Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
8ee8133a
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
提交
8ee8133a
编写于
11月 16, 2018
作者:
D
dongdaxiang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add some files about datafeed
上级
d101ef49
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
811 addition
and
0 deletion
+811
-0
paddle/fluid/framework/data_feed.cc.yebaiwei
paddle/fluid/framework/data_feed.cc.yebaiwei
+411
-0
paddle/fluid/framework/data_feed.h.yebaiwei
paddle/fluid/framework/data_feed.h.yebaiwei
+368
-0
paddle/fluid/framework/data_feed.proto.yebaiwei
paddle/fluid/framework/data_feed.proto.yebaiwei
+32
-0
未找到文件。
paddle/fluid/framework/data_feed.cc.yebaiwei
0 → 100644
浏览文件 @
8ee8133a
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <stdio.h>
#include <fcntl.h>
#include <unistd.h>
#include <fstream>
#include <iostream>
#include <algorithm>
#include <utility>
#include "google/protobuf/message.h"
#include "google/protobuf/text_format.h"
#include "google/protobuf/io/zero_copy_stream_impl.h"
#include "gflags/gflags.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/feed_fetch_type.h"
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/reader.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
#include "paddle/fluid/framework/data_feed.h"
DEFINE_bool(is_text_feed, false, "is_text_feed");
namespace paddle {
namespace framework {
std::vector<std::string> DataFeed::filelist_;
size_t DataFeed::file_idx_;
std::mutex DataFeed::mutex_for_pick_file_;
void DataFeed::AddFeedVar(Variable* var, const std::string& name) {
if (CheckInit() == false) {return;}
for (size_t i = 0; i < use_slots_.size(); ++i) {
if (name == use_slots_[i]) {
if (use_slot_is_dense_[i]) {
feed_vec[i]_ = MixTensor(var->GetMutable<Tensor>());
} else {
feed_vec[i]_ = MixTensor(var->GetMutable<LoDTensor>());
}
}
}
}
bool DataFeed::SetFileList(const std::vector<std::string>& files) {
if (CheckInit() == false) {return false;}
if (files.size() == 0) {
LOG(ERROR) << "error: you have set an empty filelist";
return false;
}
filelist_.assign(files.begin(), files.end());
file_idx_ = 0;
finish_set_filelist_ = true;
return true;
}
bool DataFeed::PickOneFile(std::string& filename) {
std::unique_lock<std::mutex> lock(mutex_for_pick_file_);
if (file_idx_ == filelist_.size()) {
return false;
}
filename = filelist_[file_idx++];
return true;
}
bool DataFeed::CheckInit() {
if (finish_init_) {return true;}
LOG(ERROR) << "error: initialization did not succeed";
return false;
}
bool DataFeed::CheckSetFileList() {
if (finish_set_filelist_) {return true;}
LOG(ERROR) << "error: set filelist did not succeed";
return false;
}
bool DataFeed::CheckStart() {
if (finish_start_) {return true;}
LOG(ERROR) << "error: Datafeed has not started running yet";
return false;
}
template<class T>
void PrivateQueueDataFeed::SetQueueSize(int queue_size) {
if (!CheckInit()) {return false;}
if (queue_size <= 0) {
LOG(ERROR) << "error: illegal queue size: " << queue_size;
return;
}
queue_ = BlockingQueue<std::vector<T>>(queue_size_);
}
template<class T>
bool PrivateQueueDataFeed::Start() {
if (!(CheckSetFileList())) {return false;}
read_thread_ = std::thread(&PrivateQueueDataFeed::ReadThread, this);
read_thread_.detach();
finish_start_ = true;
}
template<class T>
