKernel<
T><<<gridDimx, kNumTheads, kNumTheads * sizeof(T), ctx.stream()>>>(
n, in, out, device_num_saturate, min, max);
ReduceKernel<int><<<1, kNumTheads, kNumTheads * sizeof(T), ctx.stream()>>>(
gridDimx, device_num_saturate, device_num_saturate);
PADDLE_ENFORCE_EQ(cudaSuccess,
cudaMemcpy(&host_num_saturate, device_num_saturate,
sizeof(int), cudaMemcpyDeviceToHost),
"cudaMemcpy failed");
return host_num_saturate;
}
template <typename DeviceContext, typename T>
class FakeQuantizeCUDAKernel : public framework::OpKernel<T> {
public:
T FindRangeAbsMax(const platform::CUDADeviceContext& ctx,
framework::Tensor* scale_list, framework::Tensor* out_scale,
const T& cur_scale, int window_size,
int current_iter) const {
T* sl = scale_list->mutable_data<T>(platform::CPUPlace());
T remove_tmp = sl[current_iter];
sl[current_iter] = cur_scale;
T& max_scale = out_scale->mutable_data<T>(platform::CPUPlace())[0];
if (max_scale < cur_scale) {
max_scale = cur_scale;
} else if (fabs(remove_tmp - max_scale) < 1e-6) {
int size = (current_iter > window_size) ? window_size : current_iter;
max_scale = T(FindAbsMaxGpu(ctx, scale_list->data<float>(), size));
}
return max_scale;
}
T FindMovingAverageAbsMmax(framework::Tensor* in_scale,
framework::Tensor* out_scale,
const T& cur_scale) const {
T* ins = in_scale->mutable_data<T>(platform::CPUPlace());
T* outs = out_scale->mutable_data<T>(platform::CPUPlace());
outs[0] = 0.9 * cur_scale + 0.1 * ins[0];
return T(outs[0]);
}
virtual void Compute(const framework::ExecutionContext& context) const {
PADDLE_ENFORCE(platform::is_gpu_place(context.GetPlace()),
"This kernel only runs on GPU device.");
auto& device_ctx = context.cuda_device_context();
auto* tensor = context.Output<framework::Tensor>("Out");
auto* in = context.Input<framework::Tensor>("X");
const bool is_test = context.Attr<bool>("is_test");
tensor->mutable_data<T>(in->place());
context.Output<framework::Tensor>("OutMovingScale")
->mutable_data<T>(
context.Input<framework::Tensor>("InMovingScale")->place());
auto quantize_type =
static_cast<std::string>(context.Attr<std::string>("quantize_type"));
if (quantize_type == std::string("range_abs_max")) {
context.Output<framework::Tensor>("OutScales")
->mutable_data<T>(
context.Input<framework::Tensor>("InScales")->place());
context.Output<framework::Tensor>("OutCurrentIter")
->mutable_data<T>(
context.Input<framework::Tensor>("InCurrentIter")->place());
}
T scale = T(1);
int window_size = context.Attr<int>("window_size");
T bin_cnt = (T)((1 << (context.Attr<int>("bit_length") - 1)) - 1);
if (quantize_type == std::string("abs_max")) {
auto* saving_scale = context.Output<framework::Tensor>("OutMovingScale");
scale = (T)FindAbsMaxGpu(device_ctx, in->data<float>(), in->numel());
saving_scale->mutable_data<T>(platform::CPUPlace())[0] = scale;
auto& device_ctx = context.template device_context<DeviceContext>();
auto* scale_list = context.Output<framework::Tensor>("OutScales");
math::SetConstant<DeviceContext, T> scalar;
scale_list->mutable_data<T>(context.GetPlace());
scalar(device_ctx, scale_list, static_cast<T>(0));
auto* iter = context.Output<framework::Tensor>("OutCurrentIter");
iter->mutable_data<T>(context.GetPlace());
scalar(device_ctx, iter, static_cast<T>(0));
} else if (quantize_type == std::string("range_abs_max")) {
auto* moving_scale = const_cast<framework::Tensor*>(
context.Input<framework::Tensor>("InMovingScale"));
if (is_test) {
scale = moving_scale->mutable_data<T>(platform::CPUPlace())[0];
} else {
auto* it = const_cast<framework::Tensor*>(
context.Input<framework::Tensor>("InCurrentIter"));
auto* iter = context.Output<framework::Tensor>("OutCurrentIter");
int* last_iter = it->mutable_data<int>(platform::CPUPlace());
int* current_iter = iter->mutable_data<int>(platform::CPUPlace());
auto* scale_list = context.Output<framework::Tensor>("OutScales");
auto* saving_scale =
context.Output<framework::Tensor>("OutMovingScale");
scale = (T)FindAbsMaxGpu(device_ctx, in->data<float>(), in->numel());
scale = FindRangeAbsMax(device_ctx, scale_list, saving_scale, scale,
window_size, current_iter[0]);
(*current_iter) = (*last_iter) + 1;
}
} else if (quantize_type == std::string("moving_average_abs_max")) {
auto* moving_scale = const_cast<framework::Tensor*>(
context.Input<framework::Tensor>("InMovingScale"));
if (is_test) {
scale = moving_scale->mutable_data<T>(platform::CPUPlace())[0];
} else {
scale = (T)FindAbsMaxGpu(device_ctx, in->data<float>(), in->numel());
auto* saving_scale =
context.Output<framework::Tensor>("OutMovingScale");
scale = FindMovingAverageAbsMmax(
const_cast<framework::Tensor*>(moving_scale), saving_scale, scale);
}
}
ApplySaturateGpu<T>(device_ctx, in->numel(), in->data<T>(),
tensor->mutable_data<T>(in->place()), -scale, scale);
scale = bin_cnt / scale;
auto& dev =
*context.template device_context<DeviceContext>().eigen_device();
auto eigen_out = framework::EigenVector<T>::Flatten(*tensor);
auto eigen_in = framework::EigenVector<T>::Flatten(*tensor);
eigen_out.device(dev) = (scale * eigen_in).round();
}
};
} // namespace operators
} // namespace paddle
REGISTER_OP_CUDA_KERNEL(fake_quantize,
paddle::operators::FakeQuantizeCUDAKernel<
paddle::platform::CUDADeviceContext, float>,
paddle::operators::FakeQuantizeCUDAKernel<
paddle::platform::CUDADeviceContext, double>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <string>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/clip_op.h"
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/platform/transform.h"
namespace paddle {
namespace operators {
using platform::Transform;
template <typename DeviceContext, typename T>
class FakeQuantizeKernel : public framework::OpKernel<T> {
public:
T FindAbsMax(framework::Tensor* in, int n) const {
T* p = in->mutable_data<T>(platform::CPUPlace());
T abs_max = (T)0.00000001;
for (int i = 0; i < n; i++) {
T tmp = fabs(p[i]);
if (tmp > abs_max) abs_max = tmp;
}
return T(abs_max);
}
T FindRangeAbsMax(framework::Tensor* scale_list, framework::Tensor* out_scale,
const T& cur_scale, int window_size,
int current_iter) const {
T* sl = scale_list->mutable_data<T>(platform::CPUPlace());
T remove_tmp = sl[current_iter];
sl[current_iter] = cur_scale;
T& max_scale = out_scale->mutable_data<T>(platform::CPUPlace())[0];
if (max_scale < cur_scale) {
max_scale = cur_scale;
} else if (fabs(remove_tmp - max_scale) < 1e-6) {
int size = (current_iter > window_size) ? window_size : current_iter;
max_scale = T(FindAbsMax(scale_list, size));
}
return max_scale;
}
T FindMovingAverageAbsMmax(framework::Tensor* in_scale,
framework::Tensor* out_scale,
const T& cur_scale) const {
T* ins = in_scale->mutable_data<T>(platform::CPUPlace());
T* outs = out_scale->mutable_data<T>(platform::CPUPlace());
outs[0] = 0.9 * cur_scale + 0.1 * ins[0];
return T(outs[0]);
}
virtual void Compute(const framework::ExecutionContext& context) const {
auto* tensor = context.Output<framework::Tensor>("Out");
auto* in = context.Input<framework::Tensor>("X");
const bool is_test = context.Attr<bool>("is_test");
tensor->mutable_data<T>(in->place());
auto* oms_tensor = context.Output<framework::Tensor>("OutMovingScale");
oms_tensor->mutable_data<T>(in->place());
auto quantize_type =
static_cast<std::string>(context.Attr<std::string>("quantize_type"));
if (quantize_type == std::string("range_abs_max")) {
auto* oss_tensor = context.Output<framework::Tensor>("OutScales");
oss_tensor->mutable_data<T>(
context.Input<framework::Tensor>("InScales")->place());
auto* oci_tensor = context.Output<framework::Tensor>("OutCurrentIter");
oci_tensor->mutable_data<T>(
context.Input<framework::Tensor>("InCurrentIter")->place());
}
T scale = static_cast<T>(1);
int window_size = context.Attr<int>("window_size");
int bit_length = context.Attr<int>("bit_length");
int bin_cnt = std::pow(2, bit_length - 1) - 1;
auto& dev =
*context.template device_context<DeviceContext>().eigen_device();
auto raw_in = framework::EigenVector<T>::Flatten(*in);
if (quantize_type == std::string("abs_max")) {
auto* saving_scale = context.Output<framework::Tensor>("OutMovingScale");
auto scale_out = framework::EigenVector<T>::Flatten(*saving_scale);
scale_out.device(dev) = raw_in.abs().maximum();
scale = scale_out(0);
auto& device_ctx = context.template device_context<DeviceContext>();
auto* scale_list = context.Output<framework::Tensor>("OutScales");
math::SetConstant<DeviceContext, T> scalar;
scale_list->mutable_data<T>(context.GetPlace());
scalar(device_ctx, scale_list, static_cast<T>(0));
auto* iter = context.Output<framework::Tensor>("OutCurrentIter");
iter->mutable_data<T>(context.GetPlace());
scalar(device_ctx, iter, static_cast<T>(0));
} else if (quantize_type == std::string("range_abs_max")) {
auto* moving_scale = context.Input<framework::Tensor>("InMovingScale");
if (is_test) {
scale = moving_scale->data<T>()[0];
} else {
auto* it = context.Input<framework::Tensor>("InCurrentIter");
auto* iter = context.Output<framework::Tensor>("OutCurrentIter");
const int* last_iter = it->data<int>();
int* current_iter = iter->mutable_data<int>(platform::CPUPlace());
auto* scale_list = context.Output<framework::Tensor>("OutScales");
auto* saving_scale =
context.Output<framework::Tensor>("OutMovingScale");
auto scale_out = framework::EigenVector<T>::Flatten(*saving_scale);
scale_out.device(dev) = raw_in.abs().maximum();
scale = saving_scale->mutable_data<T>(platform::CPUPlace())[0];
scale = FindRangeAbsMax(scale_list, saving_scale, scale, window_size,
current_iter[0]);
saving_scale->mutable_data<T>(platform::CPUPlace())[0] = scale;
(*current_iter) = (*last_iter) + 1;
}
} else if (quantize_type == std::string("moving_average_abs_max")) {
auto* moving_scale = context.Input<framework::Tensor>("InMovingScale");
if (is_test) {
scale = moving_scale->data<T>()[0];
} else {
auto* saving_scale =
context.Output<framework::Tensor>("OutMovingScale");
auto scale_out = framework::EigenVector<T>::Flatten(*saving_scale);
scale_out.device(dev) = raw_in.abs().maximum();
scale = saving_scale->mutable_data<T>(platform::CPUPlace())[0];
scale = FindMovingAverageAbsMmax(
const_cast<framework::Tensor*>(moving_scale), saving_scale, scale);
saving_scale->mutable_data<T>(platform::CPUPlace())[0] = scale;
}
}
Transform<DeviceContext> trans;
trans(context.template device_context<DeviceContext>(), in->data<T>(),
in->data<T>() + in->numel(), tensor->mutable_data<T>(in->place()),
ClipFunctor<T>(-scale, scale));
auto eigen_out = framework::EigenVector<T>::Flatten(*tensor);
auto eigen_in = framework::EigenVector<T>::Flatten(*tensor);
eigen_out.device(dev) = (bin_cnt / scale * eigen_in).round();
}
};
} // namespace operators
} // namespace paddle
......@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/im2sequence_op.h"
#include <string>
#include <vector>
namespace paddle {
......@@ -28,20 +29,19 @@ class Im2SequenceOp : public framework::OperatorWithKernel {
"Input(X) of Im2SequenceOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("Out"),
"Output(Out) of Im2SequenceOp op should not be null.");
auto in_dim = ctx->GetInputDim("X");
PADDLE_ENFORCE_EQ(in_dim.size(), 4,
"Input(X) format must be 4D tensor, eg., NCHW.");
auto kernels = ctx->Attrs().Get<std::vector<int>>("kernels");
auto strides = ctx->Attrs().Get<std::vector<int>>("strides");
auto paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
int batch_size = in_dim[0];
int img_channels = in_dim[1];
int img_height = in_dim[2];
int img_width = in_dim[3];
auto kernels = ctx->Attrs().Get<std::vector<int>>("kernels");
auto strides = ctx->Attrs().Get<std::vector<int>>("strides");
auto paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
int output_height = Im2SeqOutputSize(img_height, kernels[0], paddings[0],
paddings[2], strides[0]);
int output_width = Im2SeqOutputSize(img_width, kernels[1], paddings[1],
......@@ -61,6 +61,10 @@ class Im2SequenceOpMaker : public framework::OpProtoAndCheckerMaker {
"C: channels"
"H: height"
"W: width");
AddInput("Y",
"(Tensor) The input tensor of image real size(H, W)."
