Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
8bdb336d
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
8bdb336d
编写于
8月 11, 2023
作者:
U
umiswing
提交者:
GitHub
8月 11, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[Sparse] Fix bugs in parameter freezing (#56154)
* Add enforce for sparse_bn. * Add enforce for sp conv.
上级
e9c0fe03
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
77 addition
and
51 deletion
+77
-51
paddle/phi/kernels/funcs/sparse/convolution.h
paddle/phi/kernels/funcs/sparse/convolution.h
+14
-11
paddle/phi/kernels/sparse/batch_norm_grad_kernel.cc
paddle/phi/kernels/sparse/batch_norm_grad_kernel.cc
+13
-2
paddle/phi/kernels/sparse/gpu/conv_grad_kernel.cu
paddle/phi/kernels/sparse/gpu/conv_grad_kernel.cu
+50
-38
未找到文件。
paddle/phi/kernels/funcs/sparse/convolution.h
浏览文件 @
8bdb336d
...
...
@@ -163,17 +163,20 @@ inline void SubmPreProcess(const Context& dev_ctx,
DenseTensor
*
kernel_grad
,
DenseTensor
*
x_grad
)
{
auto
blas
=
phi
::
funcs
::
GetBlas
<
Context
,
T
>
(
dev_ctx
);
T
*
d_kernel_ptr
=
kernel_grad
->
data
<
T
>
();
blas
.
GEMM
(
CblasTrans
,
CblasNoTrans
,
x
.
non_zero_elements
().
dims
()[
1
],
out_grad
.
dims
()[
1
],
x
.
non_zero_elements
().
dims
()[
0
],
static_cast
<
T
>
(
1
),
x
.
non_zero_elements
().
data
<
T
>
(),
out_grad
.
data
<
T
>
(),
static_cast
<
T
>
(
0
),
d_kernel_ptr
+
half_kernel_size
*
in_channels
*
out_channels
);
const
bool
is_params_freezing
=
kernel_grad
==
nullptr
;
if
(
!
is_params_freezing
)
{
T
*
d_kernel_ptr
=
kernel_grad
->
data
<
T
>
();
blas
.
GEMM
(
CblasTrans
,
CblasNoTrans
,
x
.
non_zero_elements
().
dims
()[
1
],
out_grad
.
dims
()[
1
],
x
.
non_zero_elements
().
dims
()[
0
],
static_cast
<
T
>
(
1
),
x
.
non_zero_elements
().
data
<
T
>
(),
out_grad
.
data
<
T
>
(),
static_cast
<
T
>
(
0
),
d_kernel_ptr
+
half_kernel_size
*
in_channels
*
out_channels
);
}
// call gemm: d_x = out_grad * transpose(kernel)
// (n, out_channels) * (out_channels, in_channels)
...
...
paddle/phi/kernels/sparse/batch_norm_grad_kernel.cc
浏览文件 @
8bdb336d
...
...
@@ -42,8 +42,19 @@ void BatchNormCooGradKernel(const Context& dev_ctx,
DenseTensor
*
scale_grad
,
DenseTensor
*
bias_grad
)
{
EmptyLikeCooKernel
<
T
,
Context
>
(
dev_ctx
,
x
,
x_grad
);
*
scale_grad
=
phi
::
EmptyLike
<
T
,
Context
>
(
dev_ctx
,
scale
);
*
bias_grad
=
phi
::
EmptyLike
<
T
,
Context
>
(
dev_ctx
,
bias
);
// TODO(umiswing): add check for parameter freezing automatically
PADDLE_ENFORCE_EQ
((
scale_grad
==
nullptr
&&
bias_grad
==
nullptr
)
||
(
scale_grad
!=
nullptr
&&
bias_grad
!=
nullptr
),
true
,
phi
::
errors
::
InvalidArgument
(
"Weight and bias's stop_gradient of BatchNorm must be "
"True or False at the same time."
