Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
9012787f
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
9012787f
编写于
9月 29, 2022
作者:
C
carryyu
提交者:
GitHub
9月 29, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Optimize softmax's performance when dim_size >= 100000. (#46535)
上级
7057093e
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
235 addition
and
1 deletion
+235
-1
paddle/phi/kernels/gpudnn/softmax_gpudnn.h
paddle/phi/kernels/gpudnn/softmax_gpudnn.h
+235
-1
未找到文件。
paddle/phi/kernels/gpudnn/softmax_gpudnn.h
浏览文件 @
9012787f
...
@@ -19,6 +19,7 @@ limitations under the License. */
...
@@ -19,6 +19,7 @@ limitations under the License. */
#include "paddle/phi/common/bfloat16.h"
#include "paddle/phi/common/bfloat16.h"
#include "paddle/phi/common/float16.h"
#include "paddle/phi/common/float16.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/kernels/funcs/aligned_vector.h"
#include "paddle/phi/kernels/funcs/axis_utils.h"
#include "paddle/phi/kernels/funcs/axis_utils.h"
#include "paddle/phi/kernels/primitive/kernel_primitives.h"
#include "paddle/phi/kernels/primitive/kernel_primitives.h"
...
@@ -26,6 +27,32 @@ limitations under the License. */
...
@@ -26,6 +27,32 @@ limitations under the License. */
#include "paddle/fluid/platform/device/gpu/gpu_device_function.h"
#include "paddle/fluid/platform/device/gpu/gpu_device_function.h"
#include "paddle/fluid/platform/device/gpu/gpu_dnn.h"
#include "paddle/fluid/platform/device/gpu/gpu_dnn.h"
#define MATRIX_SOFTMAX_ALIGN_BYTES 16
#define MATRIX_SOFTMAX_THREAHOLD 100000
#define FIXED_BLOCK_DIM_BASE(dim, ...) \
case (dim): { \
constexpr auto kBlockDim = (dim); \
__VA_ARGS__; \
} break
#define FIXED_VEC_SIZE_BASE(vec_size, ...) \
case (vec_size): { \
constexpr auto VecSize = (vec_size); \
__VA_ARGS__; \
} break
#define FIXED_BLOCK_DIM(...) \
FIXED_BLOCK_DIM_BASE(512, ##__VA_ARGS__); \
FIXED_BLOCK_DIM_BASE(256, ##__VA_ARGS__); \
FIXED_BLOCK_DIM_BASE(128, ##__VA_ARGS__); \
FIXED_BLOCK_DIM_BASE(64, ##__VA_ARGS__); \
FIXED_BLOCK_DIM_BASE(32, ##__VA_ARGS__)
#define FIXED_VEC_SIZE(...) \
FIXED_VEC_SIZE_BASE(8, ##__VA_ARGS__); \
FIXED_VEC_SIZE_BASE(4, ##__VA_ARGS__)
namespace
phi
{
namespace
phi
{
using
ScopedTensorDescriptor
=
paddle
::
platform
::
ScopedTensorDescriptor
;
using
ScopedTensorDescriptor
=
paddle
::
platform
::
ScopedTensorDescriptor
;
...
@@ -85,6 +112,20 @@ static inline int Log2Ceil(int value) {
...
@@ -85,6 +112,20 @@ static inline int Log2Ceil(int value) {
return
log2_value
;
return
log2_value
;
}
}
inline
int
getBlockSize
(
int
vec_size
,
uint64_t
dim_size
)
{
uint64_t
block_size
=
1
;
uint64_t
max_block_size
=
std
::
min
(
dim_size
/
vec_size
,
static_cast
<
uint64_t
>
(
1024
));
if
(
vec_size
>
1
)
{
max_block_size
/=
2
;
}
while
(
block_size
<
(
max_block_size
))
block_size
*=
2
;
block_size
=
std
::
max
(
block_size
,
static_cast
<
uint64_t
>
(
32
));
return
block_size
;
}
template
<
typename
T
,
int
BatchSize
,
int
WarpSize
>
template
<
typename
T
,
int
BatchSize
,
int
WarpSize
>
__device__
__forceinline__
void
WarpReduceSum
(
T
*
sum
)
{
__device__
__forceinline__
void
WarpReduceSum
(
T
*
sum
)
{
#pragma unroll
#pragma unroll
...
@@ -111,6 +152,41 @@ __device__ __forceinline__ void WarpReduceMax(T* sum) {
...
