Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
8d7a3f1c
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
8d7a3f1c
编写于
7月 03, 2023
作者:
Z
zhouzj
提交者:
GitHub
7月 03, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix qat test. (#55035)
上级
485c515d
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
102 addition
and
22 deletion
+102
-22
test/quantization/test_post_training_quantization_mobilenetv1.py
...antization/test_post_training_quantization_mobilenetv1.py
+37
-21
test/quantization/test_post_training_quantization_resnet50.py
.../quantization/test_post_training_quantization_resnet50.py
+65
-1
未找到文件。
test/quantization/test_post_training_quantization_mobilenetv1.py
浏览文件 @
8d7a3f1c
...
...
@@ -12,6 +12,7 @@
# see the license for the specific language governing permissions and
# limitations under the license.
import
functools
import
logging
import
os
import
random
import
sys
...
...
@@ -24,6 +25,7 @@ from PIL import Image
import
paddle
from
paddle.dataset.common
import
download
from
paddle.static.log_helper
import
get_logger
from
paddle.static.quantization
import
PostTrainingQuantization
paddle
.
enable_static
()
...
...
@@ -39,6 +41,10 @@ DATA_DIR = 'data/ILSVRC2012'
img_mean
=
np
.
array
([
0.485
,
0.456
,
0.406
]).
reshape
((
3
,
1
,
1
))
img_std
=
np
.
array
([
0.229
,
0.224
,
0.225
]).
reshape
((
3
,
1
,
1
))
_logger
=
get_logger
(
__name__
,
logging
.
INFO
,
fmt
=
'%(asctime)s-%(levelname)s: %(message)s'
)
def
resize_short
(
img
,
target_size
):
percent
=
float
(
target_size
)
/
min
(
img
.
size
[
0
],
img
.
size
[
1
])
...
...
@@ -193,7 +199,7 @@ class TestPostTrainingQuantization(unittest.TestCase):
file_name
=
data_urls
[
0
].
split
(
'/'
)[
-
1
]
zip_path
=
os
.
path
.
join
(
self
.
cache_folder
,
file_name
)
print
(
f
'Data is downloaded at
{
zip_path
}
'
)
_logger
.
info
(
f
'Data is downloaded at
{
zip_path
}
'
)
self
.
cache_unzipping
(
data_cache_folder
,
zip_path
)
return
data_cache_folder
...
...
@@ -253,7 +259,7 @@ class TestPostTrainingQuantization(unittest.TestCase):
cnt
+=
len
(
data
)
if
(
batch_id
+
1
)
%
100
==
0
:
print
(
f
"
{
batch_id
+
1
}
images,"
)
_logger
.
info
(
f
"
{
batch_id
+
1
}
images,"
)
sys
.
stdout
.
flush
()
if
(
batch_id
+
1
)
==
iterations
:
break
...
...
@@ -275,14 +281,14 @@ class TestPostTrainingQuantization(unittest.TestCase):
is_full_quantize
=
False
,
is_use_cache_file
=
False
,
is_optimize_model
=
False
,
batch_nums
=
1
0
,
batch_nums
=
1
,
onnx_format
=
False
,
deploy_backend
=
None
,
):
try
:
os
.
system
(
"mkdir "
+
self
.
int8_model
)
except
Exception
as
e
:
print
(
f
"Failed to create
{
self
.
int8_model
}
due to
{
str
(
e
)
}
"
)
_logger
.
info
(
f
"Failed to create
{
self
.
int8_model
}
due to
{
str
(
e
)
}
"
)
sys
.
exit
(
-
1
)
place
=
paddle
.
CPUPlace
()
...
...
@@ -309,8 +315,8 @@ class TestPostTrainingQuantization(unittest.TestCase):
ptq
.
quantize
()
ptq
.
save_quantized_model
(
self
.
int8_model
,
model_filename
=
"inference.pdmodel"
,
params_filename
=
"inference.pdiparams"
,
model_filename
=
model_filename
,
params_filename
=
params_filename
,
)
def
run_test
(
...
...
@@ -322,27 +328,28 @@ class TestPostTrainingQuantization(unittest.TestCase):
round_type
,
data_urls
,
data_md5s
,
data_name
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
,
is_optimize_model
,
diff_threshold
,
onnx_format
=
False
,
batch_nums
=
1
0
,
batch_nums
=
1
,
deploy_backend
=
None
,
):
infer_iterations
=
self
.
infer_iterations
batch_size
=
self
.
batch_size
model_cache_folder
=
self
.
download_data
(
data_urls
,
data_md5s
,
model
)
print
(
model_path
=
os
.
path
.
join
(
model_cache_folder
,
data_name
)
_logger
.
info
(
"Start FP32 inference for {} on {} images ..."
