Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
9084a034
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 2 年 前同步成功
通知
2325
Star
20933
Fork
5424
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
9084a034
编写于
8月 01, 2023
作者:
L
LoneRanger
提交者:
GitHub
8月 01, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[xdoctest] reformat example code with google style in No.1-No.5 (#55804)
上级
7ce0f9e1
变更
5
展开全部
隐藏空白更改
内联
并排
Showing
5 changed file
with
469 addition
and
463 deletion
+469
-463
python/paddle/batch.py
python/paddle/batch.py
+13
-14
python/paddle/dataset/image.py
python/paddle/dataset/image.py
+18
-14
python/paddle/fft.py
python/paddle/fft.py
+220
-223
python/paddle/metric/metrics.py
python/paddle/metric/metrics.py
+178
-173
python/paddle/onnx/export.py
python/paddle/onnx/export.py
+40
-39
未找到文件。
python/paddle/batch.py
浏览文件 @
9084a034
...
@@ -35,21 +35,20 @@ def batch(reader, batch_size, drop_last=False):
...
@@ -35,21 +35,20 @@ def batch(reader, batch_size, drop_last=False):
Examples:
Examples:
.. code-block:: python
.. code-block:: python
import paddle
>>>
import paddle
def reader():
>>>
def reader():
for i in range(10):
...
for i in range(10):
yield i
...
yield i
batch_reader = paddle.batch(reader, batch_size=2)
>>>
batch_reader = paddle.batch(reader, batch_size=2)
for data in batch_reader():
>>> for data in batch_reader():
print(data)
... print(data)
...
# Output is
[0, 1]
# [0, 1]
[2, 3]
# [2, 3]
[4, 5]
# [4, 5]
[6, 7]
# [6, 7]
[8, 9]
# [8, 9]
"""
"""
def
batch_reader
():
def
batch_reader
():
...
...
python/paddle/dataset/image.py
浏览文件 @
9084a034
...
@@ -123,9 +123,9 @@ def load_image_bytes(bytes, is_color=True):
...
@@ -123,9 +123,9 @@ def load_image_bytes(bytes, is_color=True):
.. code-block:: python
.. code-block:: python
with open('cat.jpg') as f:
>>>
with open('cat.jpg') as f:
im = load_image_bytes(f.read())
...
im = load_image_bytes(f.read())
...
:param bytes: the input image bytes array.
:param bytes: the input image bytes array.
:type bytes: str
:type bytes: str
:param is_color: If set is_color True, it will load and
:param is_color: If set is_color True, it will load and
...
@@ -148,7 +148,7 @@ def load_image(file, is_color=True):
...
@@ -148,7 +148,7 @@ def load_image(file, is_color=True):
.. code-block:: python
.. code-block:: python
im = load_image('cat.jpg')
>>>
im = load_image('cat.jpg')
:param file: the input image path.
:param file: the input image path.
:type file: string
:type file: string
...
@@ -178,8 +178,8 @@ def resize_short(im, size):
...
@@ -178,8 +178,8 @@ def resize_short(im, size):
.. code-block:: python
.. code-block:: python
im = load_image('cat.jpg')
>>>
im = load_image('cat.jpg')
im = resize_short(im, 256)
>>>
im = resize_short(im, 256)
:param im: the input image with HWC layout.
:param im: the input image with HWC layout.
:type im: ndarray
:type im: ndarray
...
@@ -208,9 +208,9 @@ def to_chw(im, order=(2, 0, 1)):
...
@@ -208,9 +208,9 @@ def to_chw(im, order=(2, 0, 1)):
.. code-block:: python
.. code-block:: python
im = load_image('cat.jpg')
>>>
im = load_image('cat.jpg')
im = resize_short(im, 256)
>>>
im = resize_short(im, 256)
im = to_chw(im)
>>>
im = to_chw(im)
:param im: the input image with HWC layout.
:param im: the input image with HWC layout.
:type im: ndarray
:type im: ndarray
...
@@ -230,7 +230,8 @@ def center_crop(im, size, is_color=True):
...