@@ -111,6 +152,41 @@ __device__ __forceinline__ void WarpReduceMax(T* sum) {
}
}
}
}
template
<
typename
T
>
__inline__
__device__
void
BlockReduceMax
(
T
*
val
)
{
static
__shared__
T
shared
[
32
];
int
lane
=
threadIdx
.
x
&
0x1f
;
int
wid
=
threadIdx
.
x
>>
5
;
WarpReduceMax
<
T
,
1
,
32
>
(
val
);
if
(
lane
==
0
)
shared
[
wid
]
=
*
val
;
__syncthreads
();
int
block_span
=
(
blockDim
.
x
+
warpSize
-
1
)
>>
5
;
*
val
=
(
lane
<
block_span
)
?
shared
[
lane
]
:
-
1e10
f
;
WarpReduceMax
<
T
,
1
,
32
>
(
val
);
}
template
<
typename
T
>
__inline__
__device__
void
BlockReduceSum
(
T
*
val
)
{
static
__shared__
T
shared
[
32
];
int
lane
=
threadIdx
.
x
&
0x1f
;
int
wid
=
threadIdx
.
x
>>
5
;
WarpReduceSum
<
T
,
1
,
32
>
(
val
);
__syncthreads
();
if
(
lane
==
0
)
shared
[
wid
]
=
*
val
;
__syncthreads
();
int
block_span
=
(
blockDim
.
x
+
warpSize
-
1
)
>>
5
;
*
val
=
(
lane
<
block_span
)
?
shared
[
lane
]
:
static_cast
<
T
>
(
0.0
f
);
WarpReduceSum
<
T
,
1
,
32
>
(
val
);
}
template
<
typename
Tx
,
typename
Ty
=
Tx
>
template
<
typename
Tx
,
typename
Ty
=
Tx
>
struct
ReduceMaxFunctor
{
struct
ReduceMaxFunctor
{
inline
Ty
initial
()
{
return
-
std
::
numeric_limits
<
Ty
>::
infinity
();
}
inline
Ty
initial
()
{
return
-
std
::
numeric_limits
<
Ty
>::
infinity
();
}
...
@@ -120,6 +196,14 @@ struct ReduceMaxFunctor {
...
@@ -120,6 +196,14 @@ struct ReduceMaxFunctor {
}
}
};
};
template
<
typename
T
,
typename
AccT
>
struct
MaxFunctor
{
__device__
__forceinline__
AccT
operator
()(
const
AccT
&
max_v
,
const
T
&
v
)
const
{
return
max
(
max_v
,
static_cast
<
AccT
>
(
v
));
}
};
template
<
typename
Tx
,
typename
Ty
=
Tx
>
template
<
typename
Tx
,
typename
Ty
=
Tx
>
struct
ExpFunctor
{
struct
ExpFunctor
{
HOSTDEVICE
inline
Ty
operator
()(
const
Tx
&
x
)
const
{
HOSTDEVICE
inline
Ty
operator
()(
const
Tx
&
x
)
const
{
...
@@ -245,6 +329,126 @@ struct LogSoftmaxBackwardFunctor {
...
@@ -245,6 +329,126 @@ struct LogSoftmaxBackwardFunctor {
Tx
sum
;
Tx
sum
;
};
};
template
<
typename
T
,
typename
AccT
>
struct
SumExpFunctor
{
HOSTDEVICE
inline
SumExpFunctor
(
AccT
v
)
:
max_v
(
v
)
{}
HOSTDEVICE
inline
AccT
operator
()(
AccT
sum
,
T
v
)
const
{
return
sum
+
std
::
exp
(
static_cast
<
AccT
>
(
v
)
-
max_v
);
}
private:
AccT
max_v
;
};
template
<
template
<
typename
,
typename
>
class
Reduction
,
typename
T
,
typename
AccT
,
int
VecSize
>
__device__
__forceinline__
AccT
ThreadVecReduce
(
const
T
*
data
,
int
dim_size
,
const
Reduction
<
T
,
AccT
>&
functor
,
AccT
default_value
)
{
using
VecT
=
phi
::
AlignedVector
<
T
,
VecSize
>
;
AccT
thread_val
=
default_value
;
const
int
last
=
dim_size
%
(
VecSize
*
blockDim
.
