Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
8f08f160
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
8f08f160
编写于
3月 16, 2021
作者:
L
Leo Chen
提交者:
GitHub
3月 16, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Revert "[NPU] add npu kernel for mean Op (#31562)" (#31665)
This reverts commit
468ac699
.
上级
468ac699
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
0 addition
and
419 deletion
+0
-419
paddle/fluid/operators/CMakeLists.txt
paddle/fluid/operators/CMakeLists.txt
+0
-2
paddle/fluid/operators/mean_op_npu.cc
paddle/fluid/operators/mean_op_npu.cc
+0
-135
paddle/fluid/operators/mean_op_npu_test.cc
paddle/fluid/operators/mean_op_npu_test.cc
+0
-133
python/paddle/fluid/tests/unittests/npu/test_mean_op_npu.py
python/paddle/fluid/tests/unittests/npu/test_mean_op_npu.py
+0
-149
未找到文件。
paddle/fluid/operators/CMakeLists.txt
浏览文件 @
8f08f160
...
@@ -184,6 +184,4 @@ endif()
...
@@ -184,6 +184,4 @@ endif()
if
(
WITH_ASCEND_CL
)
if
(
WITH_ASCEND_CL
)
cc_test
(
gelu_op_npu_test SRCS gelu_op_npu_test.cc DEPS op_registry gelu_op scope device_context enforce executor
)
cc_test
(
gelu_op_npu_test SRCS gelu_op_npu_test.cc DEPS op_registry gelu_op scope device_context enforce executor
)
cc_test
(
mean_op_npu_test SRCS mean_op_npu_test.cc DEPS op_registry mean_op scope device_context enforce executor
)
endif
()
endif
()
paddle/fluid/operators/mean_op_npu.cc
已删除
100644 → 0
浏览文件 @
468ac699
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/mean_op.h"
#include "paddle/fluid/platform/float16.h"
#include "paddle/fluid/operators/npu_op_runner.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
DeviceContext
,
typename
T
>
class
MeanNPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
x
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"X"
);
auto
*
out
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
"Out"
);
auto
reduce_ndim
=
x
->
dims
().
size
();
std
::
vector
<
int
>
axes
;
for
(
auto
i
=
0
;
i
<
reduce_ndim
;
++
i
)
{
axes
.
push_back
(
i
);
}
framework
::
NPUAttributeMap
attr_input
=
{
{
"keep_dims"
,
false
},
{
"axes"
,
axes
}};
std
::
vector
<
int64_t
>
out_dims
;
out_dims
.
push_back
(
1
);
out
->
Resize
(
framework
::
make_ddim
(
out_dims
));
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
Tensor
reduced_out
(
x
->
type
());
std
::
vector
<
int64_t
>
reduced_dout_dims
;
reduced_dout_dims
.
push_back
(
1
);
reduced_out
.
Resize
(
framework
::
make_ddim
(
reduced_dout_dims
));
reduced_out
.
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
runner
=
NpuOpRunner
(
"ReduceMeanD"
,
{
*
x
},
{
*
out
},
attr_input
);
auto
stream
=
ctx
.
template
device_context
<
paddle
::
platform
::
NPUDeviceContext
>()
.
stream
();
runner
.
Run
(
stream
);
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
MeanGradNPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
stream
=
context
.
template
device_context
<
paddle
::
platform
::
NPUDeviceContext
>()
.
stream
();
auto
grad
=
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
PADDLE_ENFORCE_EQ
(
grad
->
numel
(),
1
,
platform
::
errors
::
InvalidArgument
(
"Mean Gradient Input Tensor len should be 1. But "
"received Out@Grad's elements num is %d."
,
grad
->
numel
()));
auto
IG
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
IG
->
mutable_data
<
T
>
(
context
.
GetPlace
());
// ones
Tensor
ones
(
grad
->
type
());
std
::
vector
<
int64_t
>
dout_dims
;
for
(
auto
i
=
0
;
i
<
IG
->
dims
().
size
();
++
i
)
{
dout_dims
.
push_back
(
IG
->
dims
()[
i
]);
}
ones
.
Resize
(
framework
::
make_ddim
(
dout_dims
));
ones
.
