Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
8d6d95cc
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
8d6d95cc
编写于
9月 04, 2019
作者:
A
Adam
提交者:
Tao Luo
9月 04, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
paddle::framework::vectorize() templatization (#19611)
test=develop
上级
75d15719
变更
19
隐藏空白更改
内联
并排
Showing
19 changed file
with
63 addition
and
71 deletion
+63
-71
paddle/fluid/framework/data_layout_transform.cc
paddle/fluid/framework/data_layout_transform.cc
+2
-2
paddle/fluid/framework/ddim.cc
paddle/fluid/framework/ddim.cc
+0
-7
paddle/fluid/framework/ddim.h
paddle/fluid/framework/ddim.h
+7
-1
paddle/fluid/framework/op_desc.cc
paddle/fluid/framework/op_desc.cc
+1
-1
paddle/fluid/operators/mkldnn/activation_mkldnn_op.cc
paddle/fluid/operators/mkldnn/activation_mkldnn_op.cc
+2
-2
paddle/fluid/operators/mkldnn/batch_norm_mkldnn_op.cc
paddle/fluid/operators/mkldnn/batch_norm_mkldnn_op.cc
+4
-4
paddle/fluid/operators/mkldnn/concat_mkldnn_op.cc
paddle/fluid/operators/mkldnn/concat_mkldnn_op.cc
+3
-3
paddle/fluid/operators/mkldnn/conv_mkldnn_op.cc
paddle/fluid/operators/mkldnn/conv_mkldnn_op.cc
+13
-17
paddle/fluid/operators/mkldnn/conv_transpose_mkldnn_op.cc
paddle/fluid/operators/mkldnn/conv_transpose_mkldnn_op.cc
+6
-6
paddle/fluid/operators/mkldnn/dequantize_mkldnn_op.cc
paddle/fluid/operators/mkldnn/dequantize_mkldnn_op.cc
+2
-2
paddle/fluid/operators/mkldnn/fc_mkldnn_op.cc
paddle/fluid/operators/mkldnn/fc_mkldnn_op.cc
+4
-4
paddle/fluid/operators/mkldnn/lrn_mkldnn_op.cc
paddle/fluid/operators/mkldnn/lrn_mkldnn_op.cc
+2
-2
paddle/fluid/operators/mkldnn/mul_mkldnn_op.cc
paddle/fluid/operators/mkldnn/mul_mkldnn_op.cc
+2
-2
paddle/fluid/operators/mkldnn/pool_mkldnn_op.cc
paddle/fluid/operators/mkldnn/pool_mkldnn_op.cc
+4
-6
paddle/fluid/operators/mkldnn/quantize_mkldnn_op.cc
paddle/fluid/operators/mkldnn/quantize_mkldnn_op.cc
+2
-2
paddle/fluid/operators/mkldnn/requantize_mkldnn_op.cc
paddle/fluid/operators/mkldnn/requantize_mkldnn_op.cc
+2
-2
paddle/fluid/operators/mkldnn/softmax_mkldnn_op.cc
paddle/fluid/operators/mkldnn/softmax_mkldnn_op.cc
+4
-4
paddle/fluid/operators/mkldnn/sum_mkldnn_op.cc
paddle/fluid/operators/mkldnn/sum_mkldnn_op.cc
+1
-1
paddle/fluid/operators/mkldnn/transpose_mkldnn_op.cc
paddle/fluid/operators/mkldnn/transpose_mkldnn_op.cc
+2
-3
未找到文件。
paddle/fluid/framework/data_layout_transform.cc
浏览文件 @
8d6d95cc
...
@@ -147,8 +147,8 @@ void innerTransDataLayoutFromMKLDNN(DataLayout in_layout, DataLayout out_layout,
...
@@ -147,8 +147,8 @@ void innerTransDataLayoutFromMKLDNN(DataLayout in_layout, DataLayout out_layout,
auto
*
dev_ctx
=
dynamic_cast
<
platform
::
MKLDNNDeviceContext
*>
(
pool
.
Get
(
place
));
auto
*
dev_ctx
=
dynamic_cast
<
platform
::
MKLDNNDeviceContext
*>
(
pool
.
Get
(
place
));
auto
&
cpu_engine
=
dev_ctx
->
GetEngine
();
auto
&
cpu_engine
=
dev_ctx
->
GetEngine
();
std
::
vector
<
int
>
in_tz
=
paddle
::
framework
::
vectorize2int
(
in
.
dims
());
auto
in_tz
=
paddle
::
framework
::
vectorize
<
int
>
(
in
.
dims
());
std
::
vector
<
int
>
out_tz
=
in_tz
;
auto
out_tz
=
in_tz
;
memory
::
data_type
in_type
=
ToMKLDNNDataType
(
in
.
type
());
memory
::
data_type
in_type
=
ToMKLDNNDataType
(
in
.
type
());
PADDLE_ENFORCE
(
in_type
!=
memory
::
data_type
::
data_undef
,
PADDLE_ENFORCE
(
in_type
!=
memory
::
data_type
::
data_undef
,
...
...
paddle/fluid/framework/ddim.cc
浏览文件 @
8d6d95cc
...
@@ -48,13 +48,6 @@ bool DDim::operator==(const DDim& d) const {
...
@@ -48,13 +48,6 @@ bool DDim::operator==(const DDim& d) const {
bool
DDim
::
operator
!=
(
const
DDim
&
d
)
const
{
return
!
(
*
this
==
d
);
}
bool
DDim
::
operator
!=
(
const
DDim
&
d
)
const
{
return
!
(
*
this
==
d
);
}
std
::
vector
<
int64_t
>
vectorize
(
const
DDim
&
ddim
)
{
std
::
vector
<
int64_t
>
result
(
DDim
::
kMaxRank
);
dynamic_dim_assign
(
ddim
.
Get
(),
result
.
data
(),
ddim
.
size
());
result
.
resize
(
ddim
.
size
());
return
result
;
}
// NOTE: framework::vectorize converts to type int64_t
// NOTE: framework::vectorize converts to type int64_t
// which does not fit cudnn inputs.
// which does not fit cudnn inputs.
std
::
vector
<
int
>
vectorize2int
(
const
DDim
&
ddim
)
{
std
::
vector
<
int
>
vectorize2int
(
const
DDim
&
ddim
)
{
...
...
paddle/fluid/framework/ddim.h
浏览文件 @
8d6d95cc
...
