Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
905b0765
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
905b0765
编写于
10月 19, 2020
作者:
X
xiaoting
提交者:
GitHub
10月 19, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
rm max_input in conv2d for kunlun, test=kunlun (#28063)
上级
8600f474
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
41 addition
and
42 deletion
+41
-42
paddle/fluid/operators/conv_op_xpu.cc
paddle/fluid/operators/conv_op_xpu.cc
+41
-42
未找到文件。
paddle/fluid/operators/conv_op_xpu.cc
浏览文件 @
905b0765
...
...
@@ -27,10 +27,10 @@ class GemmConvXPUKernel : public framework::OpKernel<T> {
// that avoids modifying the variable in the Scope.
Tensor
filter
=
*
context
.
Input
<
Tensor
>
(
"Filter"
);
Tensor
*
output
=
context
.
Output
<
Tensor
>
(
"Output"
);
Tensor
*
max_input
=
context
.
Output
<
Tensor
>
(
"MaxInput"
);
Tensor
*
max_filter
=
context
.
Output
<
Tensor
>
(
"MaxFilter"
);
max_input
->
mutable_data
<
T
>
(
context
.
GetPlace
());
max_filter
->
mutable_data
<
T
>
(
context
.
GetPlace
());
//
Tensor* max_input = context.Output<Tensor>("MaxInput");
//
Tensor* max_filter = context.Output<Tensor>("MaxFilter");
//
max_input->mutable_data<T>(context.GetPlace());
//
max_filter->mutable_data<T>(context.GetPlace());
output
->
mutable_data
<
T
>
(
context
.
GetPlace
());
int
groups
=
context
.
Attr
<
int
>
(
"groups"
);
std
::
vector
<
int
>
strides
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
...
...
@@ -47,28 +47,28 @@ class GemmConvXPUKernel : public framework::OpKernel<T> {
dilations
[
0
]
==
1
&&
dilations
[
1
]
==
1
,
true
,
platform
::
errors
::
InvalidArgument
(
"XPU only support dilation == 1."
));
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
PADDLE_ENFORCE_EQ
(
xpu
::
findmax
(
dev_ctx
.
x_context
(),
input
->
data
<
T
>
(),
input
->
numel
(),
max_input
->
data
<
T
>
())
==
xpu
::
Error_t
::
SUCCESS
,
true
,
platform
::
errors
::
InvalidArgument
(
"XPU conv kernel error,can not finde max_input,please "
"check whether Baidu Kunlun "
"Card is properly installed."
));
PADDLE_ENFORCE_EQ
(
xpu
::
findmax
(
dev_ctx
.
x_context
(),
filter
.
data
<
T
>
(),
filter
.
numel
(),
max_filter
->
data
<
T
>
())
==
xpu
::
Error_t
::
SUCCESS
,
true
,
platform
::
errors
::
InvalidArgument
(
"XPU conv kernel error,can not find max_filter,please "
"check whether Baidu Kunlun "
"Card is properly installed."
));
//
PADDLE_ENFORCE_EQ(
//
xpu::findmax(dev_ctx.x_context(), input->data<T>(), input->numel(),
//
max_input->data<T>()) == xpu::Error_t::SUCCESS,
//
true, platform::errors::InvalidArgument(
//
"XPU conv kernel error,can not finde max_input,please "
//
"check whether Baidu Kunlun "
//
"Card is properly installed."));
//
PADDLE_ENFORCE_EQ(
//
xpu::findmax(dev_ctx.x_context(), filter.data<T>(), filter.numel(),
//
max_filter->data<T>()) == xpu::Error_t::SUCCESS,
//
true, platform::errors::InvalidArgument(
//
"XPU conv kernel error,can not find max_filter,please "
//
"check whether Baidu Kunlun "
//
"Card is properly installed."));
if
(
groups
==
1
)
{
int
r
=
xpu
::
conv2d_forward_int16
<
float
,
float
,
float
,
float
>
(
dev_ctx
.
x_context
(),
batch_size
,
img_c
,
img_h
,
img_w
,
f
,
win_h
,
win_w
,
strides
[
0
],
strides
[
1
],
paddings
[
0
],
paddings
[
1
],
dilations
[
0
],
dilations
[
1
],
groups
,
input
->
data
<
float
>
(),
filter
.
data
<
float
>
(),
output
->
data
<
float
>
(),
nullptr
,
nullptr
,
xpu
::
Activation_t
::
LINEAR
,
//
nullptr, nullptr);
max_input
->
data
<
float
>
(),
max_filter
->
data
<
float
>
());
nullptr
,
nullptr
);
//
max_input->data<float>(), max_filter->data<float>());
PADDLE_ENFORCE_EQ
(
r
,
XPU_SUCCESS
,
platform
::
errors
::
External
(
"XPU conv kernel return wrong value[%d], "
...
...
