未验证 提交 8c8c6d9d 编写于 作者: W Wang Xin 提交者: GitHub

add autogen code support for margin_cross_entropy (#52130)

上级 ad9b88ad
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/infermeta/backward.h"
#include "paddle/phi/infermeta/binary.h"
namespace paddle {
namespace operators {
class MarginCrossEntropyOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
phi::KernelKey GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
return phi::KernelKey(
OperatorWithKernel::IndicateVarDataType(ctx, "Logits"),
ctx.device_context().GetPlace());
}
};
class MarginCrossEntropyOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() {
AddInput("Logits",
"(Tensor, default: Tensor<float>), The input tensor of unscaled "
"log probabilities, whose dimension :attr:`axis` should be scaled "
"by softmax.");
AddInput(
"Label",
"(Tensor) The input tensor of groud truth label. Label is a "
"Tensor<int64> in same shape with Input(Logits) except the shape in "
"dimension :attr:`axis` as 1.");
AddOutput(
"Softmax",
"(Tensor, default: Tensor<float>), A tensor in same shape with "
"Input(Logits). "
"The outputs value of softmax activation by given the input batch, "
"which will be used in backward calculation.");
AddOutput("Loss",
"(Tensor, default: Tensor<float>), A tensor in same shape with "
"Input(Logits) "
"except the shape in dimension :attr:`axis` as 1. The cross "
"entropy loss.");
AddAttr<bool>("return_softmax",
"(bool default false) A flag to indicate "
"whether to return softmax.")
.SetDefault(false);
AddAttr<int>("ring_id", "(int default 0) nccl communication ring id.")
.SetDefault(0);
AddAttr<int>("rank", "(int default 0) rank id for MarginCrossEntropy.")
.SetDefault(0);
AddAttr<int>("nranks", "(int default 1) nranks id for MarginCrossEntropy.")
.SetDefault(1);
AddAttr<float>("margin1", "(float default 1.0) margin1 for MarginLoss.")
.SetDefault(1.0);
AddAttr<float>("margin2", "(float default 0.5) margin2 for MarginLoss.")
.SetDefault(0.5);
AddAttr<float>("margin3", "(float default 0.0) margin3 for MarginLoss.")
.SetDefault(0.0);
AddAttr<float>("scale", "(float default 64.0) scale for MarginLoss.")
.SetDefault(64.0);
AddComment(R"DOC(
MarginCrossEntropy Operator
.. math::
L=-\frac{1}{N}\sum^N_{i=1}\log\frac{e^{s(cos(m_{1}\theta_{y_i}+m_{2})-m_{3})}}{e^{s(cos(m_{1}\theta_{y_i}+m_{2})-m_{3})}+\sum^n_{j=1,j\neq y_i} e^{scos\theta_{y_i}}}
where the :math: `\theta_{y_i}` is the angle between the feature :math: `x` and
the representation of class :math: `i`. The details of ArcFace loss
could be referred to https://arxiv.org/abs/1801.07698.
Note that the Op supports model parallel and single GPU. And Logits.shape[-1] can be different each rank.
)DOC");
}
};
class MarginCrossEntropyOpGrad : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
phi::KernelKey GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
return phi::KernelKey(OperatorWithKernel::IndicateVarDataType(
ctx, framework::GradVarName("Loss")),
ctx.device_context().GetPlace());
}
};
template <typename T>
class MarginCrossEntropyOpGradMaker : public framework::SingleGradOpMaker<T> {
public:
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
protected:
void Apply(GradOpPtr<T> op) const override {
op->SetType("margin_cross_entropy_grad");
op->SetInput("Softmax", this->Output("Softmax"));
op->SetInput("Logits", this->Input("Logits"));
op->SetInput("Label", this->Input("Label"));
op->SetInput(framework::GradVarName("Loss"), this->OutputGrad("Loss"));
op->SetAttrMap(this->Attrs());
op->SetOutput(framework::GradVarName("Logits"), this->InputGrad("Logits"));
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
DECLARE_INFER_SHAPE_FUNCTOR(margin_cross_entropy,
MarginCrossEntropyInferShapeFunctor,
PD_INFER_META(phi::MarginCrossEntropyInferMeta));
REGISTER_OPERATOR(
margin_cross_entropy,
ops::MarginCrossEntropyOp,
ops::MarginCrossEntropyOpMaker,
ops::MarginCrossEntropyOpGradMaker<paddle::framework::OpDesc>,
ops::MarginCrossEntropyOpGradMaker<paddle::imperative::OpBase>,
MarginCrossEntropyInferShapeFunctor);
DECLARE_INFER_SHAPE_FUNCTOR(
margin_cross_entropy_grad,
MarginCrossEntropyGradInferShapeFunctor,
PD_INFER_META(phi::MarginCrossEntropyGradInferMeta));
REGISTER_OPERATOR(margin_cross_entropy_grad,
ops::MarginCrossEntropyOpGrad,
MarginCrossEntropyGradInferShapeFunctor);
......@@ -932,6 +932,17 @@
kernel :
func : lu_unpack_grad
- backward_op : margin_cross_entropy_grad
forward : margin_cross_entropy (Tensor logits, Tensor label, bool return_softmax=false, int ring_id=0, int rank=0, int nranks=1, float margin1=1.0f, float margin2=0.5f, float margin3=0.0f, float scale=64.0f) -> Tensor(softmax), Tensor(loss)
args : (Tensor logits, Tensor label, Tensor softmax, Tensor loss_grad, bool return_softmax, int ring_id, int rank, int nranks, float margin1, float margin2, float margin3, float scale)
output : Tensor(logits_grad)
infer_meta :
func : MarginCrossEntropyGradInferMeta
kernel :
func : margin_cross_entropy_grad
data_type : softmax
inplace : (softmax -> logits_grad)
- backward_op : masked_select_grad
forward : masked_select (Tensor x, Tensor mask) -> Tensor(out)
args : (Tensor x, Tensor mask, Tensor out_grad)
......