"2-D with shape [batchsize, 2]")
.AsDispensable();
AddOutput("Out", "(LodTensor) The output data of im2sequence op,");
AddAttr<std::vector<int>>("kernels",
"(vector<int>), the "
......@@ -73,6 +77,13 @@ class Im2SequenceOpMaker : public framework::OpProtoAndCheckerMaker {
"(vector<int> default:{0, 0, 0, 0}), the "
"paddings(up_pad, left_pad, down_pad, right_pad)")
.SetDefault({0, 0, 0, 0});
AddAttr<std::vector<int>>("out_stride",
"the attribute is valid only when input(Y)"
"is not NULL.this attribute represents the"
"scaling of the pic through the CNN"
"(vector<int> dedault:{1,1}),the out_stride"
" (out_stride_height, out_stride_width)")
.SetDefault({1, 1});
AddComment(R"DOC(
This op uses kernels to scan images and converts these images to sequences.
After expanding, The number of time steps are output_height * output_width
......@@ -123,7 +134,7 @@ output.data = [[ 6. 2. 8. 3. 2. 4. 6. 3.]
[ 7. 1. 7. 9. 2. 1. 3. 5.]
[ 5. 7. 2. 4. 1. 3. 9. 0.]
[ 7. 9. 4. 8. 3. 5. 0. 8.]]
output.dims = {8, 9}
output.dims = {8, 8}
output.lod = [[0, 4, 8]]
)DOC");
......
......@@ -13,6 +13,7 @@
limitations under the License. */
#pragma once
#include <string>
#include <vector>
#include "paddle/fluid/framework/data_layout.h"
#include "paddle/fluid/framework/eigen.h"
......@@ -39,50 +40,106 @@ class Im2SequenceKernel : public framework::OpKernel<T> {
void Compute(const framework::ExecutionContext& ctx) const override {
const Tensor* in = ctx.Input<Tensor>("X");
LoDTensor* out = ctx.Output<LoDTensor>("Out");
out->mutable_data<T>(ctx.GetPlace());
// TODO(wanghaoshuang): Add layout checker after 'set_layout'
// being available for python API
// PADDLE_ENFORCE_EQ(in->layout(), framework::DataLayout::kNCHW,
// "Input(X) layout must be NCHW");
auto in_dim = in->dims();
int batch_size = in_dim[0];
int img_channels = in_dim[1];
int img_height = in_dim[2];
int img_width = in_dim[3];
auto kernels = ctx.Attr<std::vector<int>>("kernels");
auto strides = ctx.Attr<std::vector<int>>("strides");
auto paddings = ctx.Attr<std::vector<int>>("paddings");
int output_height = Im2SeqOutputSize(img_height, kernels[0], paddings[0],
paddings[2], strides[0]);
int output_width = Im2SeqOutputSize(img_width, kernels[1], paddings[1],
paddings[3], strides[1]);
const std::vector<int> dilations({1, 1});
auto out_dims = out->dims();
out->Resize({batch_size, out->numel() / batch_size});
for (int i = 0; i < batch_size; i++) {
const Tensor src =
in->Slice(i, i + 1).Resize({img_channels, img_height, img_width});
Tensor dst = out->Slice(i, i + 1).Resize(
{output_height, output_width, img_channels, kernels[0], kernels[1]});
math::Im2ColFunctor<math::ColFormat::kOCF, DeviceContext, T> f;
auto& dev_ctx = ctx.template device_context<DeviceContext>();
f(dev_ctx, src, dilations, strides, paddings, &dst);
}
out->Resize(out_dims);
// set lod information
// TODO(wanghaoshuang): Move this to InferShape
framework::LoD lod(1);
lod[0].reserve(batch_size + 1);
for (int i = 0, offset = 0; i < batch_size + 1; ++i) {
if (ctx.HasInput("Y") && batch_size > 1) {
const Tensor* imgrealsize = ctx.Input<Tensor>("Y");
auto out_stride = ctx.Attr<std::vector<int>>("out_stride");
Tensor cpu_shape_tensor;
TensorCopySync(*imgrealsize, platform::CPUPlace(), &cpu_shape_tensor);
std::vector<int> imgreal_h;
std::vector<int> imgreal_w;
std::vector<int> output_height;
std::vector<int> output_width;
int result = 0;
for (int i = 0; i < batch_size; i++) {
int tmp_real_h = static_cast<int>((cpu_shape_tensor.data<T>())[2 * i]);
int tmp_real_w =
static_cast<int>((cpu_shape_tensor.data<T>())[2 * i + 1]);
if (tmp_real_h % out_stride[0] == 0) {
tmp_real_h = tmp_real_h / out_stride[0];
} else {
tmp_real_h = tmp_real_h / out_stride[0] + 1;
}
if (tmp_real_w % out_stride[1] == 0) {
tmp_real_w = tmp_real_w / out_stride[1];
} else {
tmp_real_w = tmp_real_w / out_stride[1] + 1;
}
imgreal_h.push_back(tmp_real_h);
imgreal_w.push_back(tmp_real_w);
output_height.push_back(Im2SeqOutputSize(
imgreal_h[i], kernels[0], paddings[0], paddings[2], strides[0]));
output_width.push_back(Im2SeqOutputSize(
imgreal_w[i], kernels[1], paddings[1], paddings[3], strides[1]));
result += output_height[i] * output_width[i];
}
out->mutable_data<T>({result, img_channels * kernels[0] * kernels[1]},
ctx.GetPlace());
const std::vector<int> dilations({1, 1});
int offset_out = 0;
for (int i = 0; i < batch_size; i++) {
const Tensor src =
in->Slice(i, i + 1).Resize({img_channels, img_height, img_width});
Tensor dst = out->Slice(offset_out,
offset_out + output_height[i] * output_width[i])
.Resize({output_height[i], output_width[i],
img_channels, kernels[0], kernels[1]});
offset_out += output_height[i] * output_width[i];
math::Im2ColFunctor<math::ColFormat::kOCF, DeviceContext, T> f;
auto& dev_ctx = ctx.template device_context<DeviceContext>();
f(dev_ctx, src, dilations, strides, paddings, &dst);
}
framework::LoD lod(1);
lod[0].reserve(batch_size + 1);
int offset = 0;
lod[0].push_back(offset);
for (int i = 0; i < batch_size; ++i) {
offset += output_height[i] * output_width[i];
lod[0].push_back(offset);
}
out->set_lod(lod);
} else {
out->mutable_data<T>(ctx.GetPlace());
int output_height = Im2SeqOutputSize(img_height, kernels[0], paddings[0],
paddings[2], strides[0]);
int output_width = Im2SeqOutputSize(img_width, kernels[1], paddings[1],
paddings[3], strides[1]);
const std::vector<int> dilations({1, 1});
auto out_dims = out->dims();
out->Resize({batch_size, out->numel() / batch_size});
for (int i = 0; i < batch_size; i++) {
const Tensor src =
in->Slice(i, i + 1).Resize({img_channels, img_height, img_width});
Tensor dst =
out->Slice(i, i + 1).Resize({output_height, output_width,
img_channels, kernels[0], kernels[1]});
math::Im2ColFunctor<math::ColFormat::kOCF, DeviceContext, T> f;
auto& dev_ctx = ctx.template device_context<DeviceContext>();
f(dev_ctx, src, dilations, strides, paddings, &dst);
}
out->Resize(out_dims);
framework::LoD lod(1);
lod[0].reserve(batch_size + 1);
int offset = 0;
lod[0].push_back(offset);
offset += output_height * output_width;
for (int i = 0; i < batch_size; ++i) {
offset += output_height * output_width;
lod[0].push_back(offset);
}
out->set_lod(lod);
}
out->set_lod(lod);
}
};
......
......@@ -43,21 +43,6 @@ class Im2ColFunctor<paddle::operators::math::ColFormat::kCFO,
int col_height = col->dims()[3];
int col_width = col->dims()[4];
PADDLE_ENFORCE_EQ((im_height + padding[0] + padding[2] -
((dilation[0] * (filter_height - 1) + 1))) /
stride[0] +
1,
col_height,
"Output_height and padding(padding_up, padding_down) are "
"inconsistent.");
PADDLE_ENFORCE_EQ((im_width + padding[1] + padding[3] -
((dilation[1] * (filter_width - 1) + 1))) /
stride[1] +
1,
col_width,
"Output_height and padding(padding_up, padding_down) are "
"inconsistent.");
int channels_col = im_channels * filter_height * filter_width;
const T* im_data = im.data<T>();
......@@ -178,17 +163,6 @@ class Im2ColFunctor<paddle::operators::math::ColFormat::kOCF,
int col_height = col->dims()[0];
int col_width = col->dims()[1];
PADDLE_ENFORCE_EQ(
(im_height + padding[0] + padding[2] - filter_height) / stride[0] + 1,
col_height,
"Output_height and padding(padding_up, padding_down) are "
"inconsistent.");
PADDLE_ENFORCE_EQ(
(im_width + padding[1] + padding[3] - filter_width) / stride[1] + 1,
col_width,
"col_width and padding(padding_left, padding_right) are "
"inconsistent.");
const T* im_data = im.data<T>();
T* col_data = col->data<T>();
......
......@@ -77,21 +77,6 @@ class Im2ColFunctor<paddle::operators::math::ColFormat::kCFO,
int col_height = col->dims()[3];
int col_width = col->dims()[4];
PADDLE_ENFORCE_EQ((im_height + padding[0] + padding[2] -
(dilation[0] * (filter_height - 1) + 1)) /
stride[0] +
1,
col_height,
"Output_height and padding(padding_up, padding_down) are "
"inconsistent.");
PADDLE_ENFORCE_EQ((im_width + padding[1] + padding[3] -
(dilation[1] * (filter_width - 1) + 1)) /
stride[1] +
1,
col_width,
"col_width and padding(padding_left, padding_right) are "
"inconsistent.");
int num_outputs = im_channels * col_height * col_width;
int blocks = (num_outputs + 1024 - 1) / 1024;
int block_x = 512;
......@@ -274,21 +259,6 @@ class Im2ColFunctor<paddle::operators::math::ColFormat::kOCF,
int col_height = col->dims()[0];
int col_width = col->dims()[1];
PADDLE_ENFORCE_EQ((im_height + padding[0] + padding[2] -
(dilation[0] * (filter_height - 1) + 1)) /
stride[0] +
1,
col_height,
"Output_height and padding(padding_up, padding_down) are "
"inconsistent.");
PADDLE_ENFORCE_EQ((im_width + padding[1] + padding[3] -
(dilation[1] * (filter_width - 1) + 1)) /
stride[1] +
1,
col_width,
"col_width and padding(padding_left, padding_right) are "
"inconsistent.");
int block_dim_x = 0;
int block_dim_y = 0;
if (filter_height <= 4 && filter_width <= 4) {
......
