未验证 提交 8c7e4119 编写于 作者: A Aurelius84 提交者: GitHub

Remove constraint that last dimension is forced to be 1 by adding one_hot_v2 (#19716)

* add one_hot_v2_op to remove last_dims==1 test=develop

* add api unittest code for CI_Coverage test=develop

* improve CI_Coverage rate by adding test_with_depth test=develop
上级 e352467c
...@@ -108,6 +108,7 @@ paddle.fluid.initializer.force_init_on_cpu (ArgSpec(args=[], varargs=None, keywo ...@@ -108,6 +108,7 @@ paddle.fluid.initializer.force_init_on_cpu (ArgSpec(args=[], varargs=None, keywo
paddle.fluid.initializer.init_on_cpu (ArgSpec(args=[], varargs=None, keywords=None, defaults=None), ('document', 'eaa04fd68661a3af59abd0e19b3b6eda')) paddle.fluid.initializer.init_on_cpu (ArgSpec(args=[], varargs=None, keywords=None, defaults=None), ('document', 'eaa04fd68661a3af59abd0e19b3b6eda'))
paddle.fluid.initializer.NumpyArrayInitializer ('paddle.fluid.initializer.NumpyArrayInitializer', ('document', '064f134a27c16372967d450f499762ab')) paddle.fluid.initializer.NumpyArrayInitializer ('paddle.fluid.initializer.NumpyArrayInitializer', ('document', '064f134a27c16372967d450f499762ab'))
paddle.fluid.initializer.NumpyArrayInitializer.__init__ (ArgSpec(args=['self', 'value'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754')) paddle.fluid.initializer.NumpyArrayInitializer.__init__ (ArgSpec(args=['self', 'value'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.input.one_hot (ArgSpec(args=['input', 'depth', 'allow_out_of_range'], varargs=None, keywords=None, defaults=(False,)), ('document', 'c79292312a35b99ff2801a274b666358'))
paddle.fluid.layers.fc (ArgSpec(args=['input', 'size', 'num_flatten_dims', 'param_attr', 'bias_attr', 'act', 'name'], varargs=None, keywords=None, defaults=(1, None, None, None, None)), ('document', '0dc8181f14a33f91fbae9385a9b3d9fd')) paddle.fluid.layers.fc (ArgSpec(args=['input', 'size', 'num_flatten_dims', 'param_attr', 'bias_attr', 'act', 'name'], varargs=None, keywords=None, defaults=(1, None, None, None, None)), ('document', '0dc8181f14a33f91fbae9385a9b3d9fd'))
paddle.fluid.layers.center_loss (ArgSpec(args=['input', 'label', 'num_classes', 'alpha', 'param_attr', 'update_center'], varargs=None, keywords=None, defaults=(True,)), ('document', '7129819d94625c6104054e8187768589')) paddle.fluid.layers.center_loss (ArgSpec(args=['input', 'label', 'num_classes', 'alpha', 'param_attr', 'update_center'], varargs=None, keywords=None, defaults=(True,)), ('document', '7129819d94625c6104054e8187768589'))
paddle.fluid.layers.embedding (ArgSpec(args=['input', 'size', 'is_sparse', 'is_distributed', 'padding_idx', 'param_attr', 'dtype'], varargs=None, keywords=None, defaults=(False, False, None, None, 'float32')), ('document', 'd8e405486a1e4e189b51d6ee28d67b1e')) paddle.fluid.layers.embedding (ArgSpec(args=['input', 'size', 'is_sparse', 'is_distributed', 'padding_idx', 'param_attr', 'dtype'], varargs=None, keywords=None, defaults=(False, False, None, None, 'float32')), ('document', 'd8e405486a1e4e189b51d6ee28d67b1e'))
......