@@ -230,7 +230,8 @@ def center_crop(im, size, is_color=True):
.. code-block:: python
.. code-block:: python
im = center_crop(im, 224)
>>> im = load_image('cat.jpg')
>>> im = center_crop(im, 224)
:param im: the input image with HWC layout.
:param im: the input image with HWC layout.
:type im: ndarray
:type im: ndarray
...
@@ -258,7 +259,8 @@ def random_crop(im, size, is_color=True):
...
@@ -258,7 +259,8 @@ def random_crop(im, size, is_color=True):
.. code-block:: python
.. code-block:: python
im = random_crop(im, 224)
>>> im = load_image('cat.jpg')
>>> im = random_crop(im, 224)
:param im: the input image with HWC layout.
:param im: the input image with HWC layout.
:type im: ndarray
:type im: ndarray
...
@@ -287,7 +289,8 @@ def left_right_flip(im, is_color=True):
...
@@ -287,7 +289,8 @@ def left_right_flip(im, is_color=True):
.. code-block:: python
.. code-block:: python
im = left_right_flip(im)
>>> im = load_image('cat.jpg')
>>> im = left_right_flip(im)
:param im: input image with HWC layout or HW layout for gray image
:param im: input image with HWC layout or HW layout for gray image
:type im: ndarray
:type im: ndarray
...
@@ -311,7 +314,8 @@ def simple_transform(
...
@@ -311,7 +314,8 @@ def simple_transform(
.. code-block:: python
.. code-block:: python
im = simple_transform(im, 256, 224, True)
>>> im = load_image('cat.jpg')
>>> im = simple_transform(im, 256, 224, True)
:param im: The input image with HWC layout.
:param im: The input image with HWC layout.
:type im: ndarray
:type im: ndarray
...
@@ -365,7 +369,7 @@ def load_and_transform(
...
@@ -365,7 +369,7 @@ def load_and_transform(
.. code-block:: python
.. code-block:: python
im = load_and_transform('cat.jpg', 256, 224, True)
>>>
im = load_and_transform('cat.jpg', 256, 224, True)
:param filename: The file name of input image.
:param filename: The file name of input image.
:type filename: string
:type filename: string
...
...
python/paddle/fft.py
浏览文件 @
9084a034
此差异已折叠。
点击以展开。
python/paddle/metric/metrics.py
浏览文件 @
9084a034
...
@@ -85,13 +85,13 @@ class Metric(metaclass=abc.ABCMeta):
...
@@ -85,13 +85,13 @@ class Metric(metaclass=abc.ABCMeta):
.. code-block:: python
.. code-block:: python
:name: code-compute-example
:name: code-compute-example
def compute(pred, label):
>>>
def compute(pred, label):
# sort prediction and slice the top-5 scores
...
# sort prediction and slice the top-5 scores
pred = paddle.argsort(pred, descending=True)[:, :5]
...
pred = paddle.argsort(pred, descending=True)[:, :5]
# calculate whether the predictions are correct
...
# calculate whether the predictions are correct
correct = pred == label
...
correct = pred == label
return paddle.cast(correct, dtype='float32')
...
return paddle.cast(correct, dtype='float32')
...
With the :code:`compute`, we split some calculations to OPs (which
With the :code:`compute`, we split some calculations to OPs (which
may run on GPU devices, will be faster), and only fetch 1 tensor with
may run on GPU devices, will be faster), and only fetch 1 tensor with
shape as [N, 5] instead of 2 tensors with shapes as [N, 10] and [N, 1].
shape as [N, 5] instead of 2 tensors with shapes as [N, 10] and [N, 1].
...
@@ -100,15 +100,15 @@ class Metric(metaclass=abc.ABCMeta):
...
@@ -100,15 +100,15 @@ class Metric(metaclass=abc.ABCMeta):
.. code-block:: python
.. code-block:: python
:name: code-update-example
:name: code-update-example
def update(self, correct):
>>>
def update(self, correct):
accs = []
...
accs = []
for i, k in enumerate(self.topk):
...
for i, k in enumerate(self.topk):
num_corrects = correct[:, :k].sum()
...
num_corrects = correct[:, :k].sum()
num_samples = len(correct)
...
num_samples = len(correct)
accs.append(float(num_corrects) / num_samples)
...
accs.append(float(num_corrects) / num_samples)
self.total[i] += num_corrects
...
self.total[i] += num_corrects
self.count[i] += num_samples
...
self.count[i] += num_samples
return accs
...
return accs
"""
"""
def
__init__
(
self
):
def
__init__
(
self
):
...