......@@ -23,7 +23,7 @@ class BatchReader : public framework::DecoratedReader {
BatchReader(const std::shared_ptr<ReaderBase>& reader, int batch_size,
bool discard_leftover)
: DecoratedReader(reader),
batch_size_(batch_size),
batch_size_(static_cast<size_t>(batch_size)),
discard_leftover_(discard_leftover) {
buffer_.reserve(batch_size_);
}
......@@ -31,7 +31,7 @@ class BatchReader : public framework::DecoratedReader {
void ReadNextImpl(std::vector<framework::LoDTensor>* out) override;
private:
int batch_size_;
size_t batch_size_;
bool discard_leftover_;
std::vector<std::vector<framework::LoDTensor>> buffer_;
};
......@@ -78,7 +78,7 @@ class CreateBatchReaderOpMaker : public DecoratedReaderMakerBase {
void BatchReader::ReadNextImpl(std::vector<framework::LoDTensor>* out) {
buffer_.clear();
buffer_.reserve(batch_size_);
for (int i = 0; i < batch_size_; ++i) {
for (size_t i = 0; i < batch_size_; ++i) {
buffer_.push_back(std::vector<framework::LoDTensor>());
reader_->ReadNext(&buffer_.back());
if (buffer_.back().empty()) {
......@@ -95,9 +95,9 @@ void BatchReader::ReadNextImpl(std::vector<framework::LoDTensor>* out) {
// if buffer_ is empty, the 'out' will return as an empty vector.
return;
}
int out_num = buffer_[0].size();
size_t out_num = buffer_[0].size();
out->reserve(out_num);
for (int j = 0; j < out_num; ++j) {
for (size_t j = 0; j < out_num; ++j) {
// Merge shape and check date type
std::type_index batch_type = buffer_[0][j].type();
framework::DDim batch_shape = buffer_[0][j].dims();
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <string>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
namespace paddle {
namespace operators {
class SqueezeOpInferShape : public framework::InferShapeBase {
public:
void operator()(framework::InferShapeContext *ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("X"),
"Input(X) of SqueezeOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("Out"),
"Output(Out) of SqueezeOp should not be null.");
const auto &x_dims = ctx->GetInputDim("X");
// Check input tensor dims (<6) Eigen limit.
PADDLE_ENFORCE(x_dims.size() <= 6,
"Invalid dimnesions, the rank of Input(X) "
"should be in the range of [1, 6] (Eigen limit).");
const auto &axes = ctx->Attrs().Get<std::vector<int>>("axes");
for (int a : axes) {
PADDLE_ENFORCE_LT(a, x_dims.size(),
"The squeeze axis should be less than input "
"tensor's rank.");
}
auto out_dims = GetOutputShape(axes, x_dims);
ctx->SetOutputDim("Out", out_dims);
if (x_dims[0] == out_dims[0]) {
// Only pass LoD when the first dimension of output and Input(X)
// are the same.
ctx->ShareLoD("X", "Out");
}
}
static framework::DDim GetOutputShape(const std::vector<int> squeeze_dims,
const framework::DDim &in_dims) {
size_t num_squeeze_dims = squeeze_dims.size();
int cnt_squeezed_dims = 0;
bool should_squeeze[9] = {false};
// Determines number of dimensions of output tensor after squeeze.
// Mark and count the dimensions need to be squeezed
if (num_squeeze_dims == 0) {
for (int idx = 0; idx < in_dims.size(); ++idx) {
if (in_dims[idx] == 1) {
should_squeeze[idx] = true;
++cnt_squeezed_dims;
}
}
} else {
for (size_t idx = 0; idx < num_squeeze_dims; ++idx) {
int current = squeeze_dims[idx] < 0 ? squeeze_dims[idx] + in_dims.size()
: squeeze_dims[idx];
// Check current index, the upper limit has beed checked in line 36.
PADDLE_ENFORCE(current >= 0,
"Invalid axis, the negative axis is out of range.");
PADDLE_ENFORCE(in_dims[current] == 1,
"Invalid axis index, the axis that will be squeezed "
"should be equal to 1.");
if (!(should_squeeze[current])) {
++cnt_squeezed_dims;
}
should_squeeze[current] = true;
}
}
// Make output dimensions
std::vector<int64_t> output_shape(in_dims.size() - cnt_squeezed_dims, 0);
for (int in_idx = 0, out_idx = 0; in_idx < in_dims.size(); ++in_idx) {
if (!should_squeeze[in_idx]) {
output_shape[out_idx++] = in_dims[in_idx];
}
}
return framework::make_ddim(output_shape);
}
};
class SqueezeOp : public framework::OperatorBase {
public:
using OperatorBase::OperatorBase;
private:
void RunImpl(const framework::Scope &scope,
const platform::Place &place) const override {
auto &axes = Attr<std::vector<int>>("axes");
auto x_dims = scope.FindVar(Input("X"))->Get<framework::LoDTensor>().dims();
auto out_dims = SqueezeOpInferShape::GetOutputShape(axes, x_dims);
framework::AttributeMap attrs;
attrs["shape"] = framework::vectorize2int(out_dims);
attrs["inplace"] = Attr<bool>("inplace");
// Invoke Reshape Op
auto reshape_op = framework::OpRegistry::CreateOp(
"reshape", {{"X", {Input("X")}}, {"Shape", {}}},
{{"Out", {Output("Out")}}}, attrs);
reshape_op->Run(scope, place);
}
};
class SqueezeOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("X", "(Tensor). The input tensor of squeeze operator.");
AddOutput("Out", "(Tensor). The output tensor of squeeze operator.");
AddAttr<std::vector<int>>("axes",
"(std::vector<int>). List of integers,"
" indicating the dimensions to squeeze.")
.SetDefault({});
AddAttr<bool>("inplace",
"(default: false) Squeeze the source tensor's shape without "
"memory copy. When Attr(inplace) is set true, the output "
"tensor shares memory with Input(X), otherwise, a new output "
"tensor is created, and its data are copied from Input(x).")
.SetDefault(false);
AddComment(R"DOC(
Squeeze Operator.
Remove single-dimensional entries from the shape of a tensor.
Takes a parameter axes with a list of axes to squeeze.
If axes is not provided, all the single dimensions will be removed from the shape.
If an axis is selected with shape entry not equal to one, an error is raised.
Examples:
Case 1:
Given
X.shape = (1, 3, 1, 5)
and
axes = [0]
we get:
Out.shape = (3, 1, 5)
Case 2:
Given
X.shape = (1, 3, 1, 5)
and
axes = []
we get:
Out.shape = (3, 5)
)DOC");
}
};
class SqueezeGradInferShape : public framework::InferShapeBase {
public:
void operator()(framework::InferShapeContext *context) const override {
context->SetOutputDim(framework::GradVarName("X"),
context->GetInputDim("X"));
context->ShareLoD("X", framework::GradVarName("X"));
}
};
class SqueezeGradOp : public framework::OperatorBase {
public:
using OperatorBase::OperatorBase;
private:
void RunImpl(const framework::Scope &scope,
const platform::Place &place) const override {
auto dx_name = Output(framework::GradVarName("X"));
auto dout_name = Input(framework::GradVarName("Out"));
auto x_dims = scope.FindVar(Input("X"))->Get<framework::LoDTensor>().dims();
framework::AttributeMap attrs;
attrs["shape"] = framework::vectorize2int(x_dims);
attrs["inplace"] = Attr<bool>("inplace");
auto reshape_op = framework::OpRegistry::CreateOp(
"reshape", {{"X", {dout_name}}, {"Shape", {}}}, {{"Out", {dx_name}}},
attrs);
reshape_op->Run(scope, place);
}
};
} // namespace operators
} // namespace paddle
// Tell linker to use reshape op
USE_OP(reshape);
namespace ops = paddle::operators;
REGISTER_OPERATOR(squeeze, ops::SqueezeOp, ops::SqueezeOpMaker,
ops::SqueezeOpInferShape,
paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(squeeze_grad, ops::SqueezeGradOp, ops::SqueezeGradInferShape);
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <string>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
namespace paddle {
namespace operators {
class UnsqueezeOpInferShape : public framework::InferShapeBase {
public:
void operator()(framework::InferShapeContext *ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("X"),
"Input(X) of UnsqueezeOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("Out"),
"Output(Out) of UnsqueezeOp should not be null.");
const auto &axes = ctx->Attrs().Get<std::vector<int>>("axes");
const auto &x_dims = ctx->GetInputDim("X");
// Validity Check: input tensor dims (<6).
PADDLE_ENFORCE(x_dims.size() <= 6,
"Invalid dimensions, the rank of Input(X) "
"should be in the range of [1, 6] (Eigen limit)");
auto out_dims = GetOutputShape(axes, x_dims);
ctx->SetOutputDim("Out", out_dims);
if (x_dims[0] == out_dims[0]) {
// Only pass LoD when the first dimension of output and Input(X)
// are the same.
ctx->ShareLoD("X", "Out");
}
}
static framework::DDim GetOutputShape(const std::vector<int> unsqz_dims,
const framework::DDim &in_dims) {
int output_size = in_dims.size() + static_cast<int>(unsqz_dims.size());
int cur_output_size = in_dims.size();
std::vector<int64_t> output_shape(output_size, 0);
// Validity Check: rank range.
PADDLE_ENFORCE(output_size <= 6,
"The output tensor's rank should be less than 6.");
for (int axis : unsqz_dims) {
int cur = axis < 0 ? axis + cur_output_size + 1 : axis;
// Vaildity Check: the axis bound
PADDLE_ENFORCE(
cur >= 0 && cur <= cur_output_size,
"The unsqueeze dims must be within range of current rank.");
// Move old axis, and insert new axis
for (int i = cur_output_size; i >= cur; --i) {
if (output_shape[i] == 1) {
// Move axis
output_shape[i + 1] = 1;
output_shape[i] = 0;
}
}
output_shape[cur] = 1;
// Add the output size.
cur_output_size++;
}
// Make output shape
for (int in_idx = 0, out_idx = 0; out_idx < output_size; ++out_idx) {
if (output_shape[out_idx] == 0) {
output_shape[out_idx] = in_dims[in_idx++];
}
}
return framework::make_ddim(output_shape);
}
};
class UnsqueezeOp : public framework::OperatorBase {
public:
using OperatorBase::OperatorBase;
private:
void RunImpl(const framework::Scope &scope,
const platform::Place &place) const override {
auto &axes = Attr<std::vector<int>>("axes");
auto x_dims = scope.FindVar(Input("X"))->Get<framework::LoDTensor>().dims();
auto out_dims = UnsqueezeOpInferShape::GetOutputShape(axes, x_dims);
framework::AttributeMap attrs;
attrs["shape"] = framework::vectorize2int(out_dims);
attrs["inplace"] = Attr<bool>("inplace");
// Invoke Reshape op.
auto reshape_op = framework::OpRegistry::CreateOp(
"reshape", {{"X", {Input("X")}}, {"Shape", {}}},
{{"Out", {Output("Out")}}}, attrs);
reshape_op->Run(scope, place);
}
};
class UnsqueezeOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("X", "(Tensor). The input tensor of unsqueeze operator.");
AddOutput("Out", "(Tensor). The output tensor of unsqueeze operator.");
AddAttr<std::vector<int>>("axes",
"(std::vector<int>). List of integers,"
" indicating the dimensions to be inserted")
.AddCustomChecker([](const std::vector<int> &axes) {
PADDLE_ENFORCE(!axes.empty(),
"Invalid axes, The unsqueeze axes is empty.");
// Validity Check: axes dims (<6).
PADDLE_ENFORCE(static_cast<int>(axes.size()) < 6,
"Invalid dimensions, dynamic dimensions should be "
"within [1, 6] dimensions (Eigen limit).");
// Validity Check: the range of unsqueeze aixs.
for (int axis : axes) {
PADDLE_ENFORCE(axis < 6,
"Invalid dimensions, input axis should be"
" within [1, 6] dimensions (Eigen limit).");
}
});
AddAttr<bool>(
"inplace",
"(default: false) Unsqueeze the source tensor's shape without "
"memory copy. When Attr(inplace) is set true, the output "
"tensor shares memory with Input(X), otherwise, a new output "
"tensor is created, and its data are copied from Input(x).")
.SetDefault(false);
AddComment(R"DOC(
Unsqueeze Operator.
Insert single-dimensional entries to the shape of a tensor.
Takes one required argument axes, a list of dimensions that will be inserted.
Dimension indices in axes are as seen in the output tensor.
For example:
Given a tensor such that tensor with shape [3, 4, 5],
then Unsqueeze(tensor, axes=[0, 4]) has shape [1, 3, 4, 5, 1]
)DOC");
}
};
class UnsqueezeGradInferShape : public framework::InferShapeBase {
public:
void operator()(framework::InferShapeContext *ctx) const override {
ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
ctx->ShareLoD("X", framework::GradVarName("X"));
}
};
class UnsqueezeGradOp : public framework::OperatorBase {
public:
using OperatorBase::OperatorBase;
private:
void RunImpl(const framework::Scope &scope,
const platform::Place &place) const override {
auto dx_name = Output(framework::GradVarName("X"));
auto dout_name = Input(framework::GradVarName("Out"));
auto x_dims = scope.FindVar(Input("X"))->Get<framework::LoDTensor>().dims();
framework::AttributeMap attrs;
attrs["shape"] = framework::vectorize2int(x_dims);
attrs["inplace"] = Attr<bool>("inplace");
auto reshape_op = framework::OpRegistry::CreateOp(
"reshape", {{"X", {dout_name}}, {"Shape", {}}}, {{"Out", {dx_name}}},
attrs);
reshape_op->Run(scope, place);
}
};
} // namespace operators
} // namespace paddle
// Tell linker to use reshape op.