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/one_hot_v2_op.h"
#include <string>
#include <vector>
#include "paddle/fluid/framework/framework.pb.h"
namespace paddle {
namespace operators {
class OneHotV2Op : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
"Input(X) of OneHotOp should not be null.");
PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
"Output(Out) of OneHotOp should not be null.");
auto x_dims = ctx->GetInputDim("X");
PADDLE_ENFORCE_GE(x_dims.size(), 1,
"Rank of Input(X) should be at least 1.");
int depth = ctx->Attrs().Get<int>("depth");
if (ctx->HasInput("depth_tensor")) {
depth = -1;
}
auto out_dims_vec = framework::vectorize(x_dims);
out_dims_vec.push_back(depth);
auto out_dims = framework::make_ddim(out_dims_vec);
ctx->SetOutputDim("Out", out_dims);
ctx->ShareLoD("X", /* --> */ "Out");
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
return framework::OpKernelType(ctx.Input<Tensor>("X")->type(),
ctx.device_context());
}
framework::OpKernelType GetKernelTypeForVar(
const std::string& var_name, const Tensor& tensor,
const framework::OpKernelType& expected_kernel_type) const override {
if (var_name == "depth_tensor") {
return expected_kernel_type;
}
return framework::OpKernelType(expected_kernel_type.data_type_,
tensor.place(), tensor.layout());
}
};
class OneHotV2OpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("X",
"(LoDTensor, LoDTensor<int>) Input variable with rank at least 2. "
"The last dimension of X should be 1. Each value of X is an index "
"to indicate the position.");
AddInput("depth_tensor", "(Tensor, Tensor<int>), Length of one-hot vector")
.AsDispensable();
AddOutput("Out",
"(Tensor, Tensor<float>) Output tensor with same rank as X. "
"The tensor consists of one-hot representations of values in X.");
AddAttr<int>("depth",
"A positive integer to specify the length of one-hot vector.")
.SetDefault(-1);
AddAttr<int>("dtype",
"An integer to specify the data type of one-hot "
"vector. The default value is FP32.")
.SetDefault(paddle::framework::proto::VarType::FP32);
AddAttr<bool>("allow_out_of_range",
"If it is set true and the input data is out of range, "
"the output tensor will be filled zeros. The default value "
"is false.")
.SetDefault(false);
AddComment(R"DOC(
One Hot Operator. This operator creates the one-hot representations for input
index values. The following example will help to explain the function of this
operator:
X is a LoDTensor:
X.lod = [[0, 1, 4]]
X.shape = [4]
X.data = [1, 1, 3, 0]
set depth = 4
Out is a LoDTensor:
Out.lod = [[0, 1, 4]]
Out.shape = [4, 4]
Out.data = [[0., 1., 0., 0.],
[0., 1., 0., 0.],
[0., 0., 0., 1.],
[1., 0., 0., 0.]]
)DOC");
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(one_hot_v2, ops::OneHotV2Op, ops::OneHotV2OpMaker,
paddle::framework::EmptyGradOpMaker);
REGISTER_OP_CPU_KERNEL(
one_hot_v2, ops::OneHotV2Kernel<paddle::platform::CPUDeviceContext, int>,
ops::OneHotV2Kernel<paddle::platform::CPUDeviceContext, int64_t>);
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/one_hot_v2_op.h"
#include "paddle/fluid/platform/cuda_primitives.h"
#include "paddle/fluid/platform/gpu_info.h"
namespace paddle {
namespace operators {
using platform::PADDLE_CUDA_NUM_THREADS;
template <typename InT, typename OutT>
__global__ void FillOutputKernel(const InT* p_in_data, OutT* p_out_data,
const int64_t numel, const int depth) {
int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < numel && p_in_data[idx] >= 0 && p_in_data[idx] < depth) {
*(p_out_data + (idx * depth) + p_in_data[idx]) = 1.0;
}
}
template <typename DeviceContext, typename InT>
struct OneHotV2OpCUDAFunctor {
const framework::LoDTensor* in_;
framework::LoDTensor* out_;
const DeviceContext& ctx_;
int depth_;
OneHotV2OpCUDAFunctor(const framework::LoDTensor* in,
framework::LoDTensor* out, int depth,
const DeviceContext& ctx)
: in_(in), out_(out), depth_(depth), ctx_(ctx) {}
template <typename OutT>
void apply() const {
auto* p_in_data = in_->data<InT>();
auto numel = in_->numel();
auto* p_out_data = out_->mutable_data<OutT>(ctx_.GetPlace());
auto stream = ctx_.stream();
math::set_constant(ctx_, out_, 0.0);
FillOutputKernel<<<(numel + PADDLE_CUDA_NUM_THREADS - 1) /
PADDLE_CUDA_NUM_THREADS,