.
format
(
model
,
infer_iterations
*
batch_size
)
)
(
fp32_throughput
,
fp32_latency
,
fp32_acc1
)
=
self
.
run_program
(
os
.
path
.
join
(
model_cache_folder
,
"MobileNetV1_infer"
)
,
model_path
,
model_filename
,
params_filename
,
batch_size
,
...
...
@@ -350,7 +357,7 @@ class TestPostTrainingQuantization(unittest.TestCase):
)
self
.
generate_quantized_model
(
os
.
path
.
join
(
model_cache_folder
,
"MobileNetV1_infer"
)
,
model_path
,
model_filename
,
params_filename
,
quantizable_op_type
,
...
...
@@ -365,7 +372,7 @@ class TestPostTrainingQuantization(unittest.TestCase):
deploy_backend
,
)
print
(
_logger
.
info
(
"Start INT8 inference for {} on {} images ..."
.
format
(
model
,
infer_iterations
*
batch_size
)
...
...
@@ -378,13 +385,13 @@ class TestPostTrainingQuantization(unittest.TestCase):
infer_iterations
,
)
print
(
f
"---Post training quantization of
{
algo
}
method---"
)
print
(
_logger
.
info
(
f
"---Post training quantization of
{
algo
}
method---"
)
_logger
.
info
(
"FP32 {}: batch_size {}, throughput {} images/second, latency {} second, accuracy {}."
.
format
(
model
,
batch_size
,
fp32_throughput
,
fp32_latency
,
fp32_acc1
)
)
print
(
_logger
.
info
(
"INT8 {}: batch_size {}, throughput {} images/second, latency {} second, accuracy {}.
\n
"
.
format
(
model
,
batch_size
,
int8_throughput
,
int8_latency
,
int8_acc1
)
...
...
@@ -414,7 +421,7 @@ class TestPostTrainingKLForMobilenetv1(TestPostTrainingQuantization):
is_use_cache_file
=
False
is_optimize_model
=
True
diff_threshold
=
0.025
batch_nums
=
3
batch_nums
=
1
self
.
run_test
(
model
,
'inference.pdmodel'
,
...
...
@@ -423,6 +430,7 @@ class TestPostTrainingKLForMobilenetv1(TestPostTrainingQuantization):
round_type
,
data_urls
,
data_md5s
,
"MobileNetV1_infer"
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
,
...
...
@@ -457,11 +465,13 @@ class TestPostTrainingavgForMobilenetv1(TestPostTrainingQuantization):
round_type
,
data_urls
,
data_md5s
,
"MobileNetV1_infer"
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
,
is_optimize_model
,
diff_threshold
,
batch_nums
=
2
,
)
...
...
@@ -483,7 +493,7 @@ class TestPostTraininghistForMobilenetv1(TestPostTrainingQuantization):
is_use_cache_file
=
False
is_optimize_model
=
True
diff_threshold
=
0.03
batch_nums
=
3
batch_nums
=
1
self
.
run_test
(
model
,
'inference.pdmodel'
,
...
...
@@ -492,6 +502,7 @@ class TestPostTraininghistForMobilenetv1(TestPostTrainingQuantization):
round_type
,
data_urls
,
data_md5s
,
"MobileNetV1_infer"
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
,
...
...
@@ -527,6 +538,7 @@ class TestPostTrainingAbsMaxForMobilenetv1(TestPostTrainingQuantization):
round_type
,
data_urls
,
data_md5s
,
"MobileNetV1_infer"
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
,
...
...
@@ -554,7 +566,7 @@ class TestPostTrainingAvgONNXFormatForMobilenetv1(TestPostTrainingQuantization):
is_optimize_model
=
True
onnx_format
=
True
diff_threshold
=
0.05
batch_nums
=
3
batch_nums
=
1
self
.
run_test
(
model
,
'inference.pdmodel'
,
...
...
@@ -563,6 +575,7 @@ class TestPostTrainingAvgONNXFormatForMobilenetv1(TestPostTrainingQuantization):
round_type
,
data_urls
,
data_md5s
,
"MobileNetV1_infer"
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
,
...
...
@@ -594,7 +607,7 @@ class TestPostTrainingAvgONNXFormatForMobilenetv1TensorRT(
is_optimize_model
=
False
onnx_format
=
True
diff_threshold
=
0.05
batch_nums
=
10
batch_nums
=
2
deploy_backend
=
"tensorrt"
self
.
run_test
(
model
,
...
...