USE_OP(reshape);
namespace ops = paddle::operators;
REGISTER_OPERATOR(unsqueeze, ops::UnsqueezeOp, ops::UnsqueezeOpMaker,
ops::UnsqueezeOpInferShape,
paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(unsqueeze_grad, ops::UnsqueezeGradOp,
ops::UnsqueezeGradInferShape);
......@@ -46,7 +46,7 @@ ENDIF()
# memcpy depends on device_context, here add deps individually for
# avoiding cycle dependencies
cc_library(device_context SRCS device_context.cc init.cc DEPS malloc
place eigen3 stringpiece cpu_helper ${GPU_CTX_DEPS} ${MKLDNN_CTX_DEPS})
place eigen3 stringpiece cpu_helper framework_proto ${GPU_CTX_DEPS} ${MKLDNN_CTX_DEPS})
nv_test(device_context_test SRCS device_context_test.cu DEPS device_context gpu_info)
cc_test(init_test SRCS init_test.cc DEPS device_context)
......
......@@ -222,15 +222,16 @@ class MKLDNNHandler {
static std::string GetHash(mkldnn::memory::dims& operand_dims, // NOLINT
const std::string& suffix) {
auto dims2str = [](const mkldnn::memory::dims& operand_dims) {
std::string dstr = "";
for (size_t i = 0; i < operand_dims.size(); ++i) {
dstr += std::to_string(operand_dims[i]) + "-";
}
return dstr;
};
return dims2str(operand_dims) + suffix;
};
protected:
static std::string dims2str(const mkldnn::memory::dims& operand_dims) {
std::string dstr = "";
for (size_t i = 0; i < operand_dims.size(); ++i) {
dstr += std::to_string(operand_dims[i]) + "-";
}
return dstr;
}
protected:
......
......@@ -510,11 +510,23 @@ function gen_fluid_inference_lib() {
EOF
make -j `nproc` inference_lib_dist
cd ${PADDLE_ROOT}/build
mv fluid_install_dir fluid
cp -r fluid_install_dir fluid
tar -cf fluid.tgz fluid
fi
}
function test_fluid_inference_lib() {
if [ ${WITH_C_API:-OFF} == "OFF" ] ; then
cat <<EOF
========================================
Testing fluid inference library ...
========================================
EOF
cd ${PADDLE_ROOT}/paddle/contrib/inference/demo_ci
sh run.sh ${PADDLE_ROOT} ${WITH_MKL:-ON} ${WITH_GPU:-OFF}
fi
}
function main() {
set -e
local CMD=$1
......@@ -568,6 +580,7 @@ function main() {
run_test
gen_capi_package
gen_fluid_inference_lib
test_fluid_inference_lib
;;
*)
print_usage
......
diff --git a/include/grpcpp/impl/codegen/completion_queue.h b/include/grpcpp/impl/codegen/completion_queue.h
index 80c7c41982..3f7d8a7714 100644
--- a/include/grpcpp/impl/codegen/completion_queue.h
+++ b/include/grpcpp/impl/codegen/completion_queue.h
@@ -32,6 +32,8 @@
#ifndef GRPCPP_IMPL_CODEGEN_COMPLETION_QUEUE_H
#define GRPCPP_IMPL_CODEGEN_COMPLETION_QUEUE_H
+#include <typeinfo>
+
#include <grpc/impl/codegen/atm.h>
#include <grpcpp/impl/codegen/completion_queue_tag.h>
#include <grpcpp/impl/codegen/core_codegen_interface.h>
@@ -106,7 +108,9 @@ class CompletionQueue : private GrpcLibraryCodegen {
/// Destructor. Destroys the owned wrapped completion queue / instance.
~CompletionQueue() {
- g_core_codegen_interface->grpc_completion_queue_destroy(cq_);
+ if (typeid(*g_core_codegen_interface).hash_code() != typeid(CoreCodegenInterface).hash_code()) {
+ g_core_codegen_interface->grpc_completion_queue_destroy(cq_);
+ }
}
/// Tri-state return for AsyncNext: SHUTDOWN, GOT_EVENT, TIMEOUT.
diff --git a/include/grpcpp/impl/codegen/grpc_library.h b/include/grpcpp/impl/codegen/grpc_library.h
index 17c904d71a..a092b2204d 100644
--- a/include/grpcpp/impl/codegen/grpc_library.h
+++ b/include/grpcpp/impl/codegen/grpc_library.h
@@ -19,6 +19,8 @@
#ifndef GRPCPP_IMPL_CODEGEN_GRPC_LIBRARY_H
#define GRPCPP_IMPL_CODEGEN_GRPC_LIBRARY_H
+#include <typeinfo>
+
#include <grpcpp/impl/codegen/core_codegen_interface.h>
namespace grpc {
@@ -47,7 +49,8 @@ class GrpcLibraryCodegen {
}
}
virtual ~GrpcLibraryCodegen() {
- if (grpc_init_called_) {
+ if (grpc_init_called_ &&
+ typeid(*g_glip).hash_code() != typeid(GrpcLibraryInterface).hash_code()) {
GPR_CODEGEN_ASSERT(g_glip &&
"gRPC library not initialized. See "
"grpc::internal::GrpcLibraryInitializer.");
......@@ -91,3 +91,16 @@ endif()
install(DIRECTORY ${PADDLE_PYTHON_PACKAGE_DIR}
DESTINATION opt/paddle/share/wheels
)
if(APPLE)
find_program(INSTALL_NAME_TOOL_EXECUTABLE install_name_tool)
if(NOT INSTALL_NAME_TOOL_EXECUTABLE)
message(FATAL_ERROR "install_name_tool not found, please check.\n")
endif()
else(APPLE)
find_program(PATCHELF_EXECUTABLE patchelf)
if(NOT PATCHELF_EXECUTABLE)
message(FATAL_ERROR "patchelf not found, please install it.\n"
"For Ubuntu, the command is: apt-get install -y patchelf.")
endif()
endif(APPLE)
......@@ -43,7 +43,7 @@ CIFAR100_URL = URL_PREFIX + 'cifar-100-python.tar.gz'
CIFAR100_MD5 = 'eb9058c3a382ffc7106e4002c42a8d85'
def reader_creator(filename, sub_name):
def reader_creator(filename, sub_name, cycle=False):
def read_batch(batch):
data = batch['data']
labels = batch.get('labels', batch.get('fine_labels', None))
......@@ -56,10 +56,13 @@ def reader_creator(filename, sub_name):
names = (each_item.name for each_item in f
if sub_name in each_item.name)
for name in names:
batch = cPickle.load(f.extractfile(name))
for item in read_batch(batch):
yield item
while True:
for name in names:
batch = cPickle.load(f.extractfile(name))
for item in read_batch(batch):
yield item
if not cycle:
break
return reader
......@@ -94,34 +97,40 @@ def test100():
'test')
def train10():
def train10(cycle=False):
"""
CIFAR-10 training set creator.
It returns a reader creator, each sample in the reader is image pixels in
[0, 1] and label in [0, 9].
:param cycle: whether to cycle through the dataset
:type cycle: bool
:return: Training reader creator
:rtype: callable
"""
return reader_creator(
paddle.dataset.common.download(CIFAR10_URL, 'cifar', CIFAR10_MD5),
'data_batch')
'data_batch',
cycle=cycle)
def test10():
def test10(cycle=False):
"""
CIFAR-10 test set creator.
It returns a reader creator, each sample in the reader is image pixels in
[0, 1] and label in [0, 9].
:param cycle: whether to cycle through the dataset
:type cycle: bool
:return: Test reader creator.
:rtype: callable
"""
return reader_creator(
paddle.dataset.common.download(CIFAR10_URL, 'cifar', CIFAR10_MD5),
'test_batch')
'test_batch',
cycle=cycle)
def fetch():
......
......@@ -76,7 +76,8 @@ def reader_creator(data_file,
dataset_name,
mapper,
buffered_size=1024,
use_xmap=True):
use_xmap=True,
cycle=False):
'''
1. read images from tar file and
merge images into batch files in 102flowers.tgz_batch/
......@@ -96,6 +97,8 @@ def reader_creator(data_file,
:type mapper: callable
:param buffered_size: the size of buffer used to process images
:type buffered_size: int
:param cycle: whether to cycle through the dataset
:type cycle: bool
:return: data reader
:rtype: callable
'''
......@@ -108,15 +111,18 @@ def reader_creator(data_file,
file_list = batch_images_from_tar(data_file, dataset_name, img2label)
def reader():
for file in open(file_list):
file = file.strip()
batch = None
with open(file, 'r') as f:
batch = cPickle.load(f)
data = batch['data']
labels = batch['label']
for sample, label in itertools.izip(data, batch['label']):
yield sample, int(label) - 1
while True:
for file in open(file_list):
file = file.strip()
batch = None
with open(file, 'r') as f:
batch = cPickle.load(f)
data = batch['data']
labels = batch['label']
for sample, label in itertools.izip(data, batch['label']):
yield sample, int(label) - 1
if not cycle:
break
if use_xmap:
cpu_num = int(os.environ.get('CPU_NUM', cpu_count()))
......@@ -125,7 +131,7 @@ def reader_creator(data_file,
return map_readers(mapper, reader)
def train(mapper=train_mapper, buffered_size=1024, use_xmap=True):
def train(mapper=train_mapper, buffered_size=1024, use_xmap=True, cycle=False):
'''
Create flowers training set reader.
It returns a reader, each sample in the reader is
......@@ -138,17 +144,23 @@ def train(mapper=train_mapper, buffered_size=1024, use_xmap=True):
:type mapper: callable
:param buffered_size: the size of buffer used to process images
:type buffered_size: int
:param cycle: whether to cycle through the dataset
:type cycle: bool
:return: train data reader
:rtype: callable
'''
return reader_creator(
download(DATA_URL, 'flowers', DATA_MD5),
download(LABEL_URL, 'flowers', LABEL_MD5),
download(SETID_URL, 'flowers', SETID_MD5), TRAIN_FLAG, mapper,
buffered_size, use_xmap)
download(SETID_URL, 'flowers', SETID_MD5),
TRAIN_FLAG,
mapper,
buffered_size,
use_xmap,
cycle=cycle)
def test(mapper=test_mapper, buffered_size=1024, use_xmap=True):
def test(mapper=test_mapper, buffered_size=1024, use_xmap=True, cycle=False):
'''
Create flowers test set reader.
It returns a reader, each sample in the reader is
......@@ -161,14 +173,20 @@ def test(mapper=test_mapper, buffered_size=1024, use_xmap=True):
:type mapper: callable
:param buffered_size: the size of buffer used to process images
:type buffered_size: int
:param cycle: whether to cycle through the dataset
:type cycle: bool
:return: test data reader
:rtype: callable
'''
return reader_creator(
download(DATA_URL, 'flowers', DATA_MD5),
download(LABEL_URL, 'flowers', LABEL_MD5),
download(SETID_URL, 'flowers', SETID_MD5), TEST_FLAG, mapper,
buffered_size, use_xmap)
download(SETID_URL, 'flowers', SETID_MD5),
TEST_FLAG,
mapper,
buffered_size,
use_xmap,
cycle=cycle)
def valid(mapper=test_mapper, buffered_size=1024, use_xmap=True):
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import functools
import sys
__all__ = ['deprecated']
def deprecated(since, instead, extra_message=""):
def decorator(func):
err_msg = "API {0} is deprecated since {1}. Please use {2} instead.".format(
func.__name__, since, instead)
if len(extra_message) != 0:
err_msg += "\n"
err_msg += extra_message
@functools.wraps(func)
def wrapper(*args, **kwargs):
print >> sys.stderr, err_msg
return func(*args, **kwargs)
wrapper.__doc__ += "\n "
wrapper.__doc__ += err_msg
return wrapper
return decorator
......@@ -18,10 +18,7 @@ import collections
import copy
import unique_name
__all__ = [
'append_backward',
'calc_gradient',
]
__all__ = ['append_backward']
def _rename_arg_(op_descs, old_name, new_name, begin_idx=None, end_idx=None):
......@@ -123,7 +120,8 @@ def _append_grad_suffix_(name):
def _addup_repetitive_outputs_(op_descs):
"""
In backward part, an variable may be the output of more than one ops.