void PrivateQueueDataFeed::ReadThread(){
std::string filename;
while (PickOneFile(filename)) {
if (is_text_fees) {
file_.open(filename.c_str());
} else {
LOG(ERROR) << "error: binary DataFeed is not implemented";
}
if (!file_.is_open()) {
LOG(ERROR) << "error: open file<" << filename << "> fail";
}
std::vector<T> instance;
while (ParseOneInstance(instance)) {
queue_.Send(instance);
}
file_.close();
}
queue_.Close();
}
template<class T>
bool PrivateQueueDataFeed::Next(){
if (!CheckStart()) {return false;}
int index = 0;
std::vector<T> instance;
std::vector<T> ins_vec(use_slots_.size());
while (index < default_batch_size_) {
if (!queue_.Receive(&instance)) {
break;
}
if (index == 0) {
for (auto& slot : ins_vec) {
ins_vec.SetType(instance.GetType());
}
}
for (auto& slot : ins_vec) {
ins_vec.AddIns(instance);
}
++index;
}
batch_size_ = index;
PutToFeedVec(ins_vec);
return batch_size_ != 0;
}
void MultiSlotDataFeed::Init(paddle::DataFeedDesc& data_feed_desc) {
finish_init_ = false;
finish_set_filelist_ = false;
finish_start_ = false;
if (!data_feed_decs.has_multi_slot_desc()){
LOG(ERROR) << "error: multi_slot_desc has not been set";
return ;
}
paddle::MultiSlotDesc multi_slot_desc = data_feed_desc.multi_slot_desc();
size_t all_slot_num = multi_slot_desc.slots_size();
all_slots_.resize(all_slot_num);
all_slots_type_.resize(all_slot_num);
use_slots_index_.resize(all_slot_num);
use_slots_.clear();
use_slots_is_dense_.clear();
for (size_t i = 0; i < all_slot_num; ++i) {
auto& slot = multi_slot_desc.slots(i);
all_slots_[i] = slot.name(i);
all_slots_type_[i] = slot.type(i);
use_slots_index_[i] = slot.use(i) ? use_slots_.size() : -1;
if (is_used_[i]) {
use_slots_.push_back(all_slots_[i]);
use_slots_is_dense_.push_back(slot.dense(i)):
}
}
feed_vec_.resize(use_slots_.size());
finish_init_ = true;
}
bool MultiSlotDataFeed::ParseOneInstance(std::vector<MultiSlotType>& instance) {
std::string line;
if (getline(fin, line)) {
int use_slots_num = use_slots_.size();
instance.resize(use_slots_num);
//parse line
int len = line.length();
const char* str = line.c_str();
char* endptr = str;
int pos = 0;
for (size_t i = 0; i < use_slots_index_.size(); ++i) {
int idx = use_slots_index_[i];
int num = (int)strtol(&str[pos], &endptr, 10);
if (num == 0) {
LOG(ERROR) << "error: the number of ids can not be zero, you need padding it";
exit(-1);
}
if (idx != -1) {
instance[idx].SetType(all_slots_type_[i]);
if (instance[idx].GetType()[0] == 'f') { // float
for (int j = 0; j < num; ++j) {
float feasign = (float)strtof(endptr, &endptr);
instance[idx].AddValue(feasign);
}
} else if (instance[idx].GetType()[0] == 'u'){ // uint64
for (int j = 0; j < num; ++j) {
uint64_t feasign = (uint64_t)strtoull(endptr, &endptr, 10);
instance[idx].AddValue(feasign);
}
}
pos = endptr - str;
} else {
for (int j = 0; j <= num; ++j) {
pos = line.find_first_of(' ', pos + 1);
}
}
}
} else {
return false;
}
}
void MultiSlotDataFeed::PutToFeedVec(std::vector<MultiSlotType>& ins_vec) {
for (size_t i = 0; i < use_slots_.size(); ++i) {
auto& type = ins_vec[i].GetType();
if (type[0] == 'f') { // float
auto& feasign = ins_vec[i].GetFloatData();
if (_feed_vec[i].IsDense()) {
float* tensor_ptr = _feed_vec[i].GetTensor()->
mutable_data<float>({batch_size_, offset.back() / batch_size_},