@@ -170,7 +170,13 @@ DDim make_ddim(const std::vector<int>& dims);
...
@@ -170,7 +170,13 @@ DDim make_ddim(const std::vector<int>& dims);
*/
*/
DDim
make_ddim
(
std
::
initializer_list
<
int64_t
>
dims
);
DDim
make_ddim
(
std
::
initializer_list
<
int64_t
>
dims
);
std
::
vector
<
int64_t
>
vectorize
(
const
DDim
&
ddim
);
template
<
typename
T
=
int64_t
>
std
::
vector
<
T
>
vectorize
(
const
DDim
&
ddim
)
{
std
::
vector
<
T
>
result
(
DDim
::
kMaxRank
);
dynamic_dim_assign
(
ddim
.
Get
(),
result
.
data
(),
ddim
.
size
());
result
.
resize
(
ddim
.
size
());
return
result
;
}
std
::
vector
<
int
>
vectorize2int
(
const
DDim
&
ddim
);
std
::
vector
<
int
>
vectorize2int
(
const
DDim
&
ddim
);
int64_t
product
(
const
DDim
&
ddim
);
int64_t
product
(
const
DDim
&
ddim
);
...
...
paddle/fluid/framework/op_desc.cc
浏览文件 @
8d6d95cc
...
@@ -816,7 +816,7 @@ void CompileTimeInferShapeContext::SetRepeatedDims(
...
@@ -816,7 +816,7 @@ void CompileTimeInferShapeContext::SetRepeatedDims(
auto
var
=
block_
.
FindVarRecursive
(
name
);
auto
var
=
block_
.
FindVarRecursive
(
name
);
PADDLE_ENFORCE
(
var
!=
nullptr
,
"Cannot find variable %s"
,
name
);
PADDLE_ENFORCE
(
var
!=
nullptr
,
"Cannot find variable %s"
,
name
);
std
::
vector
<
std
::
vector
<
int64_t
>>
dim_vec
(
dims
.
size
());
std
::
vector
<
std
::
vector
<
int64_t
>>
dim_vec
(
dims
.
size
());
std
::
transform
(
dims
.
begin
(),
dims
.
end
(),
dim_vec
.
begin
(),
vectorize
);
std
::
transform
(
dims
.
begin
(),
dims
.
end
(),
dim_vec
.
begin
(),
vectorize
<>
);
var
->
SetShapes
(
dim_vec
);
var
->
SetShapes
(
dim_vec
);
}
}
...
...
paddle/fluid/operators/mkldnn/activation_mkldnn_op.cc
浏览文件 @
8d6d95cc
...
@@ -97,7 +97,7 @@ void eltwise_forward(const framework::ExecutionContext &ctx,
...
@@ -97,7 +97,7 @@ void eltwise_forward(const framework::ExecutionContext &ctx,
x
->
dims
().
size
()
==
2
||
x
->
dims
().
size
()
==
3
||
x
->
dims
().
size
()
==
4
,
x
->
dims
().
size
()
==
2
||
x
->
dims
().
size
()
==
3
||
x
->
dims
().
size
()
==
4
,
"Input dim must be with 2, 3 or 4"
);
"Input dim must be with 2, 3 or 4"
);
std
::
vector
<
int
>
src_tz
=
framework
::
vectorize2int
(
x
->
dims
());
auto
src_tz
=
framework
::
vectorize
<
int
>
(
x
->
dims
());
auto
src_format
=
src_tz
.
size
()
==
2
?
MKLDNNMemoryFormat
::
nc
:
x
->
format
();
auto
src_format
=
src_tz
.
size
()
==
2
?
MKLDNNMemoryFormat
::
nc
:
x
->
format
();
...
@@ -149,7 +149,7 @@ void eltwise_grad(const framework::ExecutionContext &ctx,
...
@@ -149,7 +149,7 @@ void eltwise_grad(const framework::ExecutionContext &ctx,
const
T
alpha
=
ctx
.
op
().
HasAttr
(
"alpha"
)
?
ctx
.
Attr
<
T
>
(
"alpha"
)
:
0
;
const
T
alpha
=
ctx
.
op
().
HasAttr
(
"alpha"
)
?
ctx
.
Attr
<
T
>
(
"alpha"
)
:
0
;
const
T
beta
=
ctx
.
op
().
HasAttr
(
"beta"
)
?
ctx
.
Attr
<
T
>
(
"beta"
)
:
0
;
const
T
beta
=
ctx
.
op
().
HasAttr
(
"beta"
)
?
ctx
.
Attr
<
T
>
(
"beta"
)
:
0
;
std
::
vector
<
int
>
diff_dst_tz
=
framework
::
vectorize2int
(
diff_y
->
dims
());
auto
diff_dst_tz
=
framework
::
vectorize
<
int
>
(
diff_y
->
dims
());
// diff_dst and src dims should be the same
// diff_dst and src dims should be the same
auto
src_format
=
auto
src_format
=
...
...
paddle/fluid/operators/mkldnn/batch_norm_mkldnn_op.cc
浏览文件 @
8d6d95cc
...
@@ -214,8 +214,8 @@ class BatchNormMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
...
@@ -214,8 +214,8 @@ class BatchNormMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
?
mkldnn
::
prop_kind
::
forward_scoring
?
mkldnn
::
prop_kind
::
forward_scoring
:
mkldnn
::
prop_kind
::
forward_training
;
:
mkldnn
::
prop_kind
::
forward_training
;
auto
src_tz
=
paddle
::
framework
::
vectorize
2int
(
x
->
dims
());
auto
src_tz
=
paddle
::
framework
::
vectorize
<
int
>
(
x
->
dims
());
auto
scale_tz
=
paddle
::
framework
::
vectorize
2int
(
scale
->
dims
());
auto
scale_tz
=
paddle
::
framework
::
vectorize
<
int
>
(
scale
->
dims
());
PADDLE_ENFORCE
(
scale_tz
.
size
()
==
1
,
"Dims of scale tensor is NOT 1"
);
PADDLE_ENFORCE
(
scale_tz
.
size
()
==
1
,
"Dims of scale tensor is NOT 1"
);
const
unsigned
int
ic
=
scale_tz
[
0
];
const
unsigned
int
ic
=
scale_tz
[
0
];
...
@@ -349,11 +349,11 @@ class BatchNormMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
...
