Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
8b8ad6b1
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
8b8ad6b1
编写于
9月 25, 2017
作者:
C
caoying03
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix implementations of supporting soft labels.
上级
bb58b63b
变更
9
隐藏空白更改
内联
并排
Showing
9 changed file
with
272 addition
and
102 deletion
+272
-102
paddle/operators/cross_entropy_op.cu
paddle/operators/cross_entropy_op.cu
+2
-2
paddle/operators/cross_entropy_op.h
paddle/operators/cross_entropy_op.h
+12
-12
paddle/operators/math/softmax.cc
paddle/operators/math/softmax.cc
+1
-1
paddle/operators/math/softmax.h
paddle/operators/math/softmax.h
+2
-2
paddle/operators/softmax_op.h
paddle/operators/softmax_op.h
+1
-1
paddle/operators/softmax_with_cross_entropy_op.cc
paddle/operators/softmax_with_cross_entropy_op.cc
+60
-19
paddle/operators/softmax_with_cross_entropy_op.cu
paddle/operators/softmax_with_cross_entropy_op.cu
+108
-34
paddle/operators/softmax_with_cross_entropy_op.h
paddle/operators/softmax_with_cross_entropy_op.h
+46
-23
python/paddle/v2/framework/tests/test_softmax_with_cross_entropy_op.py
.../v2/framework/tests/test_softmax_with_cross_entropy_op.py
+40
-8
未找到文件。
paddle/operators/cross_entropy_op.cu
浏览文件 @
8b8ad6b1
...
...
@@ -28,7 +28,7 @@ __global__ void CrossEntropyKernel(T* Y, const T* X, const int* label,
for
(
int
i
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
i
<
N
;
i
+=
blockDim
.
x
*
gridDim
.
x
)
{
PADDLE_ASSERT
(
label
[
i
]
>=
0
&&
label
[
i
]
<
D
);
Y
[
i
]
=
-
tolerable_value
(
log
(
X
[
i
*
D
+
label
[
i
]]));
Y
[
i
]
=
-
TolerableValue
<
T
>
()
(
log
(
X
[
i
*
D
+
label
[
i
]]));
}
}
...
...
@@ -39,7 +39,7 @@ __global__ void SoftCrossEntropyKernel(T* Y, const T* X, const T* label,
i
+=
blockDim
.
x
*
gridDim
.
x
)
{
T
sum
=
static_cast
<
T
>
(
0
);
for
(
int
j
=
0
;
j
<
D
;
j
++
)
{
sum
+=
label
[
i
*
D
+
j
]
*
tolerable_value
(
log
(
X
[
i
*
D
+
j
]));
sum
+=
label
[
i
*
D
+
j
]
*
TolerableValue
<
T
>
()
(
log
(
X
[
i
*
D
+
j
]));
}
Y
[
i
]
=
-
sum
;
}
...
...
paddle/operators/cross_entropy_op.h
浏览文件 @
8b8ad6b1
...
...
@@ -22,17 +22,16 @@ namespace operators {
using
Tensor
=
framework
::
Tensor
;
template
<
typename
T
>
HOSTDEVICE
T
tolerable_value
(
const
T
x
)
{
PADDLE_ASSERT
(
std
::
is_floating_point
<
T
>::
value
);
const
T
kApproInf
=
1e20
;
if
(
x
==
INFINITY
)
{
return
kApproInf
;
struct
TolerableValue
{
HOSTDEVICE
T
operator
()(
const
T
&
x
)
const
{
PADDLE_ASSERT
(
std
::
is_floating_point
<
T
>::
value
);
const
T
kApproInf
=
1e20
;
if
(
x
==
INFINITY
)
return
kApproInf
;
if
(
x
==
-
INFINITY
)
return
-
kApproInf
;
return
x
;
}
if
(
x
==
-
INFINITY
)
{
return
-
kApproInf
;
}
return
x
;
}
};
template
<
typename
T
>
class
CrossEntropyOpKernel
:
public
framework
::
OpKernel
{
...
...