platform::CPUPlace(), offset.back() * sizeof(float));
memcpy(tensor_ptr, &feasign[0], offset.back() * sizeof(float));
} else {
float* tensor_ptr = _feed_vec[i].GetLoDTensor()->
mutable_data<float>({offset.back(), 1}, platform::CPUPlace());
memcpy(tensor_ptr, &feasign[0], offset.back() * sizeof(float));
auto& offset = ins_vec[i].GetOffset();
LoD data_lod{offset};
_feed_vec[i].GetLoDTensor()->set_lod(data_lod);
}
} else if (type[0] == 'u') { // uint64
auto& feasign = ins_vec[i].GetUint64Data();
if (_feed_vec[i].IsDense()) {
// no uint64_t type
int64_t* tensor_ptr = _feed_vec[i].GetTensor()->
mutable_data<int64_t>({batch_size_, offset.back() / batch_size_},
platform::CPUPlace(), offset.back() * sizeof(uint64_t));
memcpy(tensor_ptr, &feasign[0], offset.back() * sizeof(uint64_t));
} else {
int64_t* tensor_ptr = _feed_vec[i].GetLoDTensor()->
mutable_data<int64_t>({offset.back(), 1}, platform::CPUPlace());
memcpy(tensor_ptr, &feasign[0], offset.back() * sizeof(uint64_t));
auto& offset = ins_vec[i].GetOffset();
LoD data_lod{offset};
_feed_vec[i].GetLoDTensor()->set_lod(data_lod);
}
}
}
}
void TextClassDataFeed::Init() {
// hard coding for a specific datafeed
feed_vec_.resize(2);
// feed_vec_[0].reset(new LoDTensor);
// feed_vec_[1].reset(new LoDTensor);
all_slot_ids_ = {0, 1};
use_slot_ids_ = {0, 1};
use_slot_alias_ = {"words", "label"};
file_content_buffer_host_.reset(new char[200*1024*1024],
[](char *p) {delete[] p;});
file_content_buffer_ = file_content_buffer_host_.get();
file_content_buffer_ptr_ = file_content_buffer_;
batch_id_host_.reset(new int[10240*1024],
[](int *p) {delete[] p;}); // max word num in a batch
batch_id_buffer_ = batch_id_host_.get();
label_host_.reset(new int[10240],
[](int *p) {delete[] p;}); // max label in a batch
label_ptr_ = label_host_.get();
}
// todo: use elegant implemention for this function
bool TextClassDataFeed::ReadBatch() {
paddle::framework::Vector<size_t> offset;
int tlen = 0;
int llen = 0;
int inst_idx = 0;
offset.resize(batch_size_ + 1);
offset[0] = 0;
while (inst_idx < batch_size_) {
int ptr_offset = 0;
if (file_content_buffer_ptr_ - file_content_buffer_ >= file_size_) {
break;
}
memcpy(reinterpret_cast<char *>(&llen),
file_content_buffer_ptr_ + ptr_offset,
sizeof(int));
ptr_offset += sizeof(int);
memcpy(reinterpret_cast<char *>(batch_id_buffer_ + tlen),
file_content_buffer_ptr_ + ptr_offset,
llen * sizeof(int));
tlen += llen;
offset[inst_idx + 1] = offset[inst_idx] + llen;
ptr_offset += sizeof(int) * llen;
memcpy(reinterpret_cast<char *>(label_ptr_ + inst_idx),
file_content_buffer_ptr_ + ptr_offset,
sizeof(int));
ptr_offset += sizeof(int);
file_content_buffer_ptr_ += ptr_offset;
inst_idx++;
}
if (inst_idx != batch_size_) {
return false;
}
LoD input_lod{offset};
paddle::framework::Vector<size_t> label_offset;
label_offset.resize(batch_size_ + 1);
for (int i = 0; i <= batch_size_; ++i) {
label_offset[i] = i;
}
LoD label_lod{label_offset};
int64_t* input_ptr = feed_vec_[0]->mutable_data<int64_t>(
{static_cast<int64_t>(offset.back()), 1},
platform::CPUPlace());
int64_t* label_ptr = feed_vec_[1]->mutable_data<int64_t>({batch_size_, 1},
platform::CPUPlace());
for (unsigned int i = 0; i < offset.back(); ++i) {
input_ptr[i] = static_cast<int64_t>(batch_id_buffer_[i]);