@@ -349,11 +349,11 @@ class BatchNormMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
T
*
diff_scale_data
=
diff_scale
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
*
diff_scale_data
=
diff_scale
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
*
diff_shift_data
=
diff_shift
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
*
diff_shift_data
=
diff_shift
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
src_tz
=
paddle
::
framework
::
vectorize
2int
(
x
->
dims
());
auto
src_tz
=
paddle
::
framework
::
vectorize
<
int
>
(
x
->
dims
());
auto
diff_src_tz
=
src_tz
;
auto
diff_src_tz
=
src_tz
;
auto
dst_tz
=
src_tz
;
auto
dst_tz
=
src_tz
;
auto
diff_dst_tz
=
dst_tz
;
auto
diff_dst_tz
=
dst_tz
;
auto
scale_tz
=
paddle
::
framework
::
vectorize
2int
(
scale
->
dims
());
auto
scale_tz
=
paddle
::
framework
::
vectorize
<
int
>
(
scale
->
dims
());
PADDLE_ENFORCE
(
scale_tz
.
size
()
==
1
,
"Dims of scale tensor is NOT 1"
);
PADDLE_ENFORCE
(
scale_tz
.
size
()
==
1
,
"Dims of scale tensor is NOT 1"
);
const
unsigned
int
ic
=
scale_tz
[
0
];
const
unsigned
int
ic
=
scale_tz
[
0
];
...
...
paddle/fluid/operators/mkldnn/concat_mkldnn_op.cc
浏览文件 @
8d6d95cc
...
@@ -40,7 +40,7 @@ static void EnforceLayouts(const std::vector<const Tensor*> inputs) {
...
@@ -40,7 +40,7 @@ static void EnforceLayouts(const std::vector<const Tensor*> inputs) {
static
memory
::
primitive_desc
CreateMemPrimDesc
(
const
Tensor
&
input
,
static
memory
::
primitive_desc
CreateMemPrimDesc
(
const
Tensor
&
input
,
const
mkldnn
::
engine
&
engine
,
const
mkldnn
::
engine
&
engine
,
const
memory
::
data_type
&
dt
)
{
const
memory
::
data_type
&
dt
)
{
const
auto
dims
=
paddle
::
framework
::
vectorize
2int
(
input
.
dims
());
const
auto
dims
=
paddle
::
framework
::
vectorize
<
int
>
(
input
.
dims
());
const
auto
format
=
input
.
format
();
const
auto
format
=
input
.
format
();
auto
description
=
memory
::
desc
(
dims
,
dt
,
format
);
auto
description
=
memory
::
desc
(
dims
,
dt
,
format
);
auto
mem_prim_desc
=
memory
::
primitive_desc
(
description
,
engine
);
auto
mem_prim_desc
=
memory
::
primitive_desc
(
description
,
engine
);
...
@@ -73,7 +73,7 @@ std::string CreateKey(const paddle::framework::ExecutionContext& ctx,
...
@@ -73,7 +73,7 @@ std::string CreateKey(const paddle::framework::ExecutionContext& ctx,
key
.
reserve
(
platform
::
MKLDNNHandler
::
MaxKeyLength
);
key
.
reserve
(
platform
::
MKLDNNHandler
::
MaxKeyLength
);
for
(
size_t
i
=
0
;
i
<
multi_input
.
size
();
i
++
)
{
for
(
size_t
i
=
0
;
i
<
multi_input
.
size
();
i
++
)
{
platform
::
MKLDNNHandler
::
AppendKeyDims
(
platform
::
MKLDNNHandler
::
AppendKeyDims
(
&
key
,
paddle
::
framework
::
vectorize
2int
(
multi_input
[
i
]
->
dims
()));
&
key
,
paddle
::
framework
::
vectorize
<
int
>
(
multi_input
[
i
]
->
dims
()));
}
}
platform
::
MKLDNNHandler
::
AppendKey
(
&
key
,
std
::
to_string
(
concat_axis
));
platform
::
MKLDNNHandler
::
AppendKey
(
&
key
,
std
::
to_string
(
concat_axis
));
platform
::
MKLDNNHandler
::
AppendKey
(
&
key
,
ctx
.
op
().
Output
(
"Out"
));
platform
::
MKLDNNHandler
::
AppendKey
(
&
key
,
ctx
.
op
().
Output
(
"Out"
));
...
@@ -124,7 +124,7 @@ class ConcatPrimitiveFactory {
...
@@ -124,7 +124,7 @@ class ConcatPrimitiveFactory {
private:
private:
memory
::
desc
CreateDstMemDescriptor
(
Tensor
*
output
,
memory
::
desc
CreateDstMemDescriptor
(
Tensor
*
output
,
const
memory
::
data_type
&
dt
)
{
const
memory
::
data_type
&
dt
)
{
auto
dst_dims
=
paddle
::
framework
::
vectorize
2int
(
output
->
dims
());
auto
dst_dims
=
paddle
::
framework
::
vectorize
<
int
>
(
output
->
dims
());
return
memory
::
desc
(
dst_dims
,
dt
,
MKLDNNMemoryFormat
::
any
);
return
memory
::
desc
(
dst_dims
,
dt
,
MKLDNNMemoryFormat
::
any
);
}
}
...
...
paddle/fluid/operators/mkldnn/conv_mkldnn_op.cc
浏览文件 @
8d6d95cc
...
@@ -183,12 +183,11 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
...
@@ -183,12 +183,11 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
const
T
*
input_data
=
input
->
data
<
T
>
();
const
T
*
input_data
=
input
->
data
<
T
>
();
const
T
*
filter_data
=
filter
->
data
<
T
>
();
const
T
*
filter_data
=
filter
->
data
<
T
>
();
std
::
vector
<
int
>
src_tz
=
paddle
::
framework
::
vectorize2int
(
input
->
dims
());
auto
src_tz
=
paddle
::
framework
::
vectorize
<
int
>
(
input
->
dims
());
std
::
vector
<
int
>
weights_tz
=
auto
weights_tz
=
paddle
::
framework
::
vectorize
<
int
>
(
filter
->
dims
());
paddle
::
framework
::
vectorize2int
(
filter
->
dims
());
int
g
=
std
::
max
(
groups
,
1
);
int
g
=
std
::
max
(
groups
,
1
);
GetWeightsTz
(
weights_tz
,
g
,
is_conv3d
);
GetWeightsTz
(
weights_tz
,
g
,
is_conv3d
);
std
::
vector
<
int
>
dst_tz
=
paddle
::
framework
::
vectorize2int
(
output
->
dims
());
auto
dst_tz
=
paddle
::
framework
::
vectorize
<
int
>
(
output
->
dims
());
// Get unique name for storing MKLDNN primitives
// Get unique name for storing MKLDNN primitives
const
std
::
string
key
=
platform
::
ConvMKLDNNHandler
::
GetHash
(
const
std
::
string
key
=
platform
::
ConvMKLDNNHandler
::
GetHash
(
...