));
if
(
scale_grad
&&
bias_grad
)
{
*
scale_grad
=
phi
::
EmptyLike
<
T
,
Context
>
(
dev_ctx
,
scale
);
*
bias_grad
=
phi
::
EmptyLike
<
T
,
Context
>
(
dev_ctx
,
bias
);
}
phi
::
BatchNormGradKernel
<
T
,
Context
>
(
dev_ctx
,
x
.
values
(),
scale
,
...
...
paddle/phi/kernels/sparse/gpu/conv_grad_kernel.cu
浏览文件 @
8bdb336d
...
...
@@ -56,6 +56,7 @@ void Conv3dCooGradGPUKernel(const GPUContext& dev_ctx,
const
std
::
string
&
key
,
SparseCooTensor
*
x_grad
,
DenseTensor
*
kernel_grad
)
{
const
bool
is_params_freezing
=
kernel_grad
==
nullptr
;
const
auto
&
kernel_dims
=
kernel
.
dims
();
const
bool
is2D
=
kernel_dims
.
size
()
==
4
?
true
:
false
;
const
int
kernel_size
=
...
...
@@ -79,10 +80,13 @@ void Conv3dCooGradGPUKernel(const GPUContext& dev_ctx,
T
*
in_features_ptr
=
in_features
.
data
<
T
>
();
T
*
d_x_features_ptr
=
d_x_features
.
data
<
T
>
();
T
*
out_grad_features_ptr
=
out_grad_features
.
data
<
T
>
();
*
kernel_grad
=
phi
::
EmptyLike
<
T
>
(
dev_ctx
,
kernel
);
T
*
d_kernel_ptr
=
kernel_grad
->
data
<
T
>
();
phi
::
backends
::
gpu
::
GpuMemsetAsync
(
d_kernel_ptr
,
0
,
sizeof
(
T
)
*
kernel_grad
->
numel
(),
dev_ctx
.
stream
());
T
*
d_kernel_ptr
=
nullptr
;
if
(
!
is_params_freezing
)
{
*
kernel_grad
=
phi
::
EmptyLike
<
T
>
(
dev_ctx
,
kernel
);
d_kernel_ptr
=
kernel_grad
->
data
<
T
>
();
phi
::
backends
::
gpu
::
GpuMemsetAsync
(
d_kernel_ptr
,
0
,
sizeof
(
T
)
*
kernel_grad
->
numel
(),
dev_ctx
.
stream
());
}
int
half_kernel_size
=
kernel_size
/
2
;
auto
blas
=
phi
::
funcs
::
GetBlas
<
GPUContext
,
T
>
(
dev_ctx
);
...
...
@@ -184,6 +188,8 @@ void Conv3dCooGradGPUKernel(const GPUContext& dev_ctx,
}
#endif
const
T
*
kernel_ptr
=
kernel
.
data
<
T
>
();
T
*
tmp_d_x_ptr
=
nullptr
;
T
*
tmp_d_kernel_ptr
=
nullptr
;
for
(
int
i
=
0
;
i
<
kernel_size
;
i
++
)
{
if
(
counter_ptr
[
i
]
<=
0
||
(
subm
&&
i
==
half_kernel_size
))
{
continue
;
...
...
@@ -195,8 +201,10 @@ void Conv3dCooGradGPUKernel(const GPUContext& dev_ctx,
T
*
tmp_in_ptr
=
in_features_ptr
+
offsets
[
i
]
*
in_channels
;
T
*
tmp_out_grad_ptr
=
out_grad_features_ptr
+
offsets
[
i
]
*
out_channels
;
const
T
*
tmp_kernel_ptr
=
kernel_ptr
+
i
*
in_channels
*
out_channels
;
T
*
tmp_d_x_ptr
=
d_x_features_ptr
+
offsets
[
i
]
*
in_channels
;
T
*
tmp_d_kernel_ptr
=
d_kernel_ptr
+
i
*
in_channels
*
out_channels
;
tmp_d_x_ptr
=
d_x_features_ptr
+
offsets
[
i
]
*
in_channels
;
if
(
!
is_params_freezing
)
{
tmp_d_kernel_ptr
=
d_kernel_ptr
+
i
*
in_channels
*
out_channels
;
}
#if defined(PADDLE_WITH_CUTLASS) && SPCONV_WITH_CUTLASS
if
(
cutlass
)
{
...