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
runner_ones
=
NpuOpRunner
(
"OnesLike"
,
{
*
IG
},
{
ones
},
{});
runner_ones
.
Run
(
stream
);
// means
Tensor
mean_tensor
(
grad
->
type
());
mean_tensor
.
Resize
({
1
});
mean_tensor
.
mutable_data
<
T
>
(
context
.
GetPlace
());
std
::
vector
<
float
>
mean_vec
;
mean_vec
.
push_back
(
1.0
/
static_cast
<
float
>
(
IG
->
numel
()));
framework
::
TensorFromVector
(
mean_vec
,
context
.
device_context
(),
&
mean_tensor
);
// means mul ones
Tensor
mean_ma
(
grad
->
type
());
mean_ma
.
Resize
(
framework
::
make_ddim
(
dout_dims
));
mean_ma
.
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
runner_mul_1
=
NpuOpRunner
(
"Mul"
,
{
mean_tensor
,
ones
},
{
mean_ma
},
{});
runner_mul_1
.
Run
(
stream
);
// and mul grad
auto
runner_mul_2
=
NpuOpRunner
(
"Mul"
,
{
mean_ma
,
*
grad
},
{
*
IG
},
{});
runner_mul_2
.
Run
(
stream
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
namespace
plat
=
paddle
::
platform
;
REGISTER_OP_NPU_KERNEL
(
mean
,
ops
::
MeanNPUKernel
<
paddle
::
platform
::
NPUDeviceContext
,
int
>
,
ops
::
MeanNPUKernel
<
paddle
::
platform
::
NPUDeviceContext
,
float
>
,
ops
::
MeanNPUKernel
<
paddle
::
platform
::
NPUDeviceContext
,
double
>
,
ops
::
MeanNPUKernel
<
paddle
::
platform
::
NPUDeviceContext
,
plat
::
float16
>
)
REGISTER_OP_NPU_KERNEL
(
mean_grad
,
ops
::
MeanGradNPUKernel
<
paddle
::
platform
::
NPUDeviceContext
,
int
>
,
ops
::
MeanGradNPUKernel
<
paddle
::
platform
::
NPUDeviceContext
,
float
>
,
ops
::
MeanGradNPUKernel
<
paddle
::
platform
::
NPUDeviceContext
,
double
>
,
ops
::
MeanGradNPUKernel
<
paddle
::
platform
::
NPUDeviceContext
,
plat
::
float16
>
)
paddle/fluid/operators/mean_op_npu_test.cc
已删除
100644 → 0
浏览文件 @
468ac699
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifndef _WIN32
#include <unistd.h>
#endif
#include <string>
#include <thread> // NOLINT
#include <vector>
#include "gtest/gtest.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/operators/dropout_op.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/string/printf.h"
namespace
f
=
paddle
::
framework
;
namespace
p
=
paddle
::
platform
;
namespace
m
=
paddle
::
operators
::
math
;
USE_OP
(
mean
);
USE_OP_DEVICE_KERNEL
(
mean
,
NPU
);
USE_OP
(
mean_grad
);
USE_OP_DEVICE_KERNEL
(
mean_grad
,
NPU
);
template
<
typename
T
>
void
Compare
(
f
::
Scope
*
scope
,
const
p
::
DeviceContext
&
ctx
,
std
::
string
op_type
)
{
// init
auto
x
=
scope
->
Var
(
"X"
);
auto
tensor_x
=
x
->
GetMutable
<
f
::
LoDTensor
>
();
std
::
vector
<
T
>
init
;
init
.
push_back
(
static_cast
<
T
>
(
1.0
));
init
.
push_back
(
static_cast
<
T
>
(
2.0
));
init
.
push_back
(
static_cast
<
T
>
(
3.0
));
init
.
push_back
(
static_cast
<
T
>
(
4.0
));
TensorFromVector
(
init
,
ctx
,
tensor_x
);
tensor_x
->
Resize
({
4
});
ctx
.
Wait
();
auto
place
=
ctx
.
