提交 8fb53b7e 编写于 作者: Y Yang Yu

Merge branch 'develop' of github.com:baidu/Paddle into...

Merge branch 'develop' of github.com:baidu/Paddle into feature/make_recognize_digits_normal_unittest
file(GLOB TEST_OPS RELATIVE "${CMAKE_CURRENT_SOURCE_DIR}" "test_*.py")
string(REPLACE ".py" "" TEST_OPS "${TEST_OPS}")
list(REMOVE_ITEM TEST_OPS test_image_classification_train)
py_test(test_image_classification_train_resnet SRCS test_image_classification_train.py ARGS resnet)
py_test(test_image_classification_train_vgg SRCS test_image_classification_train.py ARGS vgg)
# default test
foreach(src ${TEST_OPS})
py_test(${src} SRCS ${src}.py)
......
......@@ -12,44 +12,74 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import paddle.v2 as paddle
import paddle.v2.fluid as fluid
import contextlib
import unittest
x = fluid.layers.data(name='x', shape=[13], dtype='float32')
y_predict = fluid.layers.fc(input=x, size=1, act=None)
def main(use_cuda):
if use_cuda and not fluid.core.is_compiled_with_cuda():
return
y = fluid.layers.data(name='y', shape=[1], dtype='float32')
x = fluid.layers.data(name='x', shape=[13], dtype='float32')
cost = fluid.layers.square_error_cost(input=y_predict, label=y)
avg_cost = fluid.layers.mean(x=cost)
y_predict = fluid.layers.fc(input=x, size=1, act=None)
sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
sgd_optimizer.minimize(avg_cost)
y = fluid.layers.data(name='y', shape=[1], dtype='float32')
BATCH_SIZE = 20
cost = fluid.layers.square_error_cost(input=y_predict, label=y)
avg_cost = fluid.layers.mean(x=cost)
train_reader = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.uci_housing.train(), buf_size=500),
batch_size=BATCH_SIZE)
sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
sgd_optimizer.minimize(avg_cost)
place = fluid.CPUPlace()
feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
exe = fluid.Executor(place)
BATCH_SIZE = 20
exe.run(fluid.default_startup_program())
train_reader = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.uci_housing.train(), buf_size=500),
batch_size=BATCH_SIZE)
PASS_NUM = 100
for pass_id in range(PASS_NUM):
fluid.io.save_persistables(exe, "./fit_a_line.model/")
fluid.io.load_persistables(exe, "./fit_a_line.model/")
for data in train_reader():
avg_loss_value, = exe.run(fluid.default_main_program(),
feed=feeder.feed(data),
fetch_list=[avg_cost])
print(avg_loss_value)
if avg_loss_value[0] < 10.0:
exit(0) # if avg cost less than 10.0, we think our code is good.
exit(1)
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
PASS_NUM = 100
for pass_id in range(PASS_NUM):
fluid.io.save_persistables(exe, "./fit_a_line.model/")
fluid.io.load_persistables(exe, "./fit_a_line.model/")
for data in train_reader():
avg_loss_value, = exe.run(fluid.default_main_program(),
feed=feeder.feed(data),
fetch_list=[avg_cost])
print(avg_loss_value)
if avg_loss_value[0] < 10.0:
return
raise AssertionError("Fit a line cost is too large, {0:2.2}".format(
avg_loss_value[0]))
class TestFitALine(unittest.TestCase):
def test_cpu(self):
with self.program_scope_guard():
main(use_cuda=False)
def test_cuda(self):
with self.program_scope_guard():
main(use_cuda=True)
@contextlib.contextmanager
def program_scope_guard(self):
prog = fluid.Program()
startup_prog = fluid.Program()
scope = fluid.core.Scope()
with fluid.scope_guard(scope):
with fluid.program_guard(prog, startup_prog):
yield
if __name__ == '__main__':
unittest.main()
......@@ -14,10 +14,10 @@
from __future__ import print_function
import sys
import paddle.v2 as paddle
import paddle.v2.fluid as fluid
import unittest
import contextlib
def resnet_cifar10(input, depth=32):
......@@ -89,56 +89,89 @@ def vgg16_bn_drop(input):
return fc2