@@ -57,7 +56,8 @@ class CrossEntropyOpKernel : public framework::OpKernel {
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
T
sum
=
static_cast
<
T
>
(
0
);
for
(
int
j
=
0
;
j
<
class_num
;
++
j
)
{
sum
+=
label_data
[
index
]
*
tolerable_value
(
std
::
log
(
x_data
[
index
]));
sum
+=
label_data
[
index
]
*
TolerableValue
<
T
>
()(
std
::
log
(
x_data
[
index
]));
y_data
[
i
]
=
-
sum
;
index
++
;
}
...
...
@@ -66,7 +66,7 @@ class CrossEntropyOpKernel : public framework::OpKernel {
auto
*
label_data
=
ctx
.
Input
<
Tensor
>
(
"Label"
)
->
data
<
int
>
();
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
int
index
=
i
*
class_num
+
label_data
[
i
];
y_data
[
i
]
=
-
tolerable_value
(
std
::
log
(
x_data
[
index
]));
y_data
[
i
]
=
-
TolerableValue
<
T
>
()
(
std
::
log
(
x_data
[
index
]));
}
}
}
...
...
paddle/operators/math/softmax.cc
浏览文件 @
8b8ad6b1
...
...
@@ -18,7 +18,7 @@ namespace paddle {
namespace
operators
{
namespace
math
{
template
class
SoftmaxFunctor
<
platform
::
C
PUPlace
,
float
>;
template
class
SoftmaxFunctor
<
platform
::
G
PUPlace
,
float
>;
}
// namespace math
}
// namespace operators
...
...
paddle/operators/math/softmax.h
浏览文件 @
8b8ad6b1
...
...
@@ -28,8 +28,8 @@ using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;
template
<
typename
Place
,
typename
T
>
class
SoftmaxFunctor
{
public:
void
operator
()(
const
framework
::
Tensor
*
X
,
framework
::
Tensor
*
Y
,
const
framework
::
ExecutionContext
&
context
)
{
void
operator
()(
const
framework
::
ExecutionContext
&
context
,
const
framework
::
Tensor
*
X
,
framework
::
Tensor
*
Y
)
{
auto
logits
=
EigenMatrix
<
T
>::
From
(
*
X
);
auto
softmax
=
EigenMatrix
<
T
>::
From
(
*
Y
);
...
...
paddle/operators/softmax_op.h
浏览文件 @
8b8ad6b1
...
...
@@ -35,7 +35,7 @@ class SoftmaxKernel : public framework::OpKernel {
// allocate memory on device.
Y
->
mutable_data
<
T
>
(
context
.
GetPlace
());
math
::
SoftmaxFunctor
<
Place
,
T
>
()(
X
,
Y
,
context
);
math
::
SoftmaxFunctor
<
Place
,
T
>
()(
context
,
X
,
Y
);
}
};
...
...
paddle/operators/softmax_with_cross_entropy_op.cc
浏览文件 @
8b8ad6b1
...
...
@@ -23,31 +23,31 @@ class SoftmaxWithCrossEntropyOpMaker
SoftmaxWithCrossEntropyOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
//(TODO caoying) replace int with boolean
AddAttr
<
int
>
(
"soft_l
abel"
,
"(int, default 0
), A flag to indicate whether to interpretate "
"the given labels as soft labels."
)
.
SetDefault
(
0
);
AddAttr
<
bool
>
(
"softL
abel"
,
"(bool, default: false
), A flag to indicate whether to interpretate "
"the given labels as soft labels."
)
.
SetDefault
(
false
);
AddInput
(
"Logits"
,
"(Tensor, default Tensor<float>), The unscaled log probabilities "
"(Tensor, default
:
Tensor<float>), The unscaled log probabilities "
"which is a 2-D tensor with shape [N x K]. N is the batch_size, "
"and K is the class number."
)
.
NotInGradient
();
AddInput
(
"Label"
,
"(Tensor, default
Tensor<int>), The ground truth which is
"
"
a 1-D or 2-D
tensor. "
"If soft
_label
is set to 0, Label is a Tensor<int> with shape [N x 1]. "
"If soft
_label
is set to 1, Label is a Tensor<float/double> "
"(Tensor, default
: Tensor<int>), The ground truth which is a 2-D
"
"tensor. "
"If soft
Lable
is set to 0, Label is a Tensor<int> with shape [N x 1]. "
"If soft
Lable
is set to 1, Label is a Tensor<float/double> "
"with shape [N x K]."