@@ -201,44 +201,45 @@ class Accuracy(Metric):
...
@@ -201,44 +201,45 @@ class Accuracy(Metric):
.. code-block:: python
.. code-block:: python
:name: code-standalone-example
:name: code-standalone-example
import numpy as np
>>>
import numpy as np
import paddle
>>>
import paddle
x = paddle.to_tensor(np.array([
>>>
x = paddle.to_tensor(np.array([
[0.1, 0.2, 0.3, 0.4],
...
[0.1, 0.2, 0.3, 0.4],
[0.1, 0.4, 0.3, 0.2],
...
[0.1, 0.4, 0.3, 0.2],
[0.1, 0.2, 0.4, 0.3],
...
[0.1, 0.2, 0.4, 0.3],
[0.1, 0.2, 0.3, 0.4]]))
...
[0.1, 0.2, 0.3, 0.4]]))
y = paddle.to_tensor(np.array([[0], [1], [2], [3]]))
>>>
y = paddle.to_tensor(np.array([[0], [1], [2], [3]]))
m = paddle.metric.Accuracy()
>>> m = paddle.metric.Accuracy()
correct = m.compute(x, y)
>>> correct = m.compute(x, y)
m.update(correct)
>>> m.update(correct)
res = m.accumulate()
>>> res = m.accumulate()
print(res) # 0.75
>>> print(res)
0.75
.. code-block:: python
.. code-block:: python
:name: code-model-api-example
:name: code-model-api-example
import paddle
>>>
import paddle
from paddle.static import InputSpec
>>>
from paddle.static import InputSpec
import paddle.vision.transforms as T
>>>
import paddle.vision.transforms as T
from paddle.vision.datasets import MNIST
>>>
from paddle.vision.datasets import MNIST
input = InputSpec([None, 1, 28, 28], 'float32', 'image')
>>>
input = InputSpec([None, 1, 28, 28], 'float32', 'image')
label = InputSpec([None, 1], 'int64', 'label')
>>>
label = InputSpec([None, 1], 'int64', 'label')
transform = T.Compose([T.Transpose(), T.Normalize([127.5], [127.5])])
>>>
transform = T.Compose([T.Transpose(), T.Normalize([127.5], [127.5])])
train_dataset = MNIST(mode='train', transform=transform)
>>>
train_dataset = MNIST(mode='train', transform=transform)
model = paddle.Model(paddle.vision.models.LeNet(), input, label)
>>>
model = paddle.Model(paddle.vision.models.LeNet(), input, label)
optim = paddle.optimizer.Adam(
>>>
optim = paddle.optimizer.Adam(
learning_rate=0.001, parameters=model.parameters())
...
learning_rate=0.001, parameters=model.parameters())
model.prepare(
>>>
model.prepare(
optim,
...
optim,
loss=paddle.nn.CrossEntropyLoss(),
...
loss=paddle.nn.CrossEntropyLoss(),
metrics=paddle.metric.Accuracy())
...
metrics=paddle.metric.Accuracy())
...
model.fit(train_dataset, batch_size=64)
>>>
model.fit(train_dataset, batch_size=64)
"""
"""
...
@@ -353,51 +354,52 @@ class Precision(Metric):
...