@@ -238,7 +237,7 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
...
@@ -238,7 +237,7 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
auto
fwd_prop_kind
=
is_test
?
mkldnn
::
prop_kind
::
forward_inference
auto
fwd_prop_kind
=
is_test
?
mkldnn
::
prop_kind
::
forward_inference
:
mkldnn
::
prop_kind
::
forward_training
;
:
mkldnn
::
prop_kind
::
forward_training
;
if
(
bias
)
{
if
(
bias
)
{
bias_tz
=
paddle
::
framework
::
vectorize
2int
(
bias
->
dims
());
bias_tz
=
paddle
::
framework
::
vectorize
<
int
>
(
bias
->
dims
());
auto
bias_md
=
platform
::
MKLDNNMemDesc
(
auto
bias_md
=
platform
::
MKLDNNMemDesc
(
bias_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
MKLDNNMemoryFormat
::
x
);
bias_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
MKLDNNMemoryFormat
::
x
);
conv_pd
=
handler
.
AcquireConvolutionPrimitiveDescriptor
(
conv_pd
=
handler
.
AcquireConvolutionPrimitiveDescriptor
(
...
@@ -281,7 +280,7 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
...
@@ -281,7 +280,7 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
auto
output_data
=
auto
output_data
=
output
->
mutable_data
<
T
>
(
ctx
.
GetPlace
(),
handler
.
GetDstMemorySize
());
output
->
mutable_data
<
T
>
(
ctx
.
GetPlace
(),
handler
.
GetDstMemorySize
());
auto
residual_data_tz
=
auto
residual_data_tz
=
paddle
::
framework
::
vectorize
2int
(
residual_param
->
dims
());
paddle
::
framework
::
vectorize
<
int
>
(
residual_param
->
dims
());
auto
residual_data_type
=
auto
residual_data_type
=
paddle
::
framework
::
ToMKLDNNDataType
(
residual_param
->
type
());
paddle
::
framework
::
ToMKLDNNDataType
(
residual_param
->
type
());
...
@@ -405,13 +404,12 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
...
@@ -405,13 +404,12 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
const
T
*
input_data
=
input
->
data
<
T
>
();
const
T
*
input_data
=
input
->
data
<
T
>
();
std
::
vector
<
int
>
src_tz
=
paddle
::
framework
::
vectorize2int
(
input
->
dims
());
auto
src_tz
=
paddle
::
framework
::
vectorize
<
int
>
(
input
->
dims
());
std
::
vector
<
int
>
weights_tz
=
auto
weights_tz
=
paddle
::
framework
::
vectorize
<
int
>
(
filter
->
dims
());
paddle
::
framework
::
vectorize2int
(
filter
->
dims
());
int
g
=
std
::
max
(
groups
,
1
);
int
g
=
std
::
max
(
groups
,
1
);
GetWeightsTz
(
weights_tz
,
g
,
is_conv3d
);
GetWeightsTz
(
weights_tz
,
g
,
is_conv3d
);
std
::
vector
<
int
>
dst_tz
=
paddle
::
framework
::
vectorize2int
(
output
->
dims
());
auto
dst_tz
=
paddle
::
framework
::
vectorize
<
int
>
(
output
->
dims
());
mkldnn
::
memory
::
data_type
src_dt
=
mkldnn
::
memory
::
data_type
src_dt
=
paddle
::
framework
::
ToMKLDNNDataType
(
input
->
type
());
paddle
::
framework
::
ToMKLDNNDataType
(
input
->
type
());
...
@@ -514,7 +512,7 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
...
@@ -514,7 +512,7 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
:
mkldnn
::
prop_kind
::
forward_training
;
:
mkldnn
::
prop_kind
::
forward_training
;
if
(
bias
)
{
if
(
bias
)
{
bias_tz
=
paddle
::
framework
::
vectorize
2int
(
bias
->
dims
());
bias_tz
=
paddle
::
framework
::
vectorize
<
int
>
(
bias
->
dims
());
auto
bias_md
=
platform
::
MKLDNNMemDesc
(
bias_tz
,
memory
::
data_type
::
s32
,
auto
bias_md
=
platform
::
MKLDNNMemDesc
(
bias_tz
,
memory
::
data_type
::
s32
,
MKLDNNMemoryFormat
::
x
);
MKLDNNMemoryFormat
::
x
);
conv_pd
=
handler
->
AcquireConvolutionPrimitiveDescriptor
(
conv_pd
=
handler
->
AcquireConvolutionPrimitiveDescriptor
(
...
@@ -554,7 +552,7 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
...
@@ -554,7 +552,7 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
paddle
::
framework
::
ToMKLDNNDataType
(
residual_param
->
type
());
paddle
::
framework
::
ToMKLDNNDataType
(
residual_param
->
type
());
if
(
residual_param
->
format
()
!=
handler
->
GetDstFormat
())
{
if
(
residual_param
->
format
()
!=
handler
->
GetDstFormat
())
{
auto
residual_data_tz
=
auto
residual_data_tz
=
paddle
::
framework
::
vectorize
2int
(
residual_param
->
dims
());
paddle
::
framework
::
vectorize
<
int
>
(
residual_param
->
dims
());
auto
user_residual_md
=
platform
::
MKLDNNMemDesc
(
auto
user_residual_md
=
platform
::
MKLDNNMemDesc
(
residual_data_tz
,
residual_dt
,
residual_param
->
format
());
residual_data_tz
,
residual_dt
,
residual_param
->
format
());
dst_memory_p
=
platform
::
SetDstMemory
<
T_out
>
(
dst_memory_p
=
platform
::
SetDstMemory
<
T_out
>
(
...
@@ -705,13 +703,11 @@ class ConvMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
...