}
for (int i = 0; i < batch_size_; ++i) {
label_ptr[i] = static_cast<int64_t>(label_ptr_[i]);
}
feed_vec_[0]->set_lod(input_lod);
feed_vec_[1]->set_lod(label_lod);
return true;
}
void TextClassDataFeed::AddFeedVar(Variable* feed, const std::string& name) {
for (unsigned int i = 0; i < use_slot_alias_.size(); ++i) {
if (name == use_slot_alias_[i]) {
feed_vec_[i] = feed->GetMutable<LoDTensor>();
}
}
}
bool TextClassDataFeed::SetFile(const char* filename) {
// termnum termid termid ... termid label
int filesize = ReadWholeFile(filename, file_content_buffer_);
// todo , remove magic number
if (filesize < 0 || filesize >= 1024 * 1024 * 1024) {
return false;
}
file_content_buffer_ptr_ = file_content_buffer_;
file_size_ = filesize;
return true;
}
int TextClassDataFeed::ReadWholeFile(const std::string& filename,
char* buffer) {
std::ifstream ifs(filename.c_str(), std::ios::binary);
if (ifs.fail()) {
return -1;
}
ifs.seekg(0, std::ios::end);
int file_size = ifs.tellg();
ifs.seekg(0, std::ios::beg);
ifs.read(buffer, file_size);
return file_size;
}
} // namespace framework
} // namespace paddle
/* vim: set expandtab ts=2 sw=2 sts=2 tw=100: */
paddle/fluid/framework/data_feed.h.yebaiwei
0 → 100644
浏览文件 @
8ee8133a
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifndef PADDLE_FLUID_FRAMEWORK_DATA_FEED_H_
#define PADDLE_FLUID_FRAMEWORK_DATA_FEED_H_
#include <memory>
#include <set>
#include <map>
#include <string>
#include <thread> // NOLINT
#include <vector>
#include <queue>
#include <mutex> // NOLINT
#include <unordered_map>
#include <unordered_set>
#include <condition_variable> // NOLINT
#include <fstream>
#include <deque>
#include <atomic>
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/scope.h"
namespace paddle {
namespace framework {
class MixTensor {
public:
MixTensor(LoDTensor* lodtensor) {
is_dense_ = false;
lodtensor_ = lodtensor;
}
MixTensor(Tensor* tensor) {
is_dense_ = true;
tensor_ = tensor;
}
bool IsDense() {return is_dense_;}
LoDTensor* GetLoDTensor(){
if (is_dense_) {
LOG(ERROR) << "error: let a dense var return a LoDTensor ptr";
return NULL;
}
return lodtensor_;
}
Tensor* GetTensor(){
if (!is_dense_) {
LOG(ERROR) << "error: let a sparse var return a Tensor ptr";
return NULL;
}
return tensor_;
}
private:
bool is_dense_;
LoDTensor* lodtensor_;
Tensor* tensor_;
};
template<typename T>
class BlockingQueue {
public:
BlockingQueue() : capacity_(32) {}
explicit BlockingQueue(size_t capacity)
: capacity_(capacity), closed_(false) {
size_.store(0);
}
bool Send(const T& elem) {
int c = -1;
{
std::unique_lock<std::mutex> lock(send_mutex_);
send_cv_.wait(lock, [&] {return size_.load() < capacity_ || closed_;});
if (closed_) {
VLOG(5)
<< "WARNING: Sending an element to a closed reader::BlokcingQueue.";
return false;
}
queue_.push_back(elem);
c = size_.load();
size_.fetch_add(1);
}
if (c + 1 < capacity_) {
send_cv_.notify_one();
}
if (c == 0) {
std::unique_lock<std::mutex> lock(receive_mutex_);
receive_cv_.notify_one();
}
return true;
}
bool Receive(T* elem) {
int c = -1;
{
std::unique_lock<std::mutex> lock(receive_mutex_);
receive_cv_.wait(lock, [&] {return size_.load() != 0 || closed_;});
if (size_.load() != 0) {
*elem = queue_.front();
queue_.pop_front();
c = size_.load();
size_.fetch_sub(1);
} else {