@@ -353,51 +354,52 @@ class Precision(Metric):
.. code-block:: python
.. code-block:: python
:name: code-standalone-example
:name: code-standalone-example
import numpy as np
>>>
import numpy as np
import paddle
>>>
import paddle
x = np.array([0.1, 0.5, 0.6, 0.7])
>>>
x = np.array([0.1, 0.5, 0.6, 0.7])
y = np.array([0, 1, 1, 1])
>>>
y = np.array([0, 1, 1, 1])
m = paddle.metric.Precision()
>>> m = paddle.metric.Precision()
m.update(x, y)
>>> m.update(x, y)
res = m.accumulate()
>>> res = m.accumulate()
print(res) # 1.0
>>> print(res)
1.0
.. code-block:: python
.. code-block:: python
:name: code-model-api-example
:name: code-model-api-example
import numpy as np
>>>
import numpy as np
import paddle
>>>
import paddle
import paddle.nn as nn
>>>
import paddle.nn as nn
class Data(paddle.io.Dataset):
>>>
class Data(paddle.io.Dataset):
def __init__(self):
...
def __init__(self):
super().__init__()
...
super().__init__()
self.n = 1024
...
self.n = 1024
self.x = np.random.randn(self.n, 10).astype('float32')
...
self.x = np.random.randn(self.n, 10).astype('float32')
self.y = np.random.randint(2, size=(self.n, 1)).astype('float32')
...
self.y = np.random.randint(2, size=(self.n, 1)).astype('float32')
...
def __getitem__(self, idx):
...
def __getitem__(self, idx):
return self.x[idx], self.y[idx]
...
return self.x[idx], self.y[idx]
...
def __len__(self):
...
def __len__(self):
return self.n
...
return self.n
...
model = paddle.Model(nn.Sequential(
>>>
model = paddle.Model(nn.Sequential(
nn.Linear(10, 1),
...
nn.Linear(10, 1),
nn.Sigmoid()
...
nn.Sigmoid()
))
...
))
optim = paddle.optimizer.Adam(
>>>
optim = paddle.optimizer.Adam(
learning_rate=0.001, parameters=model.parameters())
...
learning_rate=0.001, parameters=model.parameters())
model.prepare(
>>>
model.prepare(
optim,
...
optim,
loss=nn.BCELoss(),
...
loss=nn.BCELoss(),
metrics=paddle.metric.Precision())
...
metrics=paddle.metric.Precision())
...
data = Data()
>>>
data = Data()
model.fit(data, batch_size=16)
>>>
model.fit(data, batch_size=16)
"""
"""
def
__init__
(
self
,
name
=
'precision'
,
*
args
,
**
kwargs
):
def
__init__
(
self
,
name
=
'precision'
,
*
args
,
**
kwargs
):
...
@@ -484,51 +486,52 @@ class Recall(Metric):
...
@@ -484,51 +486,52 @@ class Recall(Metric):
.. code-block:: python
.. code-block:: python
:name: code-standalone-example
:name: code-standalone-example
import numpy as np
>>>
import numpy as np
import paddle
>>>
import paddle
x = np.array([0.1, 0.5, 0.6, 0.7])
>>>
x = np.array([0.1, 0.5, 0.6, 0.7])
y = np.array([1, 0, 1, 1])
>>>
y = np.array([1, 0, 1, 1])
m = paddle.metric.Recall()
>>> m = paddle.metric.Recall()
m.update(x, y)
>>> m.update(x, y)
res = m.accumulate()
>>> res = m.accumulate()
print(res) # 2.0 / 3.0
>>> print(res)
0.6666666666666666
.. code-block:: python
.. code-block:: python
:name: code-model-api-example
:name: code-model-api-example
import numpy as np
>>>
import numpy as np
import paddle
>>>
import paddle
import paddle.nn as nn
>>>
import paddle.nn as nn
class Data(paddle.io.Dataset):
>>>
class Data(paddle.io.Dataset):
def __init__(self):
...
def __init__(self):
super().__init__()
...
super().__init__()
self.n = 1024
...
self.n = 1024
self.x = np.random.randn(self.n, 10).astype('float32')
...
self.x = np.random.randn(self.n, 10).astype('float32')
self.y = np.random.randint(2, size=(self.n, 1)).astype('float32')
...
self.y = np.random.randint(2, size=(self.n, 1)).astype('float32')
...
def __getitem__(self, idx):
...
def __getitem__(self, idx):
return self.x[idx], self.y[idx]
...
return self.x[idx], self.y[idx]
...
def __len__(self):
...
def __len__(self):
return self.n
...
return self.n
...
model = paddle.Model(nn.Sequential(
>>>
model = paddle.Model(nn.Sequential(
nn.Linear(10, 1),
...
nn.Linear(10, 1),
nn.Sigmoid()
...
nn.Sigmoid()
))
...