PADDLE_CUDA_NUM_THREADS, 0, stream>>>(
p_in_data, p_out_data, numel, depth_);
}
};
using LoDTensor = framework::LoDTensor;
template <typename DeviceContext, typename T>
class OneHotV2CUDAKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* in = context.Input<LoDTensor>("X");
auto* out = context.Output<LoDTensor>("Out");
int depth = -1;
if (context.HasInput("depth_tensor")) {
auto* depth_tensor = context.Input<framework::Tensor>("depth_tensor");
if (platform::is_gpu_place(depth_tensor->place())) {
framework::Tensor temp;
TensorCopySync(*depth_tensor, platform::CPUPlace(), &temp);
depth = *temp.data<int32_t>();
} else {
depth = *depth_tensor->data<int32_t>();
}
auto out_dims = out->dims();
out_dims[out_dims.size() - 1] = depth;
out->Resize(out_dims);
} else {
depth = context.Attr<int>("depth");
}
framework::VisitDataType(
static_cast<framework::proto::VarType::Type>(
context.Attr<int>("dtype")),
OneHotV2OpCUDAFunctor<DeviceContext, T>(
in, out, depth, context.template device_context<DeviceContext>()));
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
one_hot_v2,
ops::OneHotV2CUDAKernel<paddle::platform::CUDADeviceContext, int>,
ops::OneHotV2CUDAKernel<paddle::platform::CUDADeviceContext, int64_t>);
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
namespace paddle {
namespace operators {
template <typename DeviceContext, typename InT>
struct OneHotV2OpFunctor {
const framework::LoDTensor* in_;
framework::LoDTensor* out_;
int depth_;
const DeviceContext& ctx_;
bool allow_out_of_range_;
OneHotV2OpFunctor(const framework::LoDTensor* in, framework::LoDTensor* out,
int depth, const DeviceContext& ctx,
bool allow_out_of_range = false)
: in_(in),
out_(out),
depth_(depth),
ctx_(ctx),
allow_out_of_range_(allow_out_of_range) {}
template <typename OutT>
void apply() const {
auto* p_in_data = in_->data<InT>();
auto numel = in_->numel();
auto* p_out_data = out_->mutable_data<OutT>(ctx_.GetPlace());
math::set_constant(ctx_, out_, 0.0);
if (allow_out_of_range_) {
for (int i = 0; i < numel; ++i) {
if (p_in_data[i] >= 0 && p_in_data[i] < depth_) {
*(p_out_data + i * depth_ + p_in_data[i]) = 1.0;
}
}
} else {
for (int i = 0; i < numel; ++i) {
PADDLE_ENFORCE_GE(p_in_data[i], 0,
"Illegal index value, should be at least 0.");
PADDLE_ENFORCE_LT(
p_in_data[i], depth_,
"Illegal index value, should be less than depth (%d).", depth_);
*(p_out_data + i * depth_ + p_in_data[i]) = 1.0;
}
}
}
};
using LoDTensor = framework::LoDTensor;
using Tensor = framework::Tensor;
template <typename DeviceContext, typename T>
class OneHotV2Kernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* in = context.Input<LoDTensor>("X");
auto* out = context.Output<LoDTensor>("Out");
int depth = context.Attr<int>("depth");
bool allow_out_of_range = context.Attr<bool>("allow_out_of_range");
if (context.HasInput("depth_tensor")) {
auto* depth_tensor = context.Input<Tensor>("depth_tensor");
auto* depth_data = depth_tensor->data<int32_t>();
depth = depth_data[0];
auto out_dims = out->dims();
out_dims[out_dims.size() - 1] = depth;
out->Resize(out_dims);
}
framework::VisitDataType(
static_cast<framework::proto::VarType::Type>(
context.Attr<int>("dtype")),
OneHotV2OpFunctor<DeviceContext, T>(
in, out, depth, context.template device_context<DeviceContext>(),
allow_out_of_range));
}
};
} // namespace operators
} // namespace paddle
...@@ -62,6 +62,7 @@ from . import average ...@@ -62,6 +62,7 @@ from . import average
from . import metrics from . import metrics
from . import transpiler from . import transpiler
from . import incubate from . import incubate
from . import input
from . import distribute_lookup_table from . import distribute_lookup_table
from .param_attr import ParamAttr, WeightNormParamAttr from .param_attr import ParamAttr, WeightNormParamAttr
from .data_feeder import DataFeeder from .data_feeder import DataFeeder
...@@ -92,6 +93,7 @@ __all__ = framework.__all__ + executor.__all__ + \ ...@@ -92,6 +93,7 @@ __all__ = framework.__all__ + executor.__all__ + \
data_feed_desc.__all__ + compiler.__all__ + backward.__all__ + [ data_feed_desc.__all__ + compiler.__all__ + backward.__all__ + [
'io', 'io',
'initializer', 'initializer',
'input',
'layers', 'layers',
'contrib', 'contrib',
'dygraph', 'dygraph',
......