@@ -705,13 +703,11 @@ class ConvMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
T
*
input_grad_data
=
nullptr
;
T
*
input_grad_data
=
nullptr
;
T
*
filter_grad_data
=
nullptr
;
T
*
filter_grad_data
=
nullptr
;
std
::
vector
<
int
>
src_tz
=
paddle
::
framework
::
vectorize2int
(
input
->
dims
());
auto
src_tz
=
paddle
::
framework
::
vectorize
<
int
>
(
input
->
dims
());
std
::
vector
<
int
>
weights_tz
=
auto
weights_tz
=
paddle
::
framework
::
vectorize
<
int
>
(
filter
->
dims
());
paddle
::
framework
::
vectorize2int
(
filter
->
dims
());
int
g
=
std
::
max
(
groups
,
1
);
int
g
=
std
::
max
(
groups
,
1
);
GetWeightsTz
(
weights_tz
,
g
,
is_conv3d
);
GetWeightsTz
(
weights_tz
,
g
,
is_conv3d
);
std
::
vector
<
int
>
dst_tz
=
auto
dst_tz
=
paddle
::
framework
::
vectorize
<
int
>
(
output_grad
->
dims
());
paddle
::
framework
::
vectorize2int
(
output_grad
->
dims
());
auto
src_format
=
input
->
format
();
auto
src_format
=
input
->
format
();
MKLDNNMemoryFormat
weights_format
=
MKLDNNMemoryFormat
weights_format
=
GetWeightsFormat
(
filter
->
format
(),
g
,
is_conv3d
);
GetWeightsFormat
(
filter
->
format
(),
g
,
is_conv3d
);
...
...
paddle/fluid/operators/mkldnn/conv_transpose_mkldnn_op.cc
浏览文件 @
8d6d95cc
...
@@ -82,10 +82,10 @@ class ConvTransposeMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
...
@@ -82,10 +82,10 @@ class ConvTransposeMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
const
T
*
input_data
=
input
->
data
<
T
>
();
const
T
*
input_data
=
input
->
data
<
T
>
();
const
T
*
filter_data
=
filter
->
data
<
T
>
();
const
T
*
filter_data
=
filter
->
data
<
T
>
();
std
::
vector
<
int
>
src_tz
=
paddle
::
framework
::
vectorize2int
(
input
->
dims
());
auto
src_tz
=
paddle
::
framework
::
vectorize
<
int
>
(
input
->
dims
());
std
::
vector
<
int
>
iohw_weights_tz
=
auto
iohw_weights_tz
=
paddle
::
framework
::
vectorize
<
int
>
(
filter
->
dims
());
paddle
::
framework
::
vectorize2int
(
filter
->
dims
())
;
auto
weights_tz
=
iohw_weights_tz
;
std
::
vector
<
int
>
weights_tz
=
iohw_weights_tz
;
// IOHW -> OIHW
// IOHW -> OIHW
weights_tz
[
0
]
=
iohw_weights_tz
[
1
];
weights_tz
[
0
]
=
iohw_weights_tz
[
1
];
weights_tz
[
1
]
=
iohw_weights_tz
[
0
];
weights_tz
[
1
]
=
iohw_weights_tz
[
0
];
...
@@ -124,7 +124,7 @@ class ConvTransposeMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
...
@@ -124,7 +124,7 @@ class ConvTransposeMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
weights_tz
[
3
]
=
h
;
weights_tz
[
3
]
=
h
;
weights_tz
[
4
]
=
w
;
weights_tz
[
4
]
=
w
;
}
}
std
::
vector
<
int
>
dst_tz
=
paddle
::
framework
::
vectorize2int
(
output
->
dims
());
auto
dst_tz
=
paddle
::
framework
::
vectorize
<
int
>
(
output
->
dims
());
// Get unique name for storing MKLDNN primitives
// Get unique name for storing MKLDNN primitives
const
std
::
string
key
=
platform
::
ConvTransposeMKLDNNHandler
::
GetHash
(
const
std
::
string
key
=
platform
::
ConvTransposeMKLDNNHandler
::
GetHash
(
...
@@ -166,7 +166,7 @@ class ConvTransposeMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
...
@@ -166,7 +166,7 @@ class ConvTransposeMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
auto
fwd_prop_kind
=
is_test
?
mkldnn
::
prop_kind
::
forward_inference
auto
fwd_prop_kind
=
is_test
?
mkldnn
::
prop_kind
::
forward_inference
:
mkldnn
::
prop_kind
::
forward_training
;
:
mkldnn
::
prop_kind
::
forward_training
;
if
(
bias
)
{
if
(
bias
)
{
bias_tz
=
paddle
::
framework
::
vectorize
2int
(
bias
->
dims
());
bias_tz
=
paddle
::
framework
::
vectorize
<
int
>
(
bias
->
dims
());
auto
bias_md
=
platform
::
MKLDNNMemDesc
(
auto
bias_md
=
platform
::
MKLDNNMemDesc
(
bias_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
MKLDNNMemoryFormat
::
x
);
bias_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
MKLDNNMemoryFormat
::
x
);
conv_transpose_pd
=
handler
.
AcquireConvolutionPrimitiveDescriptor
(
conv_transpose_pd
=
handler
.
AcquireConvolutionPrimitiveDescriptor
(
...
...
paddle/fluid/operators/mkldnn/dequantize_mkldnn_op.cc
浏览文件 @
8d6d95cc
...
@@ -59,8 +59,8 @@ class DeQuantOpKernel : public framework::OpKernel<T> {
...
@@ -59,8 +59,8 @@ class DeQuantOpKernel : public framework::OpKernel<T> {
std
::
vector
<
float
>
reorder_scale
=
{
1.0
f
/
scale_data
};
std
::
vector
<
float
>
reorder_scale
=
{
1.0
f
/
scale_data
};
std
::
vector
<
primitive
>
pipeline
;
std
::
vector
<
primitive
>
pipeline
;
std
::
vector
<
int
>
src_tz
=
paddle
::
framework
::
vectorize2int
(
input
->
dims
());
auto
src_tz
=
paddle
::
framework
::
vectorize
<
int
>
(
input
->
dims
());
std
::
vector
<
int
>
dst_tz
=
paddle
::
framework
::
vectorize2int
(
output
->
dims
());
auto
dst_tz
=
paddle
::
framework
::
vectorize
<
int
>
(
output
->
dims
());
mkldnn
::
memory
::
data_type
src_dt
=
mkldnn
::
memory
::
data_type
src_dt
=
paddle
::
framework
::
ToMKLDNNDataType
(
input
->
type
());
paddle
::
framework
::
ToMKLDNNDataType
(
input
->
type
());
MKLDNNMemoryFormat
src_fmt
=
input
->
format
();
MKLDNNMemoryFormat
src_fmt
=
input
->
format
();
...