))
optim = paddle.optimizer.Adam(
>>>
optim = paddle.optimizer.Adam(
learning_rate=0.001, parameters=model.parameters())
...
learning_rate=0.001, parameters=model.parameters())
model.prepare(
>>>
model.prepare(
optim,
...
optim,
loss=nn.BCELoss(),
...
loss=nn.BCELoss(),
metrics=[paddle.metric.Precision(), paddle.metric.Recall()])
...
metrics=[paddle.metric.Precision(), paddle.metric.Recall()])
...
data = Data()
>>>
data = Data()
model.fit(data, batch_size=16)
>>>
model.fit(data, batch_size=16)
"""
"""
def
__init__
(
self
,
name
=
'recall'
,
*
args
,
**
kwargs
):
def
__init__
(
self
,
name
=
'recall'
,
*
args
,
**
kwargs
):
...
@@ -624,56 +627,56 @@ class Auc(Metric):
...
@@ -624,56 +627,56 @@ class Auc(Metric):
.. code-block:: python
.. code-block:: python
:name: code-standalone-example
:name: code-standalone-example
import numpy as np
>>>
import numpy as np
import paddle
>>>
import paddle
m = paddle.metric.Auc()
>>>
m = paddle.metric.Auc()
n = 8
>>>
n = 8
class0_preds = np.random.random(size = (n, 1))
>>>
class0_preds = np.random.random(size = (n, 1))
class1_preds = 1 - class0_preds
>>>
class1_preds = 1 - class0_preds
preds = np.concatenate((class0_preds, class1_preds), axis=1)
>>>
preds = np.concatenate((class0_preds, class1_preds), axis=1)
labels = np.random.randint(2, size = (n, 1))
>>>
labels = np.random.randint(2, size = (n, 1))
m.update(preds=preds, labels=labels)
>>>
m.update(preds=preds, labels=labels)
res = m.accumulate()
>>>
res = m.accumulate()
.. code-block:: python
.. code-block:: python
:name: code-model-api-example
:name: code-model-api-example
import numpy as np
>>>
import numpy as np
import paddle
>>>
import paddle
import paddle.nn as nn
>>>
import paddle.nn as nn
class Data(paddle.io.Dataset):
>>>
class Data(paddle.io.Dataset):
def __init__(self):
...
def __init__(self):
super().__init__()
...
super().__init__()
self.n = 1024
...
self.n = 1024
self.x = np.random.randn(self.n, 10).astype('float32')
...
self.x = np.random.randn(self.n, 10).astype('float32')
self.y = np.random.randint(2, size=(self.n, 1)).astype('int64')
...
self.y = np.random.randint(2, size=(self.n, 1)).astype('int64')
...
def __getitem__(self, idx):
...
def __getitem__(self, idx):
return self.x[idx], self.y[idx]
...
return self.x[idx], self.y[idx]
...
def __len__(self):
...
def __len__(self):
return self.n
...
return self.n
...
model = paddle.Model(nn.Sequential(
>>>
model = paddle.Model(nn.Sequential(
nn.Linear(10, 2), nn.Softmax())
...
nn.Linear(10, 2), nn.Softmax())
)
...
)
optim = paddle.optimizer.Adam(
>>>
optim = paddle.optimizer.Adam(
learning_rate=0.001, parameters=model.parameters())
...
learning_rate=0.001, parameters=model.parameters())
...
def loss(x, y):
>>>
def loss(x, y):
return nn.functional.nll_loss(paddle.log(x), y)
...
return nn.functional.nll_loss(paddle.log(x), y)
...
model.prepare(
>>>
model.prepare(
optim,
...
optim,
loss=loss,
...
loss=loss,
metrics=paddle.metric.Auc())
...
metrics=paddle.metric.Auc())
data = Data()
>>>
data = Data()
model.fit(data, batch_size=16)
>>>
model.fit(data, batch_size=16)
"""
"""
def
__init__
(
def
__init__
(
...