In this case, the variable should be the accumulation of all the outputs.
And one op may yield its multiple outputs to the same variable.
In these cases, the variable should be the accumulation of all the outputs.
`sum_op`s are added to implement the accumulate.
"""
pending_sum_ops = []
......@@ -136,29 +134,46 @@ def _addup_repetitive_outputs_(op_descs):
"sum", {"X": renamed_vars[var_name]}, {"Out": [var_name]},
{"use_mkldnn": False}), idx))
renamed_vars[var_name] = [var_name]
for var_name in op_desc.output_arg_names():
if var_name == core.empty_var_name(
) or var_name in op_desc.input_arg_names():
# empty variable or inplace op
continue
if len(renamed_vars[var_name]) == 0:
# it's the first time we get the variable
renamed_vars[var_name] = [var_name]
else:
if len(renamed_vars[var_name]) == 1:
for param_idx, param_name in enumerate(op_desc.output_names()):
arg_names = op_desc.output(param_name)
for arg_idx, var_name in enumerate(arg_names):
if var_name == core.empty_var_name(
) or var_name in op_desc.input_arg_names():
# empty variable or inplace op
continue
if len(renamed_vars[var_name]) == 0:
# it's the first time we get the variable
renamed_vars[var_name] = [var_name]
else:
if len(renamed_vars[var_name]) == 1:
new_name = var_name + "@RENAME@" + \
str(var_rename_count[var_name])
var_rename_count[var_name] += 1
# rename original var_name
renamed_vars[var_name][0] = new_name
_rename_arg_(op_descs, var_name, new_name, 0, idx)
_rename_arg_(pending_sum_ops, var_name, new_name)
for p in op_desc.output_names()[:param_idx]:
p_arg_names = op_desc.output(p)
if var_name in p_arg_names:
op_desc.set_output(p, [
new_name if x == var_name else x
for x in p_arg_names
])
arg_names = [
new_name if x == var_name else x
for x in arg_names[:arg_idx]
] + arg_names[arg_idx:]
new_name = var_name + "@RENAME@" + \
str(var_rename_count[var_name])
var_rename_count[var_name] += 1
# rename original var_name
renamed_vars[var_name][0] = new_name
_rename_arg_(op_descs, var_name, new_name, 0, idx)
_rename_arg_(pending_sum_ops, var_name, new_name)
new_name = var_name + "@RENAME@" + \
str(var_rename_count[var_name])
var_rename_count[var_name] += 1
op_desc.rename_output(var_name, new_name)
renamed_vars[var_name].append(new_name)
arg_names[arg_idx] = new_name
op_desc.set_output(param_name, arg_names)
renamed_vars[var_name].append(new_name)
for var_name, inputs in renamed_vars.iteritems():
if len(inputs) > 1:
pending_sum_ops.append(
......
......@@ -30,6 +30,7 @@ __all__ = [
'detection_output',
'ssd_loss',
'detection_map',
'rpn_target_assign',
'anchor_generator',
]
......@@ -44,6 +45,135 @@ for _OP in set(__auto__):
globals()[_OP] = generate_layer_fn(_OP)
def rpn_target_assign(loc,
scores,
anchor_box,
gt_box,
rpn_batch_size_per_im=256,
fg_fraction=0.25,
rpn_positive_overlap=0.7,
rpn_negative_overlap=0.3):
"""
** Target Assign Layer for region proposal network (RPN) in Faster-RCNN detection. **
This layer can be, for given the Intersection-over-Union (IoU) overlap
between anchors and ground truth boxes, to assign classification and
regression targets to each each anchor, these target labels are used for
train RPN. The classification targets is a binary class label (of being
an object or not). Following the paper of Faster-RCNN, the positive labels
are two kinds of anchors: (i) the anchor/anchors with the highest IoU
overlap with a ground-truth box, or (ii) an anchor that has an IoU overlap
higher than rpn_positive_overlap(0.7) with any ground-truth box. Note
that a single ground-truth box may assign positive labels to multiple
anchors. A non-positive anchor is when its IoU ratio is lower than
rpn_negative_overlap (0.3) for all ground-truth boxes. Anchors that are
neither positive nor negative do not contribute to the training objective.
The regression targets are the encoded ground-truth boxes associated with
the positive anchors.
Args:
loc(Variable): A 3-D Tensor with shape [N, M, 4] represents the
predicted locations of M bounding bboxes. N is the batch size,
and each bounding box has four coordinate values and the layout
is [xmin, ymin, xmax, ymax].
scores(Variable): A 3-D Tensor with shape [N, M, C] represents the
predicted confidence predictions. N is the batch size, C is the
class number, M is number of bounding boxes. For each category
there are total M scores which corresponding M bounding boxes.
anchor_box(Variable): A 2-D Tensor with shape [M, 4] holds M boxes,
each box is represented as [xmin, ymin, xmax, ymax],
[xmin, ymin] is the left top coordinate of the anchor box,
if the input is image feature map, they are close to the origin
of the coordinate system. [xmax, ymax] is the right bottom
coordinate of the anchor box.
gt_box (Variable): The ground-truth boudding boxes (bboxes) are a 2D
LoDTensor with shape [Ng, 4], Ng is the total number of ground-truth
bboxes of mini-batch input.
rpn_batch_size_per_im(int): Total number of RPN examples per image.
fg_fraction(float): Target fraction of RoI minibatch that is labeled
foreground (i.e. class > 0), 0-th class is background.
rpn_positive_overlap(float): Minimum overlap required between an anchor
and ground-truth box for the (anchor, gt box) pair to be a positive
example.
rpn_negative_overlap(float): Maximum overlap allowed between an anchor
and ground-truth box for the (anchor, gt box) pair to be a negative
examples.
Returns:
tuple:
A tuple(predicted_scores, predicted_location, target_label,
target_bbox) is returned. The predicted_scores and
predicted_location is the predicted result of the RPN.
The target_label and target_bbox is the ground truth,
respectively. The predicted_location is a 2D Tensor with shape
[F, 4], and the shape of target_bbox is same as the shape of
the predicted_location, F is the number of the foreground
anchors. The predicted_scores is a 2D Tensor with shape
[F + B, 1], and the shape of target_label is same as the shape
of the predicted_scores, B is the number of the background
anchors, the F and B is depends on the input of this operator.
Examples:
.. code-block:: python
loc = layers.data(name='location', shape=[2, 80],
append_batch_size=False, dtype='float32')
scores = layers.data(name='scores', shape=[2, 40],
append_batch_size=False, dtype='float32')
anchor_box = layers.data(name='anchor_box', shape=[20, 4],
append_batch_size=False, dtype='float32')
gt_box = layers.data(name='gt_box', shape=[10, 4],
append_batch_size=False, dtype='float32')
loc_pred, score_pred, loc_target, score_target =
fluid.layers.detection_output(loc=location,
scores=scores,
anchor_box=anchor_box,
gt_box=gt_box)
"""
helper = LayerHelper('rpn_target_assign', **locals())
# 1. Compute the regression target bboxes
target_bbox = box_coder(
prior_box=anchor_box,
target_box=gt_box,
code_type='encode_center_size',
box_normalized=False)
# 2. Compute overlaps between the prior boxes and the gt boxes overlaps
iou = iou_similarity(x=gt_box, y=anchor_box)
# 3. Assign target label to anchors
loc_index = helper.create_tmp_variable(dtype=anchor_box.dtype)
score_index = helper.create_tmp_variable(dtype=anchor_box.dtype)
target_label = helper.create_tmp_variable(dtype=anchor_box.dtype)
helper.append_op(
type="rpn_target_assign",
inputs={'Overlap': iou, },
outputs={
'LocationIndex': loc_index,
'ScoreIndex': score_index,
'TargetLabel': target_label,
},
attrs={
'rpn_batch_size_per_im': rpn_batch_size_per_im,
'rpn_positive_overlap': rpn_positive_overlap,
'rpn_negative_overlap': rpn_negative_overlap,
'fg_fraction': fg_fraction,
})
# 4. Reshape and gather the target entry
scores = nn.reshape(x=scores, shape=(-1, 1))
loc = nn.reshape(x=loc, shape=(-1, 4))
target_label = nn.reshape(x=target_label, shape=(-1, 1))
target_bbox = nn.reshape(x=target_bbox, shape=(-1, 4))
predicted_scores = nn.gather(scores, score_index)
predicted_location = nn.gather(loc, loc_index)
target_label = nn.gather(target_label, score_index)
target_bbox = nn.gather(target_bbox, loc_index)
return predicted_scores, predicted_loc, target_label, target_bbox
def detection_output(loc,
scores,
prior_box,
......@@ -388,7 +518,6 @@ def target_assign(input,
Returns:
tuple:
A tuple(out, out_weight) is returned. out is a 3D Tensor with
shape [N, P, K], N and P is the same as they are in
`neg_indices`, K is the same as it in input of X. If
......@@ -660,7 +789,8 @@ def prior_box(input,
clip=False,
steps=[0.0, 0.0],
offset=0.5,
name=None):
name=None,
min_max_aspect_ratios_order=False):
"""
**Prior Box Operator**
......@@ -689,6 +819,11 @@ def prior_box(input,
Default: [0., 0.]
offset(float): Prior boxes center offset. Default: 0.5
name(str): Name of the prior box op. Default: None.
min_max_aspect_ratios_order(bool): If set True, the output prior box is
in order of [min, max, aspect_ratios], which is consistent with
Caffe. Please note, this order affects the weights order of
convolution layer followed by and does not affect the final
detection results. Default: False.
Returns:
tuple: A tuple with two Variable (boxes, variances)
......@@ -742,7 +877,8 @@ def prior_box(input,
'clip': clip,
'step_w': steps[0],
'step_h': steps[1],
'offset': offset
'offset': offset,
'min_max_aspect_ratios_order': min_max_aspect_ratios_order
}
if max_sizes is not None and len(max_sizes) > 0 and max_sizes[0] > 0:
if not _is_list_or_tuple_(max_sizes):
......@@ -782,7 +918,8 @@ def multi_box_head(inputs,
kernel_size=1,
pad=0,
stride=1,
name=None):
name=None,
min_max_aspect_ratios_order=False):
"""
Generate prior boxes for SSD(Single Shot MultiBox Detector)
algorithm. The details of this algorithm, please refer the
......@@ -825,6 +962,11 @@ def multi_box_head(inputs,
pad(int|list|tuple): The padding of conv2d. Default:0.
stride(int|list|tuple): The stride of conv2d. Default:1,
name(str): Name of the prior box layer. Default: None.
min_max_aspect_ratios_order(bool): If set True, the output prior box is
in order of [min, max, aspect_ratios], which is consistent with
Caffe. Please note, this order affects the weights order of
convolution layer followed by and does not affect the fininal
detection results. Default: False.
Returns:
tuple: A tuple with four Variables. (mbox_loc, mbox_conf, boxes, variances)
......@@ -939,7 +1081,8 @@ def multi_box_head(inputs,
step = [step_w[i] if step_w else 0.0, step_h[i] if step_w else 0.0]
box, var = prior_box(input, image, min_size, max_size, aspect_ratio,
variance, flip, clip, step, offset)
variance, flip, clip, step, offset, None,
min_max_aspect_ratios_order)
box_results.append(box)
var_results.append(var)
......
......@@ -18,10 +18,12 @@ All util layers.
from layer_function_generator import autodoc
from ..framework import unique_name
from ..layer_helper import LayerHelper
from ..annotations import deprecated
__all__ = ['get_places']
__all__ = []
@deprecated(since='0.15.0', instead="ParallelExecutor")
@autodoc()
def get_places(device_count=None, device_type=None):
helper = LayerHelper('get_places', **locals())
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Copyright (c ) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
......@@ -3900,7 +3914,13 @@ def transpose(x, perm, name=None):
return out
def im2sequence(input, filter_size=1, stride=1, padding=0, name=None):
def im2sequence(input,
filter_size=1,
stride=1,
padding=0,
input_image_size=None,
out_stride=1,
name=None):
"""
Extracts image patches from the input tensor to form a tensor of shape
{input.batch_size * output_height * output_width, filter_size_H *
......@@ -3937,6 +3957,15 @@ def im2sequence(input, filter_size=1, stride=1, padding=0, name=None):
padding_up = padding_down = padding_left = padding_right = padding
Default: padding = 0.
input_image_size(Variable): the input contains image real size.It's dim
is [batchsize, 2]. It is dispensable.It is just for batch inference.
out_stride(int|tuple): The scaling of image through CNN. It is
dispensable. It is valid only when input_image_size is not null.