...
paddle/fluid/operators/mkldnn/fc_mkldnn_op.cc
浏览文件 @
8d6d95cc
...
@@ -109,7 +109,7 @@ class FCPrimitiveFactory {
...
@@ -109,7 +109,7 @@ class FCPrimitiveFactory {
static
mkldnn
::
memory
::
desc
CreateMemDescriptor
(
const
Tensor
*
tensor
,
static
mkldnn
::
memory
::
desc
CreateMemDescriptor
(
const
Tensor
*
tensor
,
MKLDNNMemoryFormat
format
)
{
MKLDNNMemoryFormat
format
)
{
auto
dims
=
framework
::
vectorize
2int
(
tensor
->
dims
());
auto
dims
=
framework
::
vectorize
<
int
>
(
tensor
->
dims
());
return
CreateMemDescriptor
(
dims
,
format
);
return
CreateMemDescriptor
(
dims
,
format
);
}
}
...
@@ -124,7 +124,7 @@ class FCPrimitiveFactory {
...
@@ -124,7 +124,7 @@ class FCPrimitiveFactory {
}
}
mkldnn
::
memory
TransposeWeights
(
const
Tensor
*
weights
)
{
mkldnn
::
memory
TransposeWeights
(
const
Tensor
*
weights
)
{
auto
dims
=
framework
::
vectorize
2int
(
weights
->
dims
());
auto
dims
=
framework
::
vectorize
<
int
>
(
weights
->
dims
());
std
::
swap
(
dims
[
0
],
dims
[
1
]);
// Correct output dimensions
std
::
swap
(
dims
[
0
],
dims
[
1
]);
// Correct output dimensions
auto
src_desc
=
CreateMemDescriptor
(
dims
,
MKLDNNMemoryFormat
::
io
);
auto
src_desc
=
CreateMemDescriptor
(
dims
,
MKLDNNMemoryFormat
::
io
);
auto
dst_desc
=
CreateMemDescriptor
(
dims
,
MKLDNNMemoryFormat
::
oi
);
auto
dst_desc
=
CreateMemDescriptor
(
dims
,
MKLDNNMemoryFormat
::
oi
);
...
@@ -182,8 +182,8 @@ class FCPrimitiveFactory {
...
@@ -182,8 +182,8 @@ class FCPrimitiveFactory {
mkldnn
::
memory
CreateFourDimWeightsMemory
(
const
Tensor
*
input
,
mkldnn
::
memory
CreateFourDimWeightsMemory
(
const
Tensor
*
input
,
const
Tensor
*
weights
)
{
const
Tensor
*
weights
)
{
auto
input_dims
=
framework
::
vectorize
2int
(
input
->
dims
());
auto
input_dims
=
framework
::
vectorize
<
int
>
(
input
->
dims
());
auto
weight_dims
=
framework
::
vectorize
2int
(
weights
->
dims
());
auto
weight_dims
=
framework
::
vectorize
<
int
>
(
weights
->
dims
());
auto
dims
=
{
weight_dims
[
1
],
input_dims
[
1
],
input_dims
[
2
],
input_dims
[
3
]};
auto
dims
=
{
weight_dims
[
1
],
input_dims
[
1
],
input_dims
[
2
],
input_dims
[
3
]};
auto
dst_format
=
MatchWeightFormat
(
input
->
format
());
auto
dst_format
=
MatchWeightFormat
(
input
->
format
());
...
...
paddle/fluid/operators/mkldnn/lrn_mkldnn_op.cc
浏览文件 @
8d6d95cc
...
@@ -56,7 +56,7 @@ class LRNMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
...
@@ -56,7 +56,7 @@ class LRNMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
auto
e_mid
=
framework
::
EigenTensor
<
T
,
4
>::
From
(
*
mid
);
auto
e_mid
=
framework
::
EigenTensor
<
T
,
4
>::
From
(
*
mid
);
e_mid
=
e_mid
.
constant
(
k
);
e_mid
=
e_mid
.
constant
(
k
);
auto
dims
=
paddle
::
framework
::
vectorize
2int
(
x
->
dims
());
auto
dims
=
paddle
::
framework
::
vectorize
<
int
>
(
x
->
dims
());
// Format and dims are assumed to be the same for dst and src
// Format and dims are assumed to be the same for dst and src
auto
md
=
paddle
::
platform
::
MKLDNNMemDesc
(
auto
md
=
paddle
::
platform
::
MKLDNNMemDesc
(
...
@@ -119,7 +119,7 @@ class LRNMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
...
@@ -119,7 +119,7 @@ class LRNMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
auto
x_grad_data
=
x_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
x_grad_data
=
x_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
out_grad_data
=
out_grad
->
data
<
T
>
();
auto
out_grad_data
=
out_grad
->
data
<
T
>
();
auto
dims
=
paddle
::
framework
::
vectorize
2int
(
x
->
dims
());
auto
dims
=
paddle
::
framework
::
vectorize
<
int
>
(
x
->
dims
());
const
std
::
string
key
=
platform
::
LRNMKLDNNHandler
::
GetHash
(
const
std
::
string
key
=
platform
::
LRNMKLDNNHandler
::
GetHash
(
dims
,
n
,
alpha
,
beta
,
k
,
x
->
format
(),
ctx
.
op
().
Input
(
"Out"
));
dims
,
n
,
alpha
,
beta
,
k
,
x
->
format
(),
ctx
.
op
().
Input
(
"Out"
));
...
...
paddle/fluid/operators/mkldnn/mul_mkldnn_op.cc
浏览文件 @
8d6d95cc
...
@@ -116,7 +116,7 @@ class MulPrimitiveFactory {
...