@@ -789,12 +792,14 @@ def accuracy(input, label, k=1, correct=None, total=None, name=None):
...
@@ -789,12 +792,14 @@ def accuracy(input, label, k=1, correct=None, total=None, name=None):
Examples:
Examples:
.. code-block:: python
.. code-block:: python
import paddle
>>>
import paddle
predictions = paddle.to_tensor([[0.2, 0.1, 0.4, 0.1, 0.1], [0.2, 0.3, 0.1, 0.15, 0.25]], dtype='float32')
>>> predictions = paddle.to_tensor([[0.2, 0.1, 0.4, 0.1, 0.1], [0.2, 0.3, 0.1, 0.15, 0.25]], dtype='float32')
label = paddle.to_tensor([[2], [0]], dtype="int64")
>>> label = paddle.to_tensor([[2], [0]], dtype="int64")
result = paddle.metric.accuracy(input=predictions, label=label, k=1)
>>> result = paddle.metric.accuracy(input=predictions, label=label, k=1)
# 0.5
>>> print(result)
Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
0.50000000)
"""
"""
if
label
.
dtype
==
paddle
.
int32
:
if
label
.
dtype
==
paddle
.
int32
:
label
=
paddle
.
cast
(
label
,
paddle
.
int64
)
label
=
paddle
.
cast
(
label
,
paddle
.
int64
)
...
...
python/paddle/onnx/export.py
浏览文件 @
9084a034
...
@@ -46,45 +46,46 @@ def export(layer, path, input_spec=None, opset_version=9, **configs):
...
@@ -46,45 +46,46 @@ def export(layer, path, input_spec=None, opset_version=9, **configs):
Examples:
Examples:
.. code-block:: python
.. code-block:: python
import paddle
>>> import paddle
class LinearNet(paddle.nn.Layer):
>>> class LinearNet(paddle.nn.Layer):
def __init__(self):
... def __init__(self):
super().__init__()
... super().__init__()
self._linear = paddle.nn.Linear(128, 10)
... self._linear = paddle.nn.Linear(128, 10)
...
def forward(self, x):
... def forward(self, x):
return self._linear(x)
... return self._linear(x)
...
# Export model with 'InputSpec' to support dynamic input shape.
>>> # Export model with 'InputSpec' to support dynamic input shape.
def export_linear_net():
>>> def export_linear_net():
model = LinearNet()
... model = LinearNet()
x_spec = paddle.static.InputSpec(shape=[None, 128], dtype='float32')
... x_spec = paddle.static.InputSpec(shape=[None, 128], dtype='float32')
paddle.onnx.export(model, 'linear_net', input_spec=[x_spec])
... paddle.onnx.export(model, 'linear_net', input_spec=[x_spec])
...
export_linear_net()
>>> # doctest: +SKIP('raise ImportError')
>>> export_linear_net()
class Logic(paddle.nn.Layer):
def __init__(self):
>>> class Logic(paddle.nn.Layer):
super().__init__()
... def __init__(self):
... super().__init__()
def forward(self, x, y, z):
...
if z:
... def forward(self, x, y, z):
return x
... if z:
else:
... return x
return y
... else:
... return y
# Export model with 'Tensor' to support pruned model by set 'output_spec'.
...
def export_logic():
>>> # Export model with 'Tensor' to support pruned model by set 'output_spec'.
model = Logic()
>>> def export_logic():
x = paddle.to_tensor([1])
... model = Logic()
y = paddle.to_tensor([2])
... x = paddle.to_tensor([1])
# Static and run model.
... y = paddle.to_tensor([2])
paddle.jit.to_static(model)
... # Static and run model.
out = model(x, y, z=True)
... paddle.jit.to_static(model)
paddle.onnx.export(model, 'pruned', input_spec=[x], output_spec=[out])
... out = model(x, y, z=True)
... paddle.onnx.export(model, 'pruned', input_spec=[x], output_spec=[out])
export_logic()
...
>>> export_logic()
"""
"""
p2o
=
try_import
(
'paddle2onnx'
)
p2o
=
try_import
(
'paddle2onnx'
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录