@@ -604,6 +617,7 @@ class TestPostTrainingAvgONNXFormatForMobilenetv1TensorRT(
round_type
,
data_urls
,
data_md5s
,
"MobileNetV1_infer"
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
,
...
...
@@ -636,7 +650,7 @@ class TestPostTrainingKLONNXFormatForMobilenetv1MKLDNN(
is_optimize_model
=
False
onnx_format
=
True
diff_threshold
=
0.05
batch_nums
=
2
batch_nums
=
1
deploy_backend
=
"mkldnn"
self
.
run_test
(
model
,
...
...
@@ -646,6 +660,7 @@ class TestPostTrainingKLONNXFormatForMobilenetv1MKLDNN(
round_type
,
data_urls
,
data_md5s
,
"MobileNetV1_infer"
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
,
...
...
@@ -678,7 +693,7 @@ class TestPostTrainingAvgONNXFormatForMobilenetv1ARMCPU(
is_optimize_model
=
True
onnx_format
=
True
diff_threshold
=
0.05
batch_nums
=
3
batch_nums
=
1
deploy_backend
=
"arm"
self
.
run_test
(
model
,
...
...
@@ -688,6 +703,7 @@ class TestPostTrainingAvgONNXFormatForMobilenetv1ARMCPU(
round_type
,
data_urls
,
data_md5s
,
"MobileNetV1_infer"
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
,
...
...
test/quantization/test_post_training_quantization_resnet50.py
浏览文件 @
8d7a3f1c
...
...
@@ -12,10 +12,14 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import
sys
import
time
import
unittest
import
numpy
as
np
from
test_post_training_quantization_mobilenetv1
import
(
TestPostTrainingQuantization
,
val
,
)
import
paddle
...
...
@@ -45,6 +49,7 @@ class TestPostTrainingForResnet50(TestPostTrainingQuantization):
round_type
,
data_urls
,
data_md5s
,
"model"
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
,
...
...
@@ -52,8 +57,66 @@ class TestPostTrainingForResnet50(TestPostTrainingQuantization):
diff_threshold
,
)
def
run_program
(
self
,
model_path
,
model_filename
,
params_filename
,
batch_size
,
infer_iterations
,
):
image_shape
=
[
3
,
224
,
224
]
place
=
paddle
.
CPUPlace
()
exe
=
paddle
.
static
.
Executor
(
place
)
[
infer_program
,
feed_dict
,
fetch_targets
,
]
=
paddle
.
static
.
load_inference_model
(
model_path
,
exe
,
model_filename
=
model_filename
,
params_filename
=
params_filename
,
)
val_reader
=
paddle
.
batch
(
val
(),
batch_size
)
iterations
=
infer_iterations
test_info
=
[]
cnt
=
0
periods
=
[]
for
batch_id
,
data
in
enumerate
(
val_reader
()):
image
=
np
.
array
([
x
[
0
].
reshape
(
image_shape
)
for
x
in
data
]).
astype
(
"float32"
)
label
=
np
.
array
([
x
[
1
]
for
x
in
data
]).
astype
(
"int64"
)
label
=
label
.
reshape
([
-
1
,
1
])
t1
=
time
.
time
()
_
,
acc1
,
_
=
exe
.
run
(
infer_program
,
feed
=
{
feed_dict
[
0
]:
image
,
feed_dict
[
1
]:
label
},
fetch_list
=
fetch_targets
,
)
t2
=
time
.
time
()
period
=
t2
-
t1
periods
.
append
(
period
)
test_info
.
append
(
np
.
mean
(
acc1
)
*
len
(
data
))
cnt
+=
len
(
data
)
if
(
batch_id
+
1
)
%
100
==
0
:
print
(
f
"
{
batch_id
+
1
}
images,"
)
sys
.
stdout
.
flush
()
if
(
batch_id
+
1
)
==
iterations
:
break
throughput
=
cnt
/
np
.
sum
(
periods
)
latency
=
np
.
average
(
periods
)
acc1
=
np
.
sum
(
test_info
)
/
cnt
return
(
throughput
,
latency
,
acc1
)
class
TestPostTrainingForResnet50ONNXFormat
(
TestPostTraining
Quantization
):
class
TestPostTrainingForResnet50ONNXFormat
(
TestPostTraining
ForResnet50
):
def
test_post_training_resnet50
(
self
):
model
=
"ResNet-50"
algo
=
"min_max"
...
...
@@ -76,6 +139,7 @@ class TestPostTrainingForResnet50ONNXFormat(TestPostTrainingQuantization):
round_type
,
data_urls
,
data_md5s
,
"model"
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录