@@ -116,7 +116,7 @@ class MulPrimitiveFactory {
memory
::
desc
CreateMemDescriptor
(
memory
::
desc
CreateMemDescriptor
(
const
Tensor
*
tensor
,
MKLDNNMemoryFormat
format
,
const
Tensor
*
tensor
,
MKLDNNMemoryFormat
format
,
memory
::
data_type
type
=
platform
::
MKLDNNGetDataType
<
T
>
())
{
memory
::
data_type
type
=
platform
::
MKLDNNGetDataType
<
T
>
())
{
auto
dims
=
framework
::
vectorize
2int
(
tensor
->
dims
());
auto
dims
=
framework
::
vectorize
<
int
>
(
tensor
->
dims
());
return
platform
::
MKLDNNMemDesc
(
dims
,
type
,
format
);
return
platform
::
MKLDNNMemDesc
(
dims
,
type
,
format
);
}
}
...
@@ -156,7 +156,7 @@ class MulPrimitiveFactory {
...
@@ -156,7 +156,7 @@ class MulPrimitiveFactory {
}
}
memory
TransposeInputY
(
const
Tensor
*
input_y
)
{
memory
TransposeInputY
(
const
Tensor
*
input_y
)
{
auto
dims
=
framework
::
vectorize
2int
(
input_y
->
dims
());
auto
dims
=
framework
::
vectorize
<
int
>
(
input_y
->
dims
());
std
::
swap
(
dims
[
0
],
dims
[
1
]);
// Correct output dimensions
std
::
swap
(
dims
[
0
],
dims
[
1
]);
// Correct output dimensions
auto
src_desc
=
CreateMemDescriptor
<
YT
>
(
dims
,
MKLDNNMemoryFormat
::
io
);
auto
src_desc
=
CreateMemDescriptor
<
YT
>
(
dims
,
MKLDNNMemoryFormat
::
io
);
auto
dst_desc
=
CreateMemDescriptor
<
YT
>
(
dims
,
MKLDNNMemoryFormat
::
oi
);
auto
dst_desc
=
CreateMemDescriptor
<
YT
>
(
dims
,
MKLDNNMemoryFormat
::
oi
);
...
...
paddle/fluid/operators/mkldnn/pool_mkldnn_op.cc
浏览文件 @
8d6d95cc
...
@@ -69,8 +69,8 @@ class PoolMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
...
@@ -69,8 +69,8 @@ class PoolMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
const
T
*
input_data
=
input
->
data
<
T
>
();
const
T
*
input_data
=
input
->
data
<
T
>
();
T
*
output_data
=
output
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
*
output_data
=
output
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
std
::
vector
<
int
>
src_tz
=
paddle
::
framework
::
vectorize2int
(
input
->
dims
());
auto
src_tz
=
paddle
::
framework
::
vectorize
<
int
>
(
input
->
dims
());
std
::
vector
<
int
>
dst_tz
=
paddle
::
framework
::
vectorize2int
(
output
->
dims
());
auto
dst_tz
=
paddle
::
framework
::
vectorize
<
int
>
(
output
->
dims
());
auto
input_format
=
input
->
format
();
auto
input_format
=
input
->
format
();
MKLDNNMemoryFormat
output_format
{
MKLDNNMemoryFormat
::
format_undef
};
MKLDNNMemoryFormat
output_format
{
MKLDNNMemoryFormat
::
format_undef
};
...
@@ -166,10 +166,8 @@ class PoolMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
...
@@ -166,10 +166,8 @@ class PoolMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
T
*
in_x_grad_data
=
in_x_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
*
in_x_grad_data
=
in_x_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
MKLDNNMemoryFormat
in_x_grad_format
{
MKLDNNMemoryFormat
::
format_undef
};
MKLDNNMemoryFormat
in_x_grad_format
{
MKLDNNMemoryFormat
::
format_undef
};
std
::
vector
<
int
>
diff_src_tz
=
auto
diff_src_tz
=
paddle
::
framework
::
vectorize
<
int
>
(
in_x_grad
->
dims
());
paddle
::
framework
::
vectorize2int
(
in_x_grad
->
dims
());
auto
diff_dst_tz
=
paddle
::
framework
::
vectorize
<
int
>
(
out_grad
->
dims
());
std
::
vector
<
int
>
diff_dst_tz
=
paddle
::
framework
::
vectorize2int
(
out_grad
->
dims
());
// Get an unique name from "argument" name of "Out" variable
// Get an unique name from "argument" name of "Out" variable
// This name will be used as key when referring info from device context
// This name will be used as key when referring info from device context
...
...
paddle/fluid/operators/mkldnn/quantize_mkldnn_op.cc
浏览文件 @
8d6d95cc
...
@@ -54,8 +54,8 @@ class QuantOpKernel : public framework::OpKernel<T> {
...
@@ -54,8 +54,8 @@ class QuantOpKernel : public framework::OpKernel<T> {
const
auto
&
engine
=
dev_ctx
.
GetEngine
();
const
auto
&
engine
=
dev_ctx
.
GetEngine
();
std
::
vector
<
primitive
>
pipeline
;
std
::
vector
<
primitive
>
pipeline
;
std
::
vector
<
int
>
src_tz
=
paddle
::
framework
::
vectorize2int
(
input
->
dims
());
auto
src_tz
=
paddle
::
framework
::
vectorize
<
int
>
(
input
->
dims
());
std
::
vector
<
int
>
dst_tz
=
paddle
::
framework
::
vectorize2int
(
output
->
dims
());
auto
dst_tz
=
paddle
::
framework
::
vectorize
<
int
>
(
output
->
dims
());
const
T
*
input_data
=
input
->
data
<
T
>
();
const
T
*
input_data
=
input
->
data
<
T
>
();
...
...
paddle/fluid/operators/mkldnn/requantize_mkldnn_op.cc
浏览文件 @
8d6d95cc
...
@@ -43,8 +43,8 @@ class ReQuantOpKernel : public framework::OpKernel<T> {
...
@@ -43,8 +43,8 @@ class ReQuantOpKernel : public framework::OpKernel<T> {
const
auto
&
engine
=
dev_ctx
.
GetEngine
();
const
auto
&
engine
=
dev_ctx
.