If out_stride is tuple, it must contain two intergers,
(out_stride_H, out_stride_W). Otherwise,
the out_stride_H = out_stride_W = out_stride.
name (int): The name of this layer. It is optional.
Returns:
......@@ -3987,7 +4016,7 @@ def im2sequence(input, filter_size=1, stride=1, padding=0, name=None):
[ 5. 7. 2. 4. 1. 3. 9. 0.]
[ 7. 9. 4. 8. 3. 5. 0. 8.]]
output.dims = {8, 9}
output.dims = {8, 8}
output.lod = [[4, 4]]
......@@ -4009,18 +4038,17 @@ def im2sequence(input, filter_size=1, stride=1, padding=0, name=None):
if len(padding) == 2:
padding.append(padding[0])
padding.append(padding[1])
inputs = {"X": input}
attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
if input_image_size:
if isinstance(out_stride, int):
out_stride = [out_stride, out_stride]
inputs["Y"] = input_image_size
attrs["out_stride"] = out_stride
helper = LayerHelper('im2sequence', **locals())
out = helper.create_tmp_variable(dtype=helper.input_dtype())
helper.append_op(
type='im2sequence',
inputs={'X': input},
outputs={'Out': out},
attrs={
'kernels': filter_size,
'strides': stride,
'paddings': padding,
})
type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
return out
......
......@@ -29,7 +29,7 @@ __all__ = [
'SGD', 'Momentum', 'Adagrad', 'Adam', 'Adamax', 'DecayedAdagrad', 'Ftrl',
'SGDOptimizer', 'MomentumOptimizer', 'AdagradOptimizer', 'AdamOptimizer',
'AdamaxOptimizer', 'DecayedAdagradOptimizer', 'RMSPropOptimizer',
'FtrlOptimizer', 'Adadelta', 'ModelAverage', 'Optimizer', 'RMSPropOptimizer'
'FtrlOptimizer', 'Adadelta', 'ModelAverage', 'RMSPropOptimizer'
]
......@@ -67,7 +67,7 @@ class Optimizer(object):
self._LARS_weight_decay = LARS_weight_decay
def _create_global_learning_rate(self):
lr = self.global_learning_rate()
lr = self._global_learning_rate()
if isinstance(lr, framework.Variable):
return
......@@ -86,7 +86,7 @@ class Optimizer(object):
dtype='float32' if self._dtype == None else self._dtype,
persistable=True)
def global_learning_rate(self, program=None):
def _global_learning_rate(self, program=None):
"""
get global decayed learning rate
:return:
......@@ -110,9 +110,9 @@ class Optimizer(object):
return param_lr
else:
if param_lr == 1.0:
return self.global_learning_rate()
return self._global_learning_rate()
else:
return self.global_learning_rate() * param_lr
return self._global_learning_rate() * param_lr
def _create_accumulators(self, block, parameters):
"""Create all accumulators needed by the parameters
......@@ -185,10 +185,10 @@ class Optimizer(object):
format(name, param.name))
return self._accumulators[name][param.name]
def create_optimization_pass(self,
parameters_and_grads,
loss,
startup_program=None):
def _create_optimization_pass(self,
parameters_and_grads,
loss,
startup_program=None):
"""Add optimization operators to update gradients to variables.
Args:
......@@ -221,7 +221,7 @@ class Optimizer(object):
self._create_global_learning_rate()
if self._LARS_weight_decay > 0.0:
layers.append_LARS(parameters_and_grads,
self.global_learning_rate(),
self._global_learning_rate(),
self._LARS_weight_decay)
optimize_ops = []
......@@ -262,8 +262,8 @@ class Optimizer(object):
params_grads = append_regularization_ops(params_grads,
self.regularization)
optimize_ops = self.create_optimization_pass(params_grads, loss,
startup_program)
optimize_ops = self._create_optimization_pass(params_grads, loss,
startup_program)
return optimize_ops, params_grads
......
......@@ -12,7 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
from paddle.fluid.layers.device import get_places
import unittest
import paddle.fluid as fluid
import paddle
......@@ -144,7 +144,7 @@ def train(word_dict,
cost, acc_out, prediction = net_method(
data, label, input_dim=dict_dim, class_dim=class_dim)
else:
places = fluid.layers.get_places()
places = get_places()
pd = fluid.layers.ParallelDo(places)
with pd.do():
cost, acc, _ = net_method(
......
......@@ -12,15 +12,17 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import argparse
import paddle.fluid as fluid
import paddle
import sys
import numpy
import unittest
import math
import sys
import os
import sys
import unittest
import numpy
import paddle
import paddle.fluid as fluid
from paddle.fluid.layers.device import get_places
BATCH_SIZE = 64
......@@ -76,7 +78,7 @@ def train(nn_type,
net_conf = conv_net
if parallel:
places = fluid.layers.get_places()
places = get_places()
pd = fluid.layers.ParallelDo(places)
with pd.do():
img_ = pd.read_input(img)
......
......@@ -14,6 +14,7 @@
import paddle
import paddle.fluid as fluid
from paddle.fluid.layers.device import get_places
import unittest
import os
import numpy as np
......@@ -80,7 +81,7 @@ def train(use_cuda, is_sparse, is_parallel, save_dirname, is_local=True):
avg_cost, predict_word = __network__(
[first_word, second_word, third_word, forth_word, next_word])
else:
places = fluid.layers.get_places()
places = get_places()
pd = fluid.layers.ParallelDo(places)
with pd.do():
avg_cost, predict_word = __network__(
......
......@@ -12,12 +12,13 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import paddle
import paddle.fluid as fluid
import math
import sys
import paddle
import paddle.fluid as fluid
from paddle.fluid.layers.device import get_places
# need to fix random seed and training data to compare the loss
# value accurately calculated by the default and the memory optimization
# version.
......@@ -34,7 +35,7 @@ if fluid.core.is_compiled_with_cuda():
use_nccl = False
place = fluid.CUDAPlace(0)
places = fluid.layers.get_places(device_count=0, device_type=device_type)
places = get_places(device_count=0, device_type=device_type)
pd = fluid.layers.ParallelDo(places, use_nccl=use_nccl)
with pd.do():
x_ = pd.read_input(x)
......
......@@ -16,8 +16,6 @@ import unittest
import paddle.fluid as fluid
import paddle.fluid.layers as layers
import paddle.fluid.framework as framework
import paddle.fluid.optimizer as optimizer
from paddle.fluid.backward import calc_gradient
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
from op_test import OpTest
class TestFakeQuantizeOp(OpTest):
def setUp(self):
self.op_type = "fake_quantize"
self.attrs = {
'bit_length': 8,
'quantize_type': 'abs_max',
'window_size': 10000
}
self.inputs = {
'X': np.random.random((10, 10)).astype("float32"),
'InScales': np.zeros(self.attrs['window_size']).astype("float32"),
'InCurrentIter': np.zeros(1).astype("float32"),
'InMovingScale': np.zeros(1).astype("float32")
}
self.scale = {
'abs_max': np.max(np.abs(self.inputs['X'])).astype("float32")
}
self.outputs = {
'Out': np.round(self.inputs['X'] / self.scale['abs_max'] * (
(1 << (self.attrs['bit_length'] - 1)) - 1)),
'OutScales': np.zeros(self.attrs['window_size']).astype("float32"),
'OutMovingScale':
np.array([self.scale['abs_max']]).astype("float32"),
'OutCurrentIter': np.zeros(1).astype("float32")
}
def test_check_output(self):
self.check_output()
if __name__ == "__main__":
unittest.main()
......@@ -13,6 +13,7 @@
# limitations under the License.
import paddle.fluid as fluid
from paddle.fluid.layers.device import get_places
import decorators
import unittest
......@@ -20,7 +21,7 @@ import unittest
class TestGetPlaces(unittest.TestCase):
@decorators.prog_scope()
def test_get_places(self):
places = fluid.layers.get_places()
places = get_places()
cpu = fluid.CPUPlace()
exe = fluid.Executor(cpu)
exe.run(fluid.default_main_program())
......
......@@ -16,23 +16,48 @@ import numpy as np
from op_test import OpTest
def get_output_shape(attrs, in_shape):
def get_output_shape(attrs, in_shape, img_real_size):
batchsize = in_shape[0]
img_height = in_shape[2]
img_width = in_shape[3]
paddings = np.array(attrs['paddings']).astype("int32")
kernels = np.array(attrs['kernels']).astype("int32")
strides = np.array(attrs['strides']).astype("int32")
output_height = np.zeros((1, batchsize)).astype("int32")
output_width = np.zeros((1, batchsize)).astype("int32")
if len(img_real_size):
out_stride = np.array(attrs['out_stride']).astype("int32")
imgreal_h = 0
imgreal_w = 0
for index in range(batchsize):
if img_real_size[index, 0] % out_stride[0] == 0:
imgreal_h = img_real_size[index, 0] / out_stride[0]
else:
imgreal_h = img_real_size[index, 0] / out_stride[0] + 1
if img_real_size[index, 0] % out_stride[1] == 0:
imgreal_w = img_real_size[index, 1] / out_stride[1]
else:
imgreal_w = img_real_size[index, 0] / out_stride[1] + 1
output_height[0,index] = \
1 + \
(imgreal_h + paddings[0] + paddings[2] - kernels[0] + strides[0] - 1) / \
strides[0]
paddings = attrs['paddings']
kernels = attrs['kernels']
strides = attrs['strides']
output_width[0,index] = \
1 + \
(imgreal_w + paddings[1] + paddings[3] - kernels[1] + strides[1] - 1) / \
strides[1]
else:
for index in range(batchsize):
output_height[0,index] = \
1 + \
(img_height + paddings[0] + paddings[2] - kernels[0] + strides[0] - 1) / \
strides[0]
output_height = \
1 + \
(img_height + paddings[0] + paddings[2] - kernels[0] + strides[0] - 1) / \
strides[0]
output_width = \
1 + \
(img_width + paddings[1] + paddings[3] - kernels[1] + strides[1] - 1) / \
strides[1]
output_width[0,index] = \
1 + \
(img_width + paddings[1] + paddings[3] - kernels[1] + strides[1] - 1) / \
strides[1]
return output_height, output_width
......@@ -75,22 +100,25 @@ def im2col(attrs, im, col):
im_row_offset][im_col_offset]
def Im2Sequence(inputs, attrs):
output_height, output_width = get_output_shape(attrs, inputs.shape)
def Im2Sequence(inputs, img_real_size, attrs):
output_height, output_width = get_output_shape(attrs, inputs.shape,
img_real_size)
img_channels = inputs.shape[1]
batch_size = inputs.shape[0]
out = np.zeros([
batch_size, output_height, output_width, img_channels,
attrs['kernels'][0], attrs['kernels'][1]
]).astype("float32")
for i in range(len(inputs)):
im2col(attrs, inputs[i], out[i])
out = out.reshape([
batch_size * output_height * output_width,
img_channels * attrs['kernels'][0] * attrs['kernels'][1]
])
out = []
for index in range(batch_size):
tmp = np.zeros([
output_height[0, index], output_width[0, index], img_channels,
attrs['kernels'][0], attrs['kernels'][1]
]).astype("float32")
out.append(tmp)
for index in range(len(inputs)):
im2col(attrs, inputs[index], out[index])
out[index] = out[index].reshape([
output_height[0, index] * output_width[0, index],
img_channels * attrs['kernels'][0] * attrs['kernels'][1]
])
out = np.concatenate(out, axis=0)
return out
......@@ -103,7 +131,7 @@ class TestBlockExpandOp(OpTest):
self.attrs = {
'kernels': [2, 2],
'strides': [1, 1],
'paddings': [1, 1, 1, 1]
'paddings': [1, 1, 1, 1],
}
def setUp(self):
......@@ -113,7 +141,8 @@ class TestBlockExpandOp(OpTest):
self.batch_size, self.img_channels, self.img_height, self.img_width
]).astype("float32")
out = Im2Sequence(x, self.attrs)
real_size = np.array([]).astype("float32")
out = Im2Sequence(x, real_size, self.attrs)
self.inputs = {'X': x}
self.outputs = {'Out': out}
......@@ -133,20 +162,20 @@ class TestBlockExpandOpCase2(TestBlockExpandOp):
self.attrs = {
'kernels': [2, 1],
'strides': [2, 1],
'paddings': [2, 1, 2, 1]
'paddings': [2, 1, 2, 1],
}
class TestBlockExpandOpCase3(TestBlockExpandOp):
def config(self):
self.batch_size = 3
self.batch_size = 2
self.img_channels = 1
self.img_height = 4
self.img_width = 5
self.attrs = {
'kernels': [2, 1],
'strides': [2, 1],
'paddings': [2, 0, 2, 0]
'paddings': [2, 0, 2, 0],
}
......@@ -159,9 +188,94 @@ class TestBlockExpandOpCase4(TestBlockExpandOp):
self.attrs = {
'kernels': [2, 2],
'strides': [1, 1],
'paddings': [0, 0, 0, 0]
'paddings': [0, 0, 0, 0],
}
class TestBlockExpandOpCase5(OpTest):
def config(self):
self.batch_size = 1
self.img_channels = 3
self.img_height = 4
self.img_width = 5
self.attrs = {
'kernels': [2, 1],
'strides': [2, 1],
'paddings': [2, 1, 2, 1],
'out_stride': [2, 2],
}
def setUp(self):
self.config()
self.op_type = "im2sequence"
x = np.random.uniform(0.1, 1, [
self.batch_size, self.img_channels, self.img_height, self.img_width
]).astype("float32")
real_size = np.array([[8, 10], [5, 8]]).astype("float32")
out = np.array(Im2Sequence(x, real_size, self.attrs))
self.inputs = {'X': x, 'Y': real_size} #l ??