classdim = 10
data_shape = [3, 32, 32]
images = fluid.layers.data(name='pixel', shape=data_shape, dtype='float32')
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
net_type = "vgg"
if len(sys.argv) >= 2:
net_type = sys.argv[1]
if net_type == "vgg":
print("train vgg net")
net = vgg16_bn_drop(images)
elif net_type == "resnet":
print("train resnet")
net = resnet_cifar10(images, 32)
else:
raise ValueError("%s network is not supported" % net_type)
predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
cost = fluid.layers.cross_entropy(input=predict, label=label)
avg_cost = fluid.layers.mean(x=cost)
optimizer = fluid.optimizer.Adam(learning_rate=0.001)
opts = optimizer.minimize(avg_cost)
accuracy = fluid.evaluator.Accuracy(input=predict, label=label)
BATCH_SIZE = 128
PASS_NUM = 1
train_reader = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.cifar.train10(), buf_size=128 * 10),
batch_size=BATCH_SIZE)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
feeder = fluid.DataFeeder(place=place, feed_list=[images, label])
exe.run(fluid.default_startup_program())
for pass_id in range(PASS_NUM):
accuracy.reset(exe)
for data in train_reader():
loss, acc = exe.run(fluid.default_main_program(),
feed=feeder.feed(data),
fetch_list=[avg_cost] + accuracy.metrics)
pass_acc = accuracy.eval(exe)
print("loss:" + str(loss) + " acc:" + str(acc) + " pass_acc:" + str(
pass_acc))
# this model is slow, so if we can train two mini batch, we think it works properly.
exit(0)
exit(1)
def main(net_type, use_cuda):
if use_cuda and not fluid.core.is_compiled_with_cuda():
return
classdim = 10
data_shape = [3, 32, 32]
images = fluid.layers.data(name='pixel', shape=data_shape, dtype='float32')
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
if net_type == "vgg":
print("train vgg net")
net = vgg16_bn_drop(images)
elif net_type == "resnet":
print("train resnet")
net = resnet_cifar10(images, 32)
else:
raise ValueError("%s network is not supported" % net_type)
predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
cost = fluid.layers.cross_entropy(input=predict, label=label)
avg_cost = fluid.layers.mean(x=cost)
optimizer = fluid.optimizer.Adam(learning_rate=0.001)
optimizer.minimize(avg_cost)
accuracy = fluid.evaluator.Accuracy(input=predict, label=label)
BATCH_SIZE = 128
PASS_NUM = 1
train_reader = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.cifar.train10(), buf_size=128 * 10),
batch_size=BATCH_SIZE)
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
exe = fluid.Executor(place)
feeder = fluid.DataFeeder(place=place, feed_list=[images, label])
exe.run(fluid.default_startup_program())
loss = 0.0
for pass_id in range(PASS_NUM):
accuracy.reset(exe)
for data in train_reader():
loss, acc = exe.run(fluid.default_main_program(),
feed=feeder.feed(data),
fetch_list=[avg_cost] + accuracy.metrics)
pass_acc = accuracy.eval(exe)
print("loss:" + str(loss) + " acc:" + str(acc) + " pass_acc:" + str(
pass_acc))
return
raise AssertionError(
"Image classification loss is too large, {0:2.2}".format(loss))
class TestImageClassification(unittest.TestCase):
def test_vgg_cuda(self):
with self.scope_prog_guard():
main('vgg', use_cuda=True)
def test_resnet_cuda(self):
with self.scope_prog_guard():
main('resnet', use_cuda=True)
def test_vgg_cpu(self):
with self.scope_prog_guard():
main('vgg', use_cuda=False)
def test_resnet_cpu(self):
with self.scope_prog_guard():
main('resnet', use_cuda=False)
@contextlib.contextmanager
def scope_prog_guard(self):
prog = fluid.Program()
startup_prog = fluid.Program()
scope = fluid.core.Scope()
with fluid.scope_guard(scope):
with fluid.program_guard(prog, startup_prog):
yield
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册