Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
8ffcc7c8
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
8ffcc7c8
编写于
10月 14, 2021
作者:
S
ShenLiang
提交者:
GitHub
10月 14, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[HybridParallel]Rebuild code for pipeline (#36396)
* add no_sync for parameters sync * add pipeline for moe
上级
693b1aa1
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
40 addition
and
25 deletion
+40
-25
python/paddle/distributed/fleet/meta_parallel/pipeline_parallel.py
...ddle/distributed/fleet/meta_parallel/pipeline_parallel.py
+32
-23
python/paddle/fluid/dygraph/parallel.py
python/paddle/fluid/dygraph/parallel.py
+8
-2
未找到文件。
python/paddle/distributed/fleet/meta_parallel/pipeline_parallel.py
浏览文件 @
8ffcc7c8
...
...
@@ -77,26 +77,15 @@ class PipelineParallel(MetaParallelBase):
logger
.
info
(
"start broadcast dp parameters"
)
broadcast_dp_parameters
(
self
.
_layers
,
self
.
_hcg
)
def
train_batch
(
self
,
data
,
optimizer
,
lr_scheduler
=
None
,
scaler
=
None
):
assert
isinstance
(
optimizer
,
HybridParallelOptimizer
),
(
'optimizer should be HybridParallelOptimizer subclass.'
)
assert
fluid
.
framework
.
_dygraph_tracer
().
_has_grad
,
(
'Please enable the generation of gradients.'
)
if
self
.
is_first_stage
or
self
.
is_last_stage
:
assert
data
is
not
None
,
(
"For the first and the last stage, the data must be set."
)
else
:
data
=
None
def
forward_backward_pipeline
(
self
,
data
,
scaler
=
None
):
# use the 1f1b scheduling strategy.
# this strategy is inspired by:
# https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/schedules.py
self
.
optimizer
=
optimizer
self
.
lr_scheduler
=
lr_scheduler
self
.
scaler
=
scaler
self
.
data
=
data
self
.
_compute_loss
=
True
self
.
_layers
.
train
()
# store data for train
self
.
data
=
data
# store total loss of entire batch
self
.
total_loss
=
None
...
...
@@ -104,10 +93,6 @@ class PipelineParallel(MetaParallelBase):
# store data id for micro_batch
self
.
micro_batch_id
=
0
# Next, use the 1f1b scheduling strategy.
# this strategy is inspired by:
# https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/schedules.py
startup_steps
=
(
self
.
num_stages
-
self
.
stage_id
-
1
)
startup_steps
=
min
(
startup_steps
,
self
.
accumulate_steps
)
steady_steps
=
self
.
accumulate_steps
-
startup_steps
...
...
@@ -161,11 +146,35 @@ class PipelineParallel(MetaParallelBase):
self
.
_layers
.
allreduce_shared_weight_gradients
()
self
.
train_loss
=
self
.
_broadcast_final_loss
()
train_loss
=
self
.
_broadcast_final_loss
()
return
train_loss
def
train_batch
(
self
,
data
,
optimizer
,
lr_scheduler
=
None
,
scaler
=
None
):
assert
isinstance
(
optimizer
,
HybridParallelOptimizer
),
(
'optimizer should be HybridParallelOptimizer subclass.'
)
assert
fluid
.
framework
.
_dygraph_tracer
().
_has_grad
,
(
'Please enable the generation of gradients.'
)
if
self
.
is_first_stage
or
self
.
is_last_stage
:
assert
data
is
not
None
,
(
"For the first and the last stage, the data must be set."
)
else
:
data
=
None
self
.
optimizer
=
optimizer
self
.
lr_scheduler
=
lr_scheduler
self
.
_layers
.
train
()
# 1f1b for pipeline
train_loss
=
self
.
forward_backward_pipeline
(
data
,
scaler
)
# optimizer
self
.
_optimizer_step
()
return
self
.
train_loss
return
train_loss
def
eval_batch
(
self
,
data
,
compute_loss
=
False
):
self
.
_layers
.
eval
()
...
...
python/paddle/fluid/dygraph/parallel.py
浏览文件 @
8ffcc7c8
...
...
@@ -354,9 +354,15 @@ def sync_params_buffers(model,
if
not
isinstance
(
param
,
core
.
VarBase
):
raise
TypeError
(
"The data type of '%s' must be Varbase"
%
param
.
name
)
# is_distributed param not need to sync when in mp mode
if
is_model_parallel
and
isinstance
(
param
,
ParamBase
):
if
param
.
is_distributed
:
if
isinstance
(
param
,
ParamBase
):
if
is_model_parallel
and
param
.
is_distributed
:
continue
# NOTE(shenliang03): Support situations that do not require synchronization parameters,
# such as moe's expert parameters
if
getattr
(
param
,
"no_sync"
,
False
):
continue
model_vars
.
append
(
param
.
detach
())
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录