self.outputs = {'Out': out}
def test_check_output(self):
self.check_output()
class TestBlockExpandOpCase6(OpTest):
def config(self):
self.batch_size = 3
self.img_channels = 1
self.img_height = 4
self.img_width = 5
self.attrs = {
'kernels': [2, 1],
'strides': [1, 1],
'paddings': [0, 0, 0, 0],
'out_stride': [1, 1],
}
def setUp(self):
self.config()
self.op_type = "im2sequence"
x = np.random.uniform(0.1, 1, [
self.batch_size, self.img_channels, self.img_height, self.img_width
]).astype("float32")
real_size = np.array([[8, 10], [5, 8], [5, 8]]).astype("float32")
out = np.array(Im2Sequence(x, real_size, self.attrs))
self.inputs = {'X': x, 'Y': real_size} #l ??
self.outputs = {'Out': out}
def test_check_output(self):
self.check_output()
class TestBlockExpandOpCase7(OpTest):
def config(self):
self.batch_size = 2
self.img_channels = 2
self.img_height = 3
self.img_width = 3
self.attrs = {
'kernels': [2, 2],
'strides': [1, 1],
'paddings': [1, 0, 1, 0],
'out_stride': [2, 2],
}
def setUp(self):
self.config()
self.op_type = "im2sequence"
x = np.random.uniform(0.1, 1, [
self.batch_size, self.img_channels, self.img_height, self.img_width
]).astype("float32")
real_size = np.array([[6, 6], [4, 4]]).astype("float32")
out = np.array(Im2Sequence(x, real_size, self.attrs))
self.inputs = {'X': x, 'Y': real_size}
self.outputs = {'Out': out}
def test_check_output(self):
self.check_output()
if __name__ == '__main__':
unittest.main()
#set shiftwidth=4 set expandtab set tabstop=4
......@@ -16,6 +16,7 @@ from __future__ import print_function
import unittest
import paddle.fluid.layers as layers
from paddle.fluid.layers.device import get_places
import paddle.fluid.nets as nets
from paddle.fluid.framework import Program, program_guard, default_main_program
from paddle.fluid.param_attr import ParamAttr
......@@ -238,7 +239,7 @@ class TestBook(unittest.TestCase):
def test_get_places(self):
program = Program()
with program_guard(program):
x = layers.get_places(device_count=4)
x = get_places(device_count=4)
self.assertIsNotNone(x)
print(str(program))
......@@ -251,12 +252,16 @@ class TestBook(unittest.TestCase):
print(str(program))
def test_im2sequence(self):
print("test_im2sequence")
program = Program()
with program_guard(program):
x = layers.data(name='x', shape=[3, 128, 128], dtype='float32')
y = layers.data(name='y', shape=[], dtype='float32')
output = layers.im2sequence(
input=x, stride=[1, 1], filter_size=[2, 2])
input=x,
input_image_size=y,
stride=[1, 1],
filter_size=[2, 2],
out_stride=[1, 1])
self.assertIsNotNone(output)
print(str(program))
......
......@@ -97,7 +97,7 @@ class TestMomentumOptimizer(unittest.TestCase):
params_grads = append_backward(mean_out)
self.assertEqual(len(params_grads), 1)
self.assertEqual(len(momentum_optimizer.get_accumulators()), 0)
opts = momentum_optimizer.create_optimization_pass(
opts = momentum_optimizer._create_optimization_pass(
params_grads, mul_out, init_program)
self.assertEqual(len(opts), 3)
sgd_op = opts[-1]
......@@ -151,7 +151,7 @@ class TestMomentumOptimizer(unittest.TestCase):
params_grads = append_backward(mean_out)
self.assertEqual(len(params_grads), 1)
self.assertEqual(len(momentum_optimizer.get_accumulators()), 0)
opts = momentum_optimizer.create_optimization_pass(
opts = momentum_optimizer._create_optimization_pass(
params_grads, mul_out, init_program)
self.assertEqual(len(opts), 3)
sgd_op = opts[-1]
......@@ -214,8 +214,8 @@ class TestAdagradOptimizer(unittest.TestCase):
params_grads = append_backward(mean_out)
self.assertEqual(len(params_grads), 1)
self.assertEqual(len(adagrad_optimizer.get_accumulators()), 0)
opts = adagrad_optimizer.create_optimization_pass(params_grads, mul_out,
init_program)
opts = adagrad_optimizer._create_optimization_pass(
params_grads, mul_out, init_program)
self.assertEqual(len(opts), 3)
self.assertEqual([op.type for op in opts],
["fill_constant", "elementwise_mul", "adagrad"])
......@@ -278,8 +278,8 @@ class TestAdamOptimizer(unittest.TestCase):
params_grads = append_backward(mean_out)
self.assertEqual(len(params_grads), 1)
self.assertEqual(len(adam_optimizer.get_accumulators()), 0)
opts = adam_optimizer.create_optimization_pass(params_grads, mul_out,
init_program)
opts = adam_optimizer._create_optimization_pass(params_grads, mul_out,
init_program)
self.assertEqual(len(opts), 5)
self.assertEqual(
[op.type for op in opts],
......@@ -345,8 +345,8 @@ class TestAdamaxOptimizer(unittest.TestCase):
params_grads = append_backward(mean_out)
self.assertEqual(len(params_grads), 1)
self.assertEqual(len(adamax_optimizer.get_accumulators()), 0)
opts = adamax_optimizer.create_optimization_pass(params_grads, mul_out,
init_program)
opts = adamax_optimizer._create_optimization_pass(params_grads, mul_out,
init_program)
self.assertEqual(len(opts), 4)
self.assertEqual(
[op.type for op in opts],
......@@ -409,7 +409,7 @@ class TestDecayedAdagradOptimizer(unittest.TestCase):
params_grads = append_backward(mean_out)
self.assertEqual(len(params_grads), 1)
self.assertEqual(len(decayed_adagrad_optimizer.get_accumulators()), 0)
opts = decayed_adagrad_optimizer.create_optimization_pass(
opts = decayed_adagrad_optimizer._create_optimization_pass(
params_grads, mul_out, init_program)
self.assertEqual(len(opts), 3)
self.assertEqual(
......@@ -475,8 +475,8 @@ class TestFtrlOptimizer(unittest.TestCase):
params_grads = append_backward(mean_out)
self.assertEqual(len(params_grads), 1)
self.assertEqual(len(ftrl_optimizer.get_accumulators()), 0)
opts = ftrl_optimizer.create_optimization_pass(params_grads, mul_out,
init_program)
opts = ftrl_optimizer._create_optimization_pass(params_grads, mul_out,
init_program)
self.assertEqual(len(opts), 3)
self.assertEqual([op.type for op in opts],
["fill_constant", "elementwise_mul", "ftrl"])
......
......@@ -15,6 +15,7 @@
import unittest
import paddle.fluid as fluid
from paddle.fluid.layers.device import get_places
import paddle.fluid.profiler as profiler
import numpy
......@@ -115,7 +116,7 @@ class BaseParallelForTest(unittest.TestCase):
if use_parallel:
thread_num = fluid.core.get_cuda_device_count(
) if use_gpu else 8
places = fluid.layers.get_places(thread_num)
places = get_places(thread_num)
pd = fluid.layers.ParallelDo(places, use_nccl=use_nccl)
data = next(generator)
......
......@@ -32,6 +32,7 @@ class TestPriorBoxOp(OpTest):
'variances': self.variances,
'flip': self.flip,
'clip': self.clip,
'min_max_aspect_ratios_order': self.min_max_aspect_ratios_order,
'step_w': self.step_w,
'step_h': self.step_h,
'offset': self.offset
......@@ -52,6 +53,9 @@ class TestPriorBoxOp(OpTest):
max_sizes = [5, 10]
self.max_sizes = np.array(max_sizes).astype('float32').tolist()
def set_min_max_aspect_ratios_order(self):
self.min_max_aspect_ratios_order = False
def init_test_params(self):
self.layer_w = 32
self.layer_h = 32
......@@ -71,6 +75,7 @@ class TestPriorBoxOp(OpTest):
self.set_max_sizes()
self.aspect_ratios = [2.0, 3.0]
self.flip = True
self.set_min_max_aspect_ratios_order()
self.real_aspect_ratios = [1, 2.0, 1.0 / 2.0, 3.0, 1.0 / 3.0]
self.aspect_ratios = np.array(
self.aspect_ratios, dtype=np.float).flatten()
......@@ -78,7 +83,6 @@ class TestPriorBoxOp(OpTest):
self.variances = np.array(self.variances, dtype=np.float).flatten()
self.clip = True
self.num_priors = len(self.real_aspect_ratios) * len(self.min_sizes)
if len(self.max_sizes) > 0:
self.num_priors += len(self.max_sizes)
......@@ -106,26 +110,60 @@ class TestPriorBoxOp(OpTest):
idx = 0
for s in range(len(self.min_sizes)):
min_size = self.min_sizes[s]
# rest of priors
for r in range(len(self.real_aspect_ratios)):
ar = self.real_aspect_ratios[r]
c_w = min_size * math.sqrt(ar) / 2
c_h = (min_size / math.sqrt(ar)) / 2
out_boxes[h, w, idx, :] = [(c_x - c_w) / self.image_w,
(c_y - c_h) / self.image_h,
(c_x + c_w) / self.image_w,
(c_y + c_h) / self.image_h]
idx += 1
if len(self.max_sizes) > 0:
max_size = self.max_sizes[s]
# second prior: aspect_ratio = 1,
c_w = c_h = math.sqrt(min_size * max_size) / 2
if not self.min_max_aspect_ratios_order:
# rest of priors
for r in range(len(self.real_aspect_ratios)):
ar = self.real_aspect_ratios[r]
c_w = min_size * math.sqrt(ar) / 2
c_h = (min_size / math.sqrt(ar)) / 2
out_boxes[h, w, idx, :] = [
(c_x - c_w) / self.image_w, (c_y - c_h) /
self.image_h, (c_x + c_w) / self.image_w,
(c_y + c_h) / self.image_h
]
idx += 1
if len(self.max_sizes) > 0:
max_size = self.max_sizes[s]
# second prior: aspect_ratio = 1,
c_w = c_h = math.sqrt(min_size * max_size) / 2
out_boxes[h, w, idx, :] = [
(c_x - c_w) / self.image_w, (c_y - c_h) /
self.image_h, (c_x + c_w) / self.image_w,
(c_y + c_h) / self.image_h
]
idx += 1
else:
c_w = c_h = min_size / 2.