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
from .framework import Variable, in_dygraph_mode
from .layer_helper import LayerHelper
__all__ = ['one_hot']
def one_hot(input, depth, allow_out_of_range=False):
"""
This layer creates the one-hot representations for input indices.
Args:
input(Variable): Input indices represent locations, which takes value 1.0
in indices, while all other locations take value 0.
depth(scalar): An interger defining the depth of the one-hot dimension.
allow_out_of_range(bool): A bool value indicating whether the input
indices could be out of range [0, depth). When input indices are
out of range, exceptions is raised if allow_out_of_range is False,
or zero-filling representations is created if it is set True
Returns:
Variable: The one-hot representations of input.
Examples:
.. code-block:: python
import paddle.fluid as fluid
label = fluid.layers.data(name="label", shape=[1], dtype="int64")
one_hot_label = fluid.input.one_hot(input=label, depth=10)
"""
helper = LayerHelper("one_hot_v2", **locals())
one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
if in_dygraph_mode():
inputs = {'X': input}
attrs = {'depth': depth}
else:
if not isinstance(depth, Variable):
# user attribute
inputs = {'X': input}
attrs = {'depth': depth}
else:
depth.stop_gradient = True
inputs = {'X': input, 'depth_tensor': depth}
attrs = {}
helper.append_op(
type="one_hot_v2",
inputs=inputs,
attrs=attrs,
outputs={'Out': one_hot_out},
stop_gradient=True)
return one_hot_out
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
import math
from op_test import OpTest
import paddle.fluid as fluid
import paddle.fluid.core as core
import paddle.fluid.framework as framework
from paddle.fluid.framework import Program, program_guard
class TestOneHotOp(OpTest):
def setUp(self):
self.op_type = 'one_hot_v2'
depth = 10
depth_np = np.array(10).astype('int32')
dimension = 12
x_lod = [[4, 1, 3, 3]]
x = [np.random.randint(0, depth - 1) for i in range(sum(x_lod[0]))]
x = np.array(x).astype('int32').reshape([sum(x_lod[0])])
out = np.zeros(shape=(np.product(x.shape), depth)).astype('float32')
for i in range(np.product(x.shape)):
out[i, x[i]] = 1.0
self.inputs = {'X': (x, x_lod), 'depth_tensor': depth_np}
self.attrs = {'dtype': int(core.VarDesc.VarType.FP32)}
self.outputs = {'Out': (out, x_lod)}
def test_check_output(self):
self.check_output()
class TestOneHotOp_attr(OpTest):
def setUp(self):
self.op_type = 'one_hot_v2'
depth = 10
dimension = 12
x_lod = [[4, 1, 3, 3]]
x = [np.random.randint(0, depth - 1) for i in range(sum(x_lod[0]))]
x = np.array(x).astype('int32').reshape([sum(x_lod[0]), 1])
out = np.zeros(shape=(np.product(x.shape[:-1]), 1,
depth)).astype('float32')
for i in range(np.product(x.shape)):
out[i, 0, x[i]] = 1.0
self.inputs = {'X': (x, x_lod)}
self.attrs = {'dtype': int(core.VarDesc.VarType.FP32), 'depth': depth}
self.outputs = {'Out': (out, x_lod)}
def test_check_output(self):
self.check_output()
class TestOneHotOp_default_dtype(OpTest):
def setUp(self):
self.op_type = 'one_hot_v2'
depth = 10
depth_np = np.array(10).astype('int32')
dimension = 12
x_lod = [[4, 1, 3, 3]]
x = [np.random.randint(0, depth - 1) for i in range(sum(x_lod[0]))]
x = np.array(x).astype('int32').reshape([sum(x_lod[0])])