GetPlace
();
auto
out
=
scope
->
Var
(
"Out"
);
auto
tensor_out
=
out
->
GetMutable
<
f
::
LoDTensor
>
();
auto
op
=
f
::
OpRegistry
::
CreateOp
(
op_type
,
{{
"X"
,
{
"X"
}}},
{{
"Out"
,
{
"Out"
}}},
{});
op
->
Run
(
*
scope
,
place
);
std
::
vector
<
float
>
out_vec
;
TensorToVector
(
*
tensor_out
,
ctx
,
&
out_vec
);
ctx
.
Wait
();
EXPECT_EQ
((
uint32_t
)
out_vec
.
size
(),
(
uint32_t
)
1
);
EXPECT_EQ
((
float
)
out_vec
[
0
],
(
float
)
2.5
);
}
template
<
typename
T
>
void
CompareGrad
(
f
::
Scope
*
scope
,
const
p
::
DeviceContext
&
ctx
,
std
::
string
op_type
)
{
// init
auto
dout
=
scope
->
Var
(
"DOut"
);
auto
tensor_dout
=
dout
->
GetMutable
<
f
::
LoDTensor
>
();
float
dvalue
=
2.0
;
tensor_dout
->
Resize
({
1
});
std
::
vector
<
T
>
init_dout
;
init_dout
.
push_back
(
static_cast
<
T
>
(
dvalue
));
TensorFromVector
(
init_dout
,
ctx
,
tensor_dout
);
ctx
.
Wait
();
auto
x
=
scope
->
Var
(
"X"
);
auto
tensor_x
=
x
->
GetMutable
<
f
::
LoDTensor
>
();
tensor_x
->
Resize
({
4
});
auto
dx
=
scope
->
Var
(
"DX"
);
auto
tensor_dx
=
dx
->
GetMutable
<
f
::
LoDTensor
>
();
tensor_dx
->
Resize
({
4
});
ctx
.
Wait
();
auto
op
=
f
::
OpRegistry
::
CreateOp
(
op_type
,
{{
"Out@GRAD"
,
{
"DOut"
}},
{
"X"
,
{
"X"
}}},
{{
"X@GRAD"
,
{
"DX"
}}},
{});
auto
place
=
ctx
.
GetPlace
();
op
->
Run
(
*
scope
,
place
);
std
::
vector
<
float
>
out_vec
;
TensorToVector
(
*
tensor_dx
,
ctx
,
&
out_vec
);
ctx
.
Wait
();
EXPECT_EQ
((
uint32_t
)
out_vec
.
size
(),
(
uint32_t
)
4
);
EXPECT_EQ
((
float
)
out_vec
[
0
],
(
float
)
1.0
/
dvalue
);
EXPECT_EQ
((
float
)
out_vec
[
1
],
(
float
)
1.0
/
dvalue
);
EXPECT_EQ
((
float
)
out_vec
[
2
],
(
float
)
1.0
/
dvalue
);
EXPECT_EQ
((
float
)
out_vec
[
3
],
(
float
)
1.0
/
dvalue
);
}
TEST
(
mean
,
NPU_fp32
)
{
f
::
Scope
scope
;
p
::
NPUDeviceContext
ctx
(
p
::
NPUPlace
(
0
));
Compare
<
float
>
(
&
scope
,
ctx
,
"mean"
);
}
TEST
(
mean_grad
,
NPU_fp32
)
{
f
::
Scope
scope
;
p
::
NPUDeviceContext
ctx
(
p
::
NPUPlace
(
0
));
CompareGrad
<
float
>
(
&
scope
,
ctx
,
"mean_grad"
);
}
python/paddle/fluid/tests/unittests/npu/test_mean_op_npu.py
已删除
100644 → 0
浏览文件 @
468ac699
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
numpy
as
np
import
unittest
import
sys
sys
.
path
.
append
(
".."
)
from
op_test
import
OpTest
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid
import
core
paddle
.
enable_static
()
SEED
=
2021
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_npu
(),
"core is not compiled with NPU"
)
class
TestMean
(
OpTest
):
def
setUp
(
self
):
self
.
set_npu
()
self
.
place
=
paddle
.