@@ -80,8 +80,8 @@ class GemmConvXPUKernel : public framework::OpKernel<T> {
dev_ctx
.
x_context
(),
input
->
data
<
float
>
(),
filter
.
data
<
float
>
(),
output
->
data
<
float
>
(),
batch_size
,
img_c
,
img_h
,
img_w
,
f
,
win_h
,
win_w
,
groups
,
strides
[
0
],
strides
[
1
],
paddings
[
0
],
paddings
[
1
],
//
nullptr, nullptr);
max_input
->
data
<
float
>
(),
max_filter
->
data
<
float
>
());
nullptr
,
nullptr
);
//
max_input->data<float>(), max_filter->data<float>());
PADDLE_ENFORCE_EQ
(
r
,
XPU_SUCCESS
,
platform
::
errors
::
External
(
"XPU conv kernel return wrong value[%d], "
...
...
@@ -96,9 +96,9 @@ class GemmConvGradXPUKernel : public framework::OpKernel<T> {
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
const
Tensor
*
input
=
context
.
Input
<
Tensor
>
(
"Input"
);
const
Tensor
*
max_input
=
context
.
Input
<
Tensor
>
(
"MaxInput"
);
const
Tensor
*
max_filter
=
context
.
Input
<
Tensor
>
(
"MaxFilter"
);
Tensor
*
max_output_grad
=
context
.
Output
<
Tensor
>
(
"MaxOutputGrad"
);
//
const Tensor* max_input = context.Input<Tensor>("MaxInput");
//
const Tensor* max_filter = context.Input<Tensor>("MaxFilter");
//
Tensor* max_output_grad = context.Output<Tensor>("MaxOutputGrad");
const
Tensor
*
output_grad
=
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Output"
));
Tensor
*
input_grad
=
...
...
@@ -133,25 +133,25 @@ class GemmConvGradXPUKernel : public framework::OpKernel<T> {
filter_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
}
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
max_output_grad
->
Resize
({
4
});
max_output_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
PADDLE_ENFORCE_EQ
(
xpu
::
findmax
(
dev_ctx
.
x_context
(),
output_grad
->
data
<
T
>
(),
output_grad
->
numel
(),
max_output_grad
->
data
<
T
>
())
==
xpu
::
Error_t
::
SUCCESS
,
true
,
platform
::
errors
::
External
(
"XPU conv kernel error, can not find max_output_grad, please check "
"whether Baidu Kunlun Card is "
"properly installed."
));
// max_output_grad->Resize({4});
// max_output_grad->mutable_data<T>(context.GetPlace());
// PADDLE_ENFORCE_EQ(
// xpu::findmax(dev_ctx.x_context(), output_grad->data<T>(),
// output_grad->numel(),
// max_output_grad->data<T>()) == xpu::Error_t::SUCCESS,
// true,
// platform::errors::External(
// "XPU conv kernel error, can not find max_output_grad, please
// check "
// "whether Baidu Kunlun Card is "
// "properly installed."));
if
(
input_grad
)
{
int
r
=
xpu
::
conv2d_backward_int16
(
dev_ctx
.
x_context
(),
batch_size
,
img_c
,
img_h
,
img_w
,
f
,
win_h
,
win_w
,
strides
[
0
],
strides
[
1
],
paddings
[
0
],
paddings
[
1
],
dilations
[
0
],
dilations
[
1
],
groups
,
output_grad
->
data
<
float
>
(),
filter
.
data
<
float
>
(),
input_grad
->
data
<
float
>
(),
// nullptr, nullptr,
max_output_grad
->
data
<
float
>
(),
max_filter
->
data
<
float
>
());
filter
.
data
<
float
>
(),
input_grad
->
data
<
float
>
(),
nullptr
,
nullptr
);
// max_output_grad->data<float>(), max_filter->data<float>());
PADDLE_ENFORCE_EQ
(
r
,
XPU_SUCCESS
,
platform
::
errors
::
External
(
"XPU conv kernel return wrong value[%d], "
...
...
@@ -164,9 +164,8 @@ class GemmConvGradXPUKernel : public framework::OpKernel<T> {
dev_ctx
.
x_context
(),
batch_size
,
img_c
,
img_h
,
img_w
,
f
,
win_h
,
win_w
,
strides
[
0
],
strides
[
1
],
paddings
[
0
],
paddings
[
1
],
dilations
[
0
],
dilations
[
1
],
groups
,
output_grad
->
data
<
float
>
(),
input
->
data
<
float
>
(),
filter_grad
->
data
<
float
>
(),
// nullptr, nullptr,
max_output_grad
->
data
<
float
>
(),
max_input
->
data
<
float
>
());
input
->
data
<
float
>
(),
filter_grad
->
data
<
float
>
(),
nullptr
,
nullptr
);
// max_output_grad->data<float>(), max_input->data<float>());
PADDLE_ENFORCE_EQ
(
r
,
XPU_SUCCESS
,
platform
::
errors
::
External
(
"XPU conv kernel return wrong value[%d], "
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录