x
);
T
v
[
VecSize
];
VecT
*
value
=
reinterpret_cast
<
VecT
*>
(
&
v
);
for
(
int
offset
=
threadIdx
.
x
;
offset
*
VecSize
<
dim_size
-
last
;
offset
+=
blockDim
.
x
)
{
*
value
=
reinterpret_cast
<
VecT
*>
(
const_cast
<
T
*>
(
data
))[
offset
];
#pragma unroll
for
(
int
i
=
0
;
i
<
VecSize
;
i
++
)
{
thread_val
=
functor
(
thread_val
,
v
[
i
]);
}
}
for
(
int
offset
=
dim_size
-
last
+
threadIdx
.
x
;
offset
<
dim_size
;
offset
+=
blockDim
.
x
)
{
thread_val
=
functor
(
thread_val
,
data
[
offset
]);
}
return
thread_val
;
}
template
<
template
<
typename
,
typename
>
class
Reduction
,
typename
T
,
typename
AccT
,
int
VecSize
>
__device__
__forceinline__
void
ThreadVecWrite
(
T
*
out
,
const
T
*
input
,
int
dim_size
,
Reduction
<
AccT
,
T
>
functor
)
{
using
VecT
=
phi
::
AlignedVector
<
T
,
VecSize
>
;
const
int
last
=
dim_size
%
(
VecSize
*
blockDim
.
x
);
T
in_v
[
VecSize
];
VecT
*
in_value
=
reinterpret_cast
<
VecT
*>
(
&
in_v
);
T
out_v
[
VecSize
];
VecT
*
out_value
=
reinterpret_cast
<
VecT
*>
(
&
out_v
);
for
(
int
offset
=
threadIdx
.
x
;
offset
*
VecSize
<
dim_size
-
last
;
offset
+=
blockDim
.
x
)
{
*
in_value
=
reinterpret_cast
<
VecT
*>
(
const_cast
<
T
*>
(
input
))[
offset
];
#pragma unroll
for
(
int
i
=
0
;
i
<
VecSize
;
i
++
)
{
out_v
[
i
]
=
functor
(
static_cast
<
AccT
>
(
in_v
[
i
]));
}
reinterpret_cast
<
VecT
*>
(
out
)[
offset
]
=
*
out_value
;
}
for
(
int
offset
=
dim_size
-
last
+
threadIdx
.
x
;
offset
<
dim_size
;
offset
+=
blockDim
.
x
)
{
out
[
offset
]
=
functor
(
static_cast
<
AccT
>
(
input
[
offset
]));
}
}
template
<
typename
T
,
typename
AccT
,
typename
IndexType
,
int
BatchSize
,
int
VecSize
,
bool
LogMode
=
false
>
__global__
void
KeMatrixSoftmaxForward
(
T
*
softmax
,
const
T
*
src
,
int
dim_size
)
{
using
VecT
=
phi
::
AlignedVector
<
T
,
VecSize
>
;
int
bid
=
blockIdx
.
x
;
const
T
*
batch_input
=
src
+
bid
*
dim_size
;
T
*
batch_output
=
softmax
+
bid
*
dim_size
;
// get max value
AccT
thread_max
=
ThreadVecReduce
<
MaxFunctor
,
T
,
AccT
,
VecSize
>
(
batch_input
,
dim_size
,
MaxFunctor
<
T
,
AccT
>
(),
std
::
numeric_limits
<
AccT
>::
min
());
BlockReduceMax
<
AccT
>
(
&
thread_max
);
// get exp value and sum all
AccT
thread_exp
=
ThreadVecReduce
<
SumExpFunctor
,
T
,
AccT
,
VecSize
>
(
batch_input
,
dim_size
,
SumExpFunctor
<
T
,
AccT
>
(
thread_max
),
static_cast
<
AccT
>
(
0.
));
BlockReduceSum
<
AccT
>
(
&
thread_exp
);
// write data to softmax_output according to the LogMode
if
(
LogMode
)
{
LogSoftmaxForwardFunctor
<
AccT
,
T
>
reduction
(
thread_max
,
std
::
log
(
thread_exp
));
ThreadVecWrite
<
LogSoftmaxForwardFunctor
,
T
,
AccT
,
VecSize
>
(
batch_output
,
batch_input
,
dim_size
,
reduction
);
}
else
{
SoftmaxForwardFunctor
<
AccT
,
T
>
reduction
(
thread_max
,
thread_exp
);
ThreadVecWrite
<
SoftmaxForwardFunctor
,
T
,
AccT
,
VecSize
>
(
batch_output
,
batch_input
,
dim_size
,
reduction
);
}
}
/*
/*
Core function of computing softmax forward for axis=-1.