out = np.zeros(shape=(np.product(x.shape), depth)).astype('float32')
for i in range(np.product(x.shape)):
out[i, x[i]] = 1.0
self.inputs = {'X': (x, x_lod), 'depth_tensor': depth_np}
self.attrs = {}
self.outputs = {'Out': (out, x_lod)}
def test_check_output(self):
self.check_output()
class TestOneHotOp_default_dtype_attr(OpTest):
def setUp(self):
self.op_type = 'one_hot_v2'
depth = 10
dimension = 12
x_lod = [[4, 1, 3, 3]]
x = [np.random.randint(0, depth - 1) for i in range(sum(x_lod[0]))]
x = np.array(x).astype('int32').reshape([sum(x_lod[0]), 1])
out = np.zeros(shape=(np.product(x.shape[:-1]), 1,
depth)).astype('float32')
for i in range(np.product(x.shape)):
out[i, 0, x[i]] = 1.0
self.inputs = {'X': (x, x_lod)}
self.attrs = {'depth': depth}
self.outputs = {'Out': (out, x_lod)}
def test_check_output(self):
self.check_output()
class TestOneHotOp_out_of_range(OpTest):
def setUp(self):
self.op_type = 'one_hot_v2'
depth = 10
x_lod = [[4, 1, 3, 3]]
x = [np.random.choice([-1, depth]) for i in range(sum(x_lod[0]))]
x = np.array(x).astype('int32').reshape([sum(x_lod[0])])
out = np.zeros(shape=(np.product(x.shape), depth)).astype('float32')
self.inputs = {'X': (x, x_lod)}
self.attrs = {'depth': depth, 'allow_out_of_range': True}
self.outputs = {'Out': (out, x_lod)}
def test_check_output(self):
self.check_output()
class TestOneHotOp_exception(OpTest):
def setUp(self):
self.op_type = 'one_hot_v2'
self.depth = 10
self.place = core.CPUPlace()
self.dimension = 12
self.x = core.LoDTensor()
x_lod = [[4, 1, 3, 3]]
data = [np.random.randint(11, 20) for i in range(sum(x_lod[0]))]
data = np.array(data).astype('int').reshape([sum(x_lod[0]), 1])
self.x.set(data, self.place)
self.x.set_recursive_sequence_lengths(x_lod)
def test_check_output(self):
program = Program()
with program_guard(program):
x = fluid.layers.data(
name='x', shape=[self.dimension], dtype='float32', lod_level=1)
block = program.current_block()
one_hot_out = block.create_var(
name="one_hot_out",
type=core.VarDesc.VarType.LOD_TENSOR,
dtype='float32')
block.append_op(
type='one_hot',
inputs={'X': x},
attrs={'depth': self.depth},
outputs={'Out': one_hot_out})
exe = fluid.Executor(self.place)
def run():
exe.run(feed={'x': self.x},
fetch_list=[one_hot_out],
return_numpy=False)
self.assertRaises(core.EnforceNotMet, run)
class TestOneHotOpApi(unittest.TestCase):
def test_api(self):
depth = 10
self._run(depth)
def test_api_with_depthTensor(self):
depth = fluid.layers.assign(input=np.array([10], dtype=np.int32))
self._run(depth)
def test_api_with_dygraph(self):
depth = 10
label = np.array([np.random.randint(0, depth - 1)
for i in range(6)]).reshape([6, 1])
with fluid.dygraph.guard():
one_hot_label = fluid.input.one_hot(
input=fluid.dygraph.to_variable(label), depth=depth)
def _run(self, depth):
label = fluid.layers.data(name="label", shape=[1], dtype="int64")
one_hot_label = fluid.input.one_hot(input=label, depth=depth)
place = fluid.CPUPlace()
label_data = np.array([np.random.randint(0, 10 - 1)
for i in range(6)]).reshape([6, 1])
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
ret = exe.run(feed={'label': label_data, },
fetch_list=[one_hot_label],
return_numpy=False)
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册