......@@ -651,17 +651,6 @@
kernel :
func : lu_grad
- backward_op : margin_cross_entropy_grad
forward : margin_cross_entropy (Tensor logits, Tensor label, bool return_softmax, int ring_id, int rank, int nranks, float margin1, float margin2, float margin3, float scale) -> Tensor(softmax), Tensor(loss)
args : (Tensor logits, Tensor label, Tensor softmax, Tensor loss_grad, bool return_softmax, int ring_id, int rank, int nranks, float margin1, float margin2, float margin3, float scale)
output : Tensor(logits_grad)
infer_meta :
func : MarginCrossEntropyGradInferMeta
kernel :
func : margin_cross_entropy_grad
data_type : softmax
inplace : (softmax -> logits_grad)
- backward_op : matmul_double_grad
forward : matmul_grad (Tensor x, Tensor y, Tensor grad_out, bool transpose_x=false, bool transpose_y=false) -> Tensor(grad_x), Tensor(grad_y)
args : (Tensor x, Tensor y, Tensor grad_out, Tensor grad_x_grad, Tensor grad_y_grad, bool transpose_x=false, bool transpose_y=false)
......
......@@ -972,16 +972,6 @@
func : lu
backward : lu_grad
- op : margin_cross_entropy
args : (Tensor logits, Tensor label, bool return_softmax, int ring_id, int rank, int nranks, float margin1, float margin2, float margin3, float scale)
output : Tensor(softmax), Tensor(loss)
infer_meta :
func : MarginCrossEntropyInferMeta
kernel :
func : margin_cross_entropy
data_type : logits
backward : margin_cross_entropy_grad
- op : matmul
args : (Tensor x, Tensor y, bool transpose_x = false, bool transpose_y = false)
output : Tensor
......
......@@ -1137,6 +1137,13 @@
outputs :
{pmat : Pmat, l : L, u : U}
- op : margin_cross_entropy
backward : margin_cross_entropy_grad
inputs:
{logits : Logits, label : Label}
outputs:
{softmax : Softmax, loss : Loss}
- op : masked_select
inputs :
{x : X, mask : Mask}
......
......@@ -933,6 +933,16 @@
data_type : x
backward : lu_unpack_grad
- op : margin_cross_entropy
args : (Tensor logits, Tensor label, bool return_softmax = false, int ring_id = 0, int rank = 0, int nranks = 1, float margin1 = 1.0f, float margin2 = 0.5f, float margin3 = 0.0f, float scale = 64.0f)
output : Tensor(softmax), Tensor(loss)
infer_meta :
func : MarginCrossEntropyInferMeta
kernel :
func : margin_cross_entropy
data_type : logits
backward : margin_cross_entropy_grad
- op : masked_select
args : (Tensor x, Tensor mask)
output : Tensor (out)
......
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/core/compat/op_utils.h"
namespace phi {
KernelSignature MarginCrossEntropyOpArgumentMapping(
const ArgumentMappingContext& ctx) {
return KernelSignature("margin_cross_entropy",
{"Logits", "Label"},
{"return_softmax",
"ring_id",
"rank",
"nranks",
"margin1",
"margin2",
"margin3",
"scale"},
{"Softmax", "Loss"});
}
KernelSignature MarginCrossEntropyGradOpArgumentMapping(
const ArgumentMappingContext& ctx) {
return KernelSignature("margin_cross_entropy_grad",
{"Logits", "Label", "Softmax", "Loss@GRAD"},
{"return_softmax",
"ring_id",
"rank",
"nranks",
"margin1",
"margin2",
"margin3",
"scale"},
{"Logits@GRAD"});
}
} // namespace phi
PD_REGISTER_ARG_MAPPING_FN(margin_cross_entropy,
phi::MarginCrossEntropyOpArgumentMapping);
PD_REGISTER_ARG_MAPPING_FN(margin_cross_entropy_grad,
phi::MarginCrossEntropyGradOpArgumentMapping);
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册