Core function of computing softmax forward for axis=-1.
The computation includes
The computation includes
...
@@ -927,6 +1131,30 @@ void LaunchSoftmaxBackwardCudnnKernel(const GPUContext& dev_ctx,
...
@@ -927,6 +1131,30 @@ void LaunchSoftmaxBackwardCudnnKernel(const GPUContext& dev_ctx,
}
}
}
}
template
<
typename
T
,
typename
IndexType
,
bool
LogMode
>
void
LaunchKeMatrixSoftmaxForwardKernel
(
const
GPUContext
&
dev_ctx
,
T
*
out
,
const
T
*
input
,
int
N
,
int
dim_size
)
{
using
AccT
=
typename
phi
::
dtype
::
MPTypeTrait
<
T
>::
Type
;
const
int
vec_size
=
MATRIX_SOFTMAX_ALIGN_BYTES
/
sizeof
(
T
);
switch
(
getBlockSize
(
vec_size
,
dim_size
))
{
FIXED_BLOCK_DIM
(
switch
(
vec_size
)
{
FIXED_VEC_SIZE
(
KeMatrixSoftmaxForward
<
T
,
AccT
,
IndexType
,
kBlockDim
,
VecSize
,
LogMode
>
<<<
N
,
kBlockDim
,
0
,
dev_ctx
.
stream
()
>>>
(
out
,
input
,
dim_size
));
default:
break
;
});
default:
PADDLE_THROW
(
errors
::
Fatal
(
"the input dim has error in the softmax cuda kernel."
));
}
}
#if CUDNN_VERSION < 8100
#if CUDNN_VERSION < 8100
template
<
>
template
<
>
inline
void
LaunchSoftmaxForwardCudnnKernel
<
phi
::
dtype
::
bfloat16
>
(
inline
void
LaunchSoftmaxForwardCudnnKernel
<
phi
::
dtype
::
bfloat16
>
(
...
@@ -967,7 +1195,8 @@ bool UseCudnnSoftmax(const GPUContext& ctx,
...
@@ -967,7 +1195,8 @@ bool UseCudnnSoftmax(const GPUContext& ctx,
}
}
constexpr
int
max_dim
=
512
;
constexpr
int
max_dim
=
512
;
if
(
!
cudnn_available
||
!
last_dim
||
if
(
!
cudnn_available
||
!
last_dim
||
(
softmax_dim
<=
max_dim
&&
sizeof
(
T
)
<=
4
))
{
(
softmax_dim
<=
max_dim
&&
sizeof
(
T
)
<=
4
)
||
softmax_dim
>=
MATRIX_SOFTMAX_THREAHOLD
)
{
return
false
;
return
false
;
}
else
{
}
else
{
return
true
;
return
true
;
...
@@ -991,6 +1220,11 @@ void SoftmaxForwardCUDAKernelDriverImpl(const GPUContext& dev_ctx,
...
@@ -991,6 +1220,11 @@ void SoftmaxForwardCUDAKernelDriverImpl(const GPUContext& dev_ctx,
if
(
D
==
1
)
{
if
(
D
==
1
)
{
if
(
!
UseCudnnSoftmax
<
T
>
(
dev_ctx
,
dim
,
true
))
{
if
(
!
UseCudnnSoftmax
<
T
>
(
dev_ctx
,
dim
,
true
))
{
if
(
dim
>=
MATRIX_SOFTMAX_THREAHOLD
)
{
LaunchKeMatrixSoftmaxForwardKernel
<
T
,
IndexType
,
LogMode
>
(
dev_ctx
,
out_data
,
x
.
data
<
T
>
(),
N
,
dim
);
return
;
}
int
dim_log2
=
static_cast
<
int
>
(
Log2Ceil
(
dim
));
int
dim_log2
=
static_cast
<
int
>
(
Log2Ceil
(
dim
));
IndexType
dim_ceil
=
1
<<
dim_log2
;
IndexType
dim_ceil
=
1
<<
dim_log2
;
int
warp_size
=
(
dim_ceil
<
32
)
?
dim_ceil
:
32
;
int
warp_size
=
(
dim_ceil
<
32
)
?
dim_ceil
:
32
;
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录