NPUPlace
(
0
)
self
.
op_type
=
"mean"
self
.
init_dtype
()
x
=
np
.
random
.
random
([
3
,
3
]).
astype
(
self
.
dtype
)
self
.
inputs
=
{
'X'
:
x
}
self
.
attrs
=
{}
np_out
=
np
.
mean
(
x
)
self
.
outputs
=
{
'Out'
:
np_out
}
def
set_npu
(
self
):
self
.
__class__
.
use_npu
=
True
self
.
__class__
.
no_need_check_grad
=
True
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float32
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
,
check_dygraph
=
False
)
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_npu
(),
"core is not compiled with NPU"
)
class
TestMeanFP16
(
OpTest
):
def
setUp
(
self
):
self
.
set_npu
()
self
.
place
=
paddle
.
NPUPlace
(
0
)
self
.
op_type
=
"mean"
self
.
init_dtype
()
x
=
np
.
random
.
random
([
3
,
3
]).
astype
(
self
.
dtype
)
self
.
inputs
=
{
'X'
:
x
}
self
.
attrs
=
{}
np_out
=
np
.
mean
(
x
)
self
.
outputs
=
{
'Out'
:
np_out
}
def
set_npu
(
self
):
self
.
__class__
.
use_npu
=
True
self
.
__class__
.
no_need_check_grad
=
True
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float16
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
,
check_dygraph
=
False
)
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_npu
(),
"core is not compiled with NPU"
)
class
TestMeanNet
(
unittest
.
TestCase
):
def
_test
(
self
,
run_npu
=
True
):
main_prog
=
paddle
.
static
.
Program
()
startup_prog
=
paddle
.
static
.
Program
()
main_prog
.
random_seed
=
SEED
startup_prog
.
random_seed
=
SEED
np
.
random
.
seed
(
SEED
)
a_np
=
np
.
random
.
random
(
size
=
(
32
,
32
)).
astype
(
'float32'
)
b_np
=
np
.
random
.
random
(
size
=
(
32
,
32
)).
astype
(
'float32'
)
label_np
=
np
.
random
.
randint
(
2
,
size
=
(
32
,
1
)).
astype
(
'int64'
)
with
paddle
.
static
.
program_guard
(
main_prog
,
startup_prog
):
a
=
paddle
.
static
.
data
(
name
=
"a"
,
shape
=
[
32
,
32
],
dtype
=
'float32'
)
b
=
paddle
.
static
.
data
(
name
=
"b"
,
shape
=
[
32
,
32
],
dtype
=
'float32'
)
label
=
paddle
.
static
.
data
(
name
=
"label"
,
shape
=
[
32
,
1
],
dtype
=
'int64'
)
c
=
paddle
.
multiply
(
a
,
b
)
d
=
paddle
.
sqrt
(
c
)
fc_1
=
fluid
.
layers
.
fc
(
input
=
d
,
size
=
128
)
prediction
=
fluid
.
layers
.
fc
(
input
=
fc_1
,
size
=
2
,
act
=
'sigmoid'
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
label
)
loss
=
fluid
.
layers
.
mean
(
cost
)
sgd
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
0.01
)
sgd
.
minimize
(
loss
)
if
run_npu
:
place
=
paddle
.
NPUPlace
(
0
)
else
:
place
=
paddle
.
CPUPlace
()
exe
=
paddle
.
static
.
Executor
(
place
)
exe
.
run
(
startup_prog
)
print
(
"Start run on {}"
.
format
(
place
))
for
epoch
in
range
(
100
):
pred_res
,
loss_res
=
exe
.
run
(
main_prog
,
feed
=
{
"a"
:
a_np
,
"b"
:
b_np
,
"label"
:
label_np
},
fetch_list
=
[
prediction
,
loss
])
if
epoch
%
10
==
0
:
print
(
"Epoch {} | Prediction[0]: {}, Loss: {}"
.
format
(
epoch
,
pred_res
[
0
],
loss_res
))
return
pred_res
,
loss_res
def
test_npu
(
self
):
cpu_pred
,
cpu_loss
=
self
.
_test
(
False
)
npu_pred
,
npu_loss
=
self
.
_test
(
True
)
self
.
assertTrue
(
np
.
allclose
(
npu_pred
,
cpu_pred
))
self
.
assertTrue
(
np
.
allclose
(
npu_loss
,
cpu_loss
))
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录