...
@@ -204,26 +212,28 @@ void Conv3dCooGradGPUKernel(const GPUContext& dev_ctx,
const
IntT
*
scatter_x_indices
=
rulebook_ptr
+
offsets
[
i
];
const
IntT
*
gather_out_indices
=
rulebook_ptr
+
rulebook_len
+
offsets
[
i
];
const
size_t
key
=
autotune
::
GenKey
(
M
/
features_num_range
,
N
,
K
);
// call gemm: d_kernel = transpose(x) * out_grad
// (in_channels, n) * (n, out_channels)
static
cutlass
::
device_memory
::
allocation
<
uint8_t
>
workspace
(
workspace_size
);
GatherGemmScatterDriver
<
80
,
true
,
false
>
(
dev_ctx
,
key
,
x
.
values
().
data
<
T
>
(),
out_grad
.
values
().
data
<
T
>
(),
tmp_d_kernel_ptr
,
tmp_d_kernel_ptr
,
in_channels
,
out_channels
,
counter_ptr
[
i
],
gather_x_indices
,
gather_out_indices
,
static_cast
<
const
IntT
*>
(
nullptr
),
static_cast
<
const
T
>
(
1.0
),
static_cast
<
const
T
>
(
0.0
),
&
workspace
);
if
(
!
is_params_freezing
)
{
// call gemm: d_kernel = transpose(x) * out_grad
// (in_channels, n) * (n, out_channels)
static
cutlass
::
device_memory
::
allocation
<
uint8_t
>
workspace
(
workspace_size
);
GatherGemmScatterDriver
<
80
,
true
,
false
>
(
dev_ctx
,
key
,
x
.
values
().
data
<
T
>
(),
out_grad
.
values
().
data
<
T
>
(),
tmp_d_kernel_ptr
,
tmp_d_kernel_ptr
,
in_channels
,
out_channels
,
counter_ptr
[
i
],
gather_x_indices
,
gather_out_indices
,
static_cast
<
const
IntT
*>
(
nullptr
),
static_cast
<
const
T
>
(
1.0
),
static_cast
<
const
T
>
(
0.0
),
&
workspace
);
}
// call gemm: d_x = out_grad * transpose(kernel)
// (n, out_channels) * (out_channels, in_channels)
GatherGemmScatterDriver
<
80
,
false
,
true
>
(
...
...
@@ -244,18 +254,20 @@ void Conv3dCooGradGPUKernel(const GPUContext& dev_ctx,
nullptr
);
}
else
{
#endif
// call gemm: d_kernel = transpose(x) * out_grad
// (in_channels, n) * (n, out_channels)
blas
.
GEMM
(
CblasTrans
,
CblasNoTrans
,
K
,
N
,
M
,
static_cast
<
T
>
(
1
),
tmp_in_ptr
,
tmp_out_grad_ptr
,
static_cast
<
T
>
(
0
),
tmp_d_kernel_ptr
);
if
(
!
is_params_freezing
)
{
// call gemm: d_kernel = transpose(x) * out_grad
// (in_channels, n) * (n, out_channels)
blas
.
GEMM
(
CblasTrans
,
CblasNoTrans
,
K
,
N
,
M
,
static_cast
<
T
>
(
1
),
tmp_in_ptr
,
tmp_out_grad_ptr
,
static_cast
<
T
>
(
0
),
tmp_d_kernel_ptr
);
}
// call gemm: d_x = out_grad * transpose(kernel)
// (n, out_channels) * (out_channels, in_channels)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录