return false;
}
}
if (c > 1) {
receive_cv_.notify_one();
}
if (c == capacity_) {
std::unique_lock<std::mutex> lock(send_mutex_);
send_cv_.notify_one();
}
return true;
}
void Close() {
{
std::lock_guard<std::mutex> lock1(send_mutex_);
std::lock_guard<std::mutex> lock2(receive_mutex_);
closed_ = true;
}
send_cv_.notify_all();
receive_cv_.notify_all();
}
bool IsClosed() const {
std::lock_guard<std::mutex> lock1(send_mutex_);
std::lock_guard<std::mutex> lock2(receive_mutex_);
return closed_;
}
size_t Cap() const {
return capacity_;
}
size_t Size() const {
return size_.load();
}
private:
size_t capacity_;
std::atomic_size_t size_;
bool closed_;
std::deque<T> queue_;
mutable std::mutex send_mutex_;
mutable std::mutex receive_mutex_;
mutable std::condition_variable send_cv_;
mutable std::condition_variable receive_cv_;
};
class DataFeed {
public:
DataFeed() {}
virtual ~DataFeed() {}
virtual void Init() = 0;
// for some datafeeds may not be able to implement this interface
virtual bool CheckFile(const char* filename) {
LOG(ERROR) << "error: The function CheckFile is not implemented";
return false;
}
virtual bool SetFileList(const std::vector<std::string>& files);
virtual bool Start() = 0;
virtual bool Next() = 0;
virtual void SetBatchSize(int batch) { default_batch_size_ = batch; }
virtual int GetBatchSize() { return batch_size_; }
// for subclass with queue
virtual void SetQueueSize(int queue_size) {
LOG(ERROR) << "error: The function SetQueueSize is not implemented";
}
// for subclass with buffer
virtual void SetBufferSize(int buffer_size) {
LOG(ERROR) << "error: The function SetBufferSize is not implemented";
}
virtual const std::vector<std::string>& GetAllSlots() {return all_slots_;}
virtual const std::vector<std::string>& GetUseSlots() {return use_slots_;}
std::vector<MixTensor>& GetFeedVec() {return feed_vec_;}
virtual void AddFeedVar(Variable* var, const std::string& name);
protected:
// Check if it is executed in this order:
// Init -> SetFileList/BindingMemory -> Start -> Next
virtual bool CheckInit();
virtual bool CheckSetFileList();
virtual bool CheckStart();
virtual bool PickOneFile(std::string& filename);
static std::vector<std::string> filelist_;
static size_t file_idx_;
static std::mutex mutex_for_pick_file_;
std::vector<std::string> use_slots_;
std::vector<bool> use_slots_is_dense_;
std::vector<std::string> all_slots_;
std::vector<std::string> all_slots_type_;
std::vector<int> use_slots_index_; // -1: not used; >=0: the index of use_slots_
std::vector<MixTensor> feed_vec_;
int default_batch_size_;
int batch_size_;
bool finish_init_;
bool finish_set_filelist_;
bool finish_binding_memory_;
bool finish_start_;
};
template<class T>
class PrivateQueueDataFeed : public DataFeed {
public:
PrivateQueueDataFeed() {}
virtual ~PrivateQueueDataFeed() {}
virtual void Init() = 0;
virtual bool Start();
virtual bool Next(); // no buffer
virtual void SetQueueSize(int queue_size) {queue_size_ = queue_size;}
protected:
virtual void ReadThread();
virtual bool ParseOneInstance(std::vector<T>& instance) = 0;
virtual void PutToFeedVec(std::vector<T>& ins_vec) = 0;
std::thread read_thread_; // the thread for read files
/* using ifstream one line and one line parse is faster
* than using fread one buffer and one buffer parse.