GetEngine
();
std
::
vector
<
primitive
>
pipeline
;
std
::
vector
<
primitive
>
pipeline
;
std
::
vector
<
int
>
src_tz
=
paddle
::
framework
::
vectorize2int
(
input
->
dims
());
auto
src_tz
=
paddle
::
framework
::
vectorize
<
int
>
(
input
->
dims
());
std
::
vector
<
int
>
dst_tz
=
paddle
::
framework
::
vectorize2int
(
output
->
dims
());
auto
dst_tz
=
paddle
::
framework
::
vectorize
<
int
>
(
output
->
dims
());
mkldnn
::
memory
::
data_type
src_dt
=
mkldnn
::
memory
::
data_type
src_dt
=
paddle
::
framework
::
ToMKLDNNDataType
(
input
->
type
());
paddle
::
framework
::
ToMKLDNNDataType
(
input
->
type
());
mkldnn
::
memory
::
data_type
dst_dt
=
src_dt
;
mkldnn
::
memory
::
data_type
dst_dt
=
src_dt
;
...
...
paddle/fluid/operators/mkldnn/softmax_mkldnn_op.cc
浏览文件 @
8d6d95cc
...
@@ -199,8 +199,8 @@ class SoftmaxMKLDNNKernel : public paddle::framework::OpKernel<T> {
...
@@ -199,8 +199,8 @@ class SoftmaxMKLDNNKernel : public paddle::framework::OpKernel<T> {
const
T
*
input_data
=
flattened_input
.
data
<
T
>
();
const
T
*
input_data
=
flattened_input
.
data
<
T
>
();
T
*
output_data
=
flattened_output
.
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
*
output_data
=
flattened_output
.
mutable_data
<
T
>
(
ctx
.
GetPlace
());
std
::
vector
<
int
>
src_tz
=
paddle
::
framework
::
vectorize2int
(
flattened_dims
);
auto
src_tz
=
paddle
::
framework
::
vectorize
<
int
>
(
flattened_dims
);
std
::
vector
<
int
>
dst_tz
=
src_tz
;
auto
dst_tz
=
src_tz
;
// Same memory descriptor to be used for input and output
// Same memory descriptor to be used for input and output
memory
::
dims
softmax_tz
=
{
src_tz
[
0
],
src_tz
[
1
]};
memory
::
dims
softmax_tz
=
{
src_tz
[
0
],
src_tz
[
1
]};
// Generate keys for storing/retriving primitives for this operator
// Generate keys for storing/retriving primitives for this operator
...
@@ -268,8 +268,8 @@ class SoftmaxMKLDNNGradKernel : public paddle::framework::OpKernel<T> {
...
@@ -268,8 +268,8 @@ class SoftmaxMKLDNNGradKernel : public paddle::framework::OpKernel<T> {
const
T
*
diff_dst_ptr
=
flattened_dout
.
template
data
<
T
>();
const
T
*
diff_dst_ptr
=
flattened_dout
.
template
data
<
T
>();
T
*
diff_src_ptr
=
flattened_dx
.
template
mutable_data
<
T
>(
ctx
.
GetPlace
());
T
*
diff_src_ptr
=
flattened_dx
.
template
mutable_data
<
T
>(
ctx
.
GetPlace
());
std
::
vector
<
int
>
dst_tz
=
paddle
::
framework
::
vectorize2int
(
flattened_dims
);
auto
dst_tz
=
paddle
::
framework
::
vectorize
<
int
>
(
flattened_dims
);
std
::
vector
<
int
>
src_tz
(
dst_tz
);
auto
src_tz
(
dst_tz
);
// Same memory descriptor to be used for input and output
// Same memory descriptor to be used for input and output
memory
::
dims
softmax_tz
=
{
src_tz
[
0
],
src_tz
[
1
]};
memory
::
dims
softmax_tz
=
{
src_tz
[
0
],
src_tz
[
1
]};
...
...
paddle/fluid/operators/mkldnn/sum_mkldnn_op.cc
浏览文件 @
8d6d95cc
...
@@ -63,7 +63,7 @@ class SumMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
...
@@ -63,7 +63,7 @@ class SumMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
LoDTensor
*
output
=
ctx
.
Output
<
LoDTensor
>
(
"Out"
);
LoDTensor
*
output
=
ctx
.
Output
<
LoDTensor
>
(
"Out"
);
T
*
output_data
=
output
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
*
output_data
=
output
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
std
::
vector
<
int
>
dst_tz
=
framework
::
vectorize2int
(
output
->
dims
());
auto
dst_tz
=
framework
::
vectorize
<
int
>
(
output
->
dims
());
auto
src_tz
=
dst_tz
;
auto
src_tz
=
dst_tz
;
MKLDNNMemoryFormat
output_format
{
MKLDNNMemoryFormat
::
format_undef
};
MKLDNNMemoryFormat
output_format
{
MKLDNNMemoryFormat
::
format_undef
};
std
::
vector
<
float
>
scales
;
std
::
vector
<
float
>
scales
;
...
...
paddle/fluid/operators/mkldnn/transpose_mkldnn_op.cc
浏览文件 @
8d6d95cc
...
@@ -43,7 +43,7 @@ class TransposeMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
...
@@ -43,7 +43,7 @@ class TransposeMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
return
;
return
;
}
}
std
::
vector
<
int
>
nchw_tz
=
paddle
::
framework
::
vectorize2int
(
input
->
dims
());
auto
nchw_tz
=
paddle
::
framework
::
vectorize
<
int
>
(
input
->
dims
());
const
std
::
string
key
=
platform
::
TransposeMKLDNNHandler
::
GetHash
(
const
std
::
string
key
=
platform
::
TransposeMKLDNNHandler
::
GetHash
(
nchw_tz
,
axis
,
nchw_tz
,
axis
,
...
@@ -97,8 +97,7 @@ class TransposeMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
...
@@ -97,8 +97,7 @@ class TransposeMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
const
T
*
out_grad_data
=
out_grad
->
data
<
T
>
();
const
T
*
out_grad_data
=
out_grad
->
data
<
T
>
();
x_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
x_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
std
::
vector
<
int
>
nchw_tz
=
auto
nchw_tz
=
paddle
::
framework
::
vectorize
<
int
>
(
out_grad
->
dims
());
paddle
::
framework
::
vectorize2int
(
out_grad
->
dims
());
const
std
::
string
key
=
platform
::
TransposeMKLDNNHandler
::
GetHash
(
const
std
::
string
key
=
platform
::
TransposeMKLDNNHandler
::
GetHash
(
nchw_tz
,
axis
,
ctx
.
op
().
Output
(
framework
::
GradVarName
(
"X"
)));
nchw_tz
,
axis
,
ctx
.
op
().
Output
(
framework
::
GradVarName
(
"X"
)));
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录