out_boxes[h, w, idx, :] = [(c_x - c_w) / self.image_w,
(c_y - c_h) / self.image_h,
(c_x + c_w) / self.image_w,
(c_y + c_h) / self.image_h]
idx += 1
if len(self.max_sizes) > 0:
max_size = self.max_sizes[s]
# second prior: aspect_ratio = 1,
c_w = c_h = math.sqrt(min_size * max_size) / 2
out_boxes[h, w, idx, :] = [
(c_x - c_w) / self.image_w, (c_y - c_h) /
self.image_h, (c_x + c_w) / self.image_w,
(c_y + c_h) / self.image_h
]
idx += 1
# rest of priors
for r in range(len(self.real_aspect_ratios)):
ar = self.real_aspect_ratios[r]
if abs(ar - 1.) < 1e-6:
continue
c_w = min_size * math.sqrt(ar) / 2
c_h = (min_size / math.sqrt(ar)) / 2
out_boxes[h, w, idx, :] = [
(c_x - c_w) / self.image_w, (c_y - c_h) /
self.image_h, (c_x + c_w) / self.image_w,
(c_y + c_h) / self.image_h
]
idx += 1
# clip the prior's coordidate such that it is within[0, 1]
if self.clip:
......@@ -137,10 +175,15 @@ class TestPriorBoxOp(OpTest):
self.out_var = out_var.astype('float32')
class TestPriorBoxOpWithMaxSize(TestPriorBoxOp):
class TestPriorBoxOpWithoutMaxSize(TestPriorBoxOp):
def set_max_sizes(self):
self.max_sizes = []
class TestPriorBoxOpWithSpecifiedOutOrder(TestPriorBoxOp):
def set_min_max_aspect_ratios_order(self):
self.min_max_aspect_ratios_order = True
if __name__ == '__main__':
unittest.main()
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import paddle.fluid.core as core
from op_test import OpTest
def rpn_target_assign(iou, rpn_batch_size_per_im, rpn_positive_overlap,
rpn_negative_overlap, fg_fraction):
iou = np.transpose(iou)
anchor_to_gt_max = iou.max(axis=1)
gt_to_anchor_argmax = iou.argmax(axis=0)
gt_to_anchor_max = iou[gt_to_anchor_argmax, np.arange(iou.shape[1])]
anchors_with_max_overlap = np.where(iou == gt_to_anchor_max)[0]
tgt_lbl = np.ones((iou.shape[0], ), dtype=np.int32) * -1
tgt_lbl[anchors_with_max_overlap] = 1
tgt_lbl[anchor_to_gt_max >= rpn_positive_overlap] = 1
num_fg = int(fg_fraction * rpn_batch_size_per_im)
fg_inds = np.where(tgt_lbl == 1)[0]
if len(fg_inds) > num_fg:
disable_inds = np.random.choice(
fg_inds, size=(len(fg_inds) - num_fg), replace=False)
tgt_lbl[disable_inds] = -1
fg_inds = np.where(tgt_lbl == 1)[0]
num_bg = rpn_batch_size_per_im - np.sum(tgt_lbl == 1)
bg_inds = np.where(anchor_to_gt_max < rpn_negative_overlap)[0]
if len(bg_inds) > num_bg:
enable_inds = bg_inds[np.random.randint(len(bg_inds), size=num_bg)]
tgt_lbl[enable_inds] = 0
bg_inds = np.where(tgt_lbl == 0)[0]
loc_index = fg_inds
score_index = np.hstack((fg_inds, bg_inds))
tgt_lbl = np.expand_dims(tgt_lbl, axis=1)
return loc_index, score_index, tgt_lbl
class TestRpnTargetAssignOp(OpTest):
def setUp(self):
iou = np.random.random((10, 8)).astype("float32")
self.op_type = "rpn_target_assign"
self.inputs = {'DistMat': iou}
self.attrs = {
'rpn_batch_size_per_im': 256,
'rpn_positive_overlap': 0.95,
'rpn_negative_overlap': 0.3,
'fg_fraction': 0.25,
'fix_seed': True
}
loc_index, score_index, tgt_lbl = rpn_target_assign(iou, 256, 0.95, 0.3,
0.25)
self.outputs = {
'LocationIndex': loc_index,
'ScoreIndex': score_index,
'TargetLabel': tgt_lbl,
}
def test_check_output(self):
self.check_output()
class TestRpnTargetAssignOp2(OpTest):
def setUp(self):
iou = np.random.random((10, 20)).astype("float32")
self.op_type = "rpn_target_assign"
self.inputs = {'DistMat': iou}
self.attrs = {
'rpn_batch_size_per_im': 128,
'rpn_positive_overlap': 0.5,
'rpn_negative_overlap': 0.5,
'fg_fraction': 0.5,
'fix_seed': True
}
loc_index, score_index, tgt_lbl = rpn_target_assign(iou, 128, 0.5, 0.5,
0.5)
self.outputs = {
'LocationIndex': loc_index,
'ScoreIndex': score_index,
'TargetLabel': tgt_lbl,
}
def test_check_output(self):
self.check_output()
if __name__ == '__main__':
unittest.main()
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
from op_test import OpTest
# Correct: General.
class TestSqueezeOp(OpTest):
def setUp(self):
self.op_type = "squeeze"
self.init_test_case()
self.inputs = {"X": np.random.random(self.ori_shape).astype("float32")}
self.init_attrs()
self.outputs = {"Out": self.inputs["X"].reshape(self.new_shape)}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(["X"], "Out")
def init_test_case(self):
self.ori_shape = (1, 3, 1, 5)
self.axes = (0, 2)
self.new_shape = (3, 5)
def init_attrs(self):
self.attrs = {"axes": self.axes, "inplace": False}
# Correct: There is mins axis.
class TestSqueezeOp1(TestSqueezeOp):
def init_test_case(self):
self.ori_shape = (1, 3, 1, 5)
self.axes = (0, -2)
self.new_shape = (3, 5)
# Correct: No axes input.
class TestSqueezeOp2(TestSqueezeOp):
def init_test_case(self):
self.ori_shape = (1, 3, 1, 5)
self.axes = ()
self.new_shape = (3, 5)
# Correct: Just part of axes be squeezed.
class TestSqueezeOp3(TestSqueezeOp):
def init_test_case(self):
self.ori_shape = (3, 1, 5, 1, 4, 1)
self.axes = (1, -1)
self.new_shape = (3, 5, 1, 4)
# Correct: Inplace.
class TestSqueezeOpInplace1(TestSqueezeOp):
def init_test_case(self):
self.ori_shape = (1, 3, 1, 5)
self.axes = (0, 2)
self.new_shape = (3, 5)
def init_attrs(self):
self.attrs = {"axes": self.axes, "inplace": True}
# Correct: Inplace. There is mins axis.
class TestSqueezeOpInplace2(TestSqueezeOp):
def inti_test_case(self):
self.ori_shape = (1, 3, 1, 5)
self.axes = (0, -2)
self.new_shape = (3, 5)
def init_attrs(self):
self.attrs = {"axes": self.axes, "inplace": True}
# Correct: Inplace. No axes input.
class TestSqueezeOpInplace3(TestSqueezeOp):
def init_test_case(self):
self.ori_shape = (1, 3, 1, 5)
self.axes = ()
self.new_shape = (3, 5)
def init_attrs(self):
self.attrs = {"axes": self.axes, "inplace": True}
# Correct: Inpalce. Just part of axes be squeezed.
class TestSqueezeOpInplace4(TestSqueezeOp):
def init_test_case(self):
self.ori_shape = (3, 1, 5, 1, 4, 1)
self.axes = (1, -1)
self.new_shape = (3, 5, 1, 4)
def init_attrs(self):
self.attrs = {"axes": self.axes, "inplace": True}
if __name__ == "__main__":
unittest.main()
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
from op_test import OpTest
# Correct: General.
class TestUnsqueezeOp(OpTest):
def setUp(self):
self.init_test_case()
self.op_type = "unsqueeze"
self.inputs = {"X": np.random.random(self.ori_shape).astype("float32")}
self.init_attrs()
self.outputs = {"Out": self.inputs["X"].reshape(self.new_shape)}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(["X"], "Out")
def init_test_case(self):
self.ori_shape = (3, 5)
self.axes = (1, 2)
self.new_shape = (3, 1, 1, 5)
def init_attrs(self):
self.attrs = {"axes": self.axes, "inplace": False}
# Correct: Single input index.
class TestUnsqueezeOp1(TestUnsqueezeOp):
def init_test_case(self):
self.ori_shape = (3, 5)
self.axes = (-1, )
self.new_shape = (3, 5, 1)
# Correct: Mixed input axis.
class TestUnsqueezeOp2(TestUnsqueezeOp):
def init_test_case(self):
self.ori_shape = (3, 5)
self.axes = (0, -1)
self.new_shape = (1, 3, 5, 1)
# Correct: There is duplicated axis.
class TestUnsqueezeOp3(TestUnsqueezeOp):
def init_test_case(self):
self.ori_shape = (3, 2, 5)
self.axes = (0, 3, 3)
self.new_shape = (1, 3, 2, 1, 1, 5)
# Correct: Reversed axes.
class TestUnsqueezeOp4(TestUnsqueezeOp):
def init_test_case(self):
self.ori_shape = (3, 2, 5)
self.axes = (3, 1, 1)
self.new_shape = (3, 1, 1, 2, 5, 1)
# Correct: Inplace.
class TestUnsqueezeOpInplace1(TestUnsqueezeOp):
def init_test_case(self):
self.ori_shape = (3, 5)
self.axes = (0, 2)
self.new_shape = (1, 3, 1, 5)
def init_attrs(self):
self.attrs = {"axes": self.axes, "inplace": True}
# Correct: Inplace. There is mins index.
class TestUnsqueezeOpInplace2(TestUnsqueezeOp):
def init_test_case(self):
self.ori_shape = (3, 5)
self.axes = (0, -2)
self.new_shape = (1, 3, 1, 5)
def init_attrs(self):
self.attrs = {"axes": self.axes, "inplace": True}
# Correct: Inplace. There is duplicated axis.
class TestUnsqueezeOpInplace3(TestUnsqueezeOp):
def init_test_case(self):
self.ori_shape = (3, 2, 5)
self.axes = (0, 3, 3)
self.new_shape = (1, 3, 2, 1, 1, 5)
def init_attrs(self):
self.attrs = {"axes": self.axes, "inplace": True}
if __name__ == "__main__":
unittest.main()
......@@ -156,12 +156,15 @@ if '${WITH_MKL}' == 'ON':
shutil.copy('${MKLML_IOMP_LIB}', libs_path)
package_data['paddle.libs']+=['libmklml_intel.so','libiomp5.so']
if '${WITH_MKLDNN}' == 'ON':
# TODO(typhoonzero): use install_name_tool to patch mkl libs once
# we can support mkl on mac.
#
# change rpath of libmkldnn.so.0, add $ORIGIN/ to it.
# The reason is that all thirdparty libraries in the same directory,
# thus, libmkldnn.so.0 will find libmklml_intel.so and libiomp5.so.
command = "patchelf --set-rpath '$ORIGIN/' ${MKLDNN_SHARED_LIB}"
if os.system(command) != 0:
raise Exception("patchelf --set-rpath for libmkldnn.so.0 fails")
raise Exception("patch libmkldnn.so failed, command: %s" % command)
package_data['paddle.libs']+=['libmkldnn.so.0']
shutil.copy('${MKLDNN_SHARED_LIB}', libs_path)
# remove unused paddle/libs/__init__.py
......@@ -172,9 +175,20 @@ package_dir['paddle.libs']=libs_path
# The reason is that libwarpctc.so, libiomp5.so etc are in paddle.libs, and
# core.so is in paddle.fluid, thus paddle/fluid/../libs will pointer to above libraries.
# This operation will fix https://github.com/PaddlePaddle/Paddle/issues/3213
command = "patchelf --set-rpath '$ORIGIN/../libs/' ${PADDLE_BINARY_DIR}/python/paddle/fluid/core.so"
if "@APPLE@" == "1":
command = "install_name_tool -id \"@loader_path/../libs/\" ${PADDLE_BINARY_DIR}/python/paddle/fluid/core.so"
else:
command = "patchelf --set-rpath '$ORIGIN/../libs/' ${PADDLE_BINARY_DIR}/python/paddle/fluid/core.so"
if os.system(command) != 0:
raise Exception("patchelf --set-rpath for core.so fails")
raise Exception("patch core.so failed, command: %s" % command)
if '${WITH_FLUID_ONLY}'== 'OFF':
# change rpath of _swig_paddle.so.
if "@APPLE@" == "1":
command = "install_name_tool -id \"@loader_path/../paddle/libs/\" ${PADDLE_BINARY_DIR}/python/py_paddle/_swig_paddle.so"
else:
command = "patchelf --set-rpath '$ORIGIN/../paddle/libs/' ${PADDLE_BINARY_DIR}/python/py_paddle/_swig_paddle.so"
if os.system(command) != 0:
raise Exception("patch _swig_paddle.so failed, command: %s" % command)
setup(name='${PACKAGE_NAME}',
version='${PADDLE_VERSION}',
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册