* for 601M JingPai data:
* ifstream one line and one line parse: 6034 ms
* fread one buffer and one buffer parse: 7097 ms */
std::ifstream file_;
size_t queue_size_;
// The elements in the queue are one piece of data,
// with multiple fields in each piece of data
BlockingQueue<std::vector<T>> queue_;
};
class MultiSlotType {
public:
MultiSlotType() {
float_feasign_.clear();
uint64_feasign_.clear();
offset_.resize(1);
offset_[0] = 0;
}
void SetType(std::string& type) {
if (type != "uint64" && type != "float") {
// check in this
LOG(ERROR) << "error: here is no this type";
exit(0);
}
type_ = type;
}
void AddValue(float v) {
if (!CheckFloat()) {return;}
float_feasign_.push_back(v);
}
void AddValue(uint64_t v) {
if (!CheckUint64()) {return;}
uint64_feasign_.push_back(v);
}
void AddIns(MultiSlotType& ins) {
if (ins.GetType()[0] == 'f') { //float
if (!CheckFloat()) {return;}
auto& vec = ins.GetFloatData();
offset_.push_back(offset_.back() + vec.size());
float_feasign_.insert(float_feasign_.end(), vec.begin(), vec.end());
} else if (ins.GetType()[0] == 'u') { //uint64
if (!CheckUint64()) {return;}
auto& vec = ins.GetUint64Data();
offset_.push_back(offset_.back() + vec.size());
uint64_feasign_.insert(uint64_feasign_.end(), vec.begin(), vec.end());
}
}
std::string& GetType() {
return type_;
}
std::vector<float>& GetFloatData() {
return float_feasign_;
}
std::vector<uint64_t>& GetUint64Data() {
return uint64_feasign_;
}
std::vector<int>& GetOffset() {
return offset_;
}
private:
bool CheckFloat() {
if (type_[0] != 'f') { //float
LOG(ERROR) << "error: add " << type_ << " value to float slot";
return false;
}
return true;
}
bool CheckUint64() {
if (type_[0] != 'u') { //uint64
LOG(ERROR) << "error: add " << type_ << " value to uint64 slot";
return false;
}
return true;
}
std::string type_;
std::vector<float> float_feasign_;
std::vector<uint64_t> uint64_feasign_;
std::vector<int> offset_;
};
class MultiSlotDataFeed : public PrivateQueueDataFeed<std::vector<MultiSlotType>> {
public:
MultiSlotDataFeed() {}
virtual ~MultiSlotDataFeed() {}
virtual void Init();
//TODO: virtual bool CheckFile();
protected:
virtual bool ParseOneInstance(std::vector<MultiSlotType>& instance);
virtual void PutToFeedVec(std::vector<MultiSlotType>& ins_vec);
};
//TODO: to be deleted
class TextClassDataFeed : public DataFeed {
public:
virtual ~TextClassDataFeed() {}
virtual void Init();
virtual bool Start() {return false;}; //TODO
virtual bool Next() {return false;}; //TODO
virtual bool ReadBatch();
virtual void AddFeedVar(Variable* feed, const std::string& name);
virtual void BindScope(Scope* scope) {}
virtual bool SetFile(const char* filename);
virtual bool CheckFile(const char* filename) {
// TODO(xxx)
return false;
}
void SetBatchSize(int batch) {batch_size_ = batch;}
private:
int ReadWholeFile(const std::string& filename, char* buffer);
char* file_content_buffer_;
char* file_content_buffer_ptr_;
int* batch_id_buffer_;
int* label_ptr_;
int file_size_;
std::vector<std::string> names_;
std::shared_ptr<char> file_content_buffer_host_;
std::shared_ptr<int> batch_id_host_;
std::shared_ptr<int> label_host_;
};
} // namespace framework
} // namespace paddle
#endif // PADDLE_FLUID_FRAMEWORK_DATA_FEED_H_
/* vim: set expandtab ts=2 sw=2 sts=2 tw=100: */
paddle/fluid/framework/data_feed.proto.yebaiwei
0 → 100644
浏览文件 @
8ee8133a
/*
Copyright
(
c
)
2018
PaddlePaddle
Authors
.
All
Rights
Reserved
.
Licensed
under
the
Apache
License
,
Version
2.0
(
the
"License"
);
you
may
not
use
this
file
except
in
compliance
with
the
License
.
You
may
obtain
a
copy
of
the
License
at
http
://
www
.
apache
.
org
/
licenses
/
LICENSE
-
2.0
Unless
required
by
applicable
law
or
agreed
to
in
writing
,
software
distributed
under
the
License
is
distributed
on
an
"AS IS"
BASIS
,
WITHOUT
WARRANTIES
OR
CONDITIONS
OF
ANY
KIND
,
either
express
or
implied
.
See
the
License
for
the
specific
language
governing
permissions
and
limitations
under
the
License
.
*/
syntax
=
"proto2"
;
package
paddle
;
message
DataFeedDesc
{
optional
string
name
=
1
;
optional
int32
batch
=
2
[
default
=
32
];
optional
MultiSlotDesc
multi_slot_desc
=
3
;
}
message
MultiSlotDesc
{
repeated
Slot
slots
=
1
;
}
message
Slot
{
required
string
name
=
1
;
required
string
type
=
2
;
optional
bool
dense
=
3
[
default
=
0
];
optional
bool
use
=
4
[
default
=
1
];
}
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录