);
AddOutput
(
"Softmax"
,
"(Tensor, default Tensor<float>), A 2-D tensor with shape [N x K]. "
"(Tensor, default
:
Tensor<float>), A 2-D tensor with shape [N x K]. "
"The outputs value of softmax activation by given the input batch, "
"which will be used in backward calculation."
)
.
AsIntermediate
();
AddOutput
(
"Loss"
,
"(Tensor, default
Tensor<float>), A 1
-D tensor. The cross "
"(Tensor, default
: Tensor<float>), A 2
-D tensor. The cross "
"entropy loss with shape [N x 1]."
);
AddComment
(
R"DOC(
Cross entropy loss with softmax are used as the output layer extensively. This
...
...
@@ -83,15 +83,39 @@ class SoftmaxWithCrossEntropyOp : public framework::OperatorWithKernel {
protected:
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"Logits"
),
"Input(Logits) should be not null."
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"Label"
),
"Input(Label) should be not null."
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
OutputVar
(
"Softmax"
),
"Output(Softmax) should be not null."
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
OutputVar
(
"Loss"
),
"Output(Loss) should be not null."
);
const
Tensor
*
logits
=
ctx
.
Input
<
Tensor
>
(
"Logits"
);
const
Tensor
*
labels
=
ctx
.
Input
<
Tensor
>
(
"Label"
);
PADDLE_ENFORCE
(
logits
->
dims
().
size
()
==
2UL
,
"The input of softmax_with_cross_entropy should be a 2-d tensor."
);
PADDLE_ENFORCE
(
ctx
.
Input
<
Tensor
>
(
"Label"
)
->
dims
().
size
()
==
1UL
,
"The label should be a 1-d tensor."
);
ctx
.
Output
<
framework
::
LoDTensor
>
(
"Softmax"
)
->
Resize
(
logits
->
dims
());
ctx
.
Output
<
framework
::
LoDTensor
>
(
"Loss"
)
->
Resize
({
logits
->
dims
()[
0
],
1
});
"The input of softmax_with_cross_entropy should be a 2-D tensor."
);
PADDLE_ENFORCE
(
ctx
.
Input
<
Tensor
>
(
"Label"
)
->
dims
().
size
()
==
2UL
,
"The labels should be a 2-D tensor."
);
if
(
ctx
.
Attr
<
bool
>
(
"softLabel"
))
{
PADDLE_ENFORCE_EQ
(
logits
->
dims
()[
1
],
labels
->
dims
()[
1
],
"If Attr(softLabel) == true, the 2nd dimension of "
"Input(X) and Input(Label) should be equal."
);
}
else
{
PADDLE_ENFORCE_EQ
(
labels
->
dims
()[
1
],
1
,
"If Attr(softLabel) == false, the 2nd dimension of "
"Input(Label) should be 1."
);
}
ctx
.
Output
<
framework
::
Tensor
>
(
"Softmax"
)
->
Resize
(
logits
->
dims
());
ctx
.
Output
<
framework
::
Tensor
>
(
"Loss"
)
->
Resize
({
logits
->
dims
()[
0
],
1
});
ctx
.
ShareLoD
(
"Logits"
,
/*->*/
"Softmax"
);
ctx
.
ShareLoD
(
"Logits"
,
/*->*/
"Loss"
);
}
};
...
...
@@ -102,11 +126,28 @@ class SoftmaxWithCrossEntropyOpGrad : public framework::OperatorWithKernel {
protected:
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
framework
::
GradVarName
(
"Loss"
)),
"Input(Loss@Grad) should not be null"
);
"Input(Loss@Grad) should not be null
.
"
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"Softmax"
),
"Input(Softmax) should be not null."
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"Label"
),
"Input(Lable) should be not null."
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
OutputVar
(
framework
::
GradVarName
(
"Logits"
)),
"Output(Logits@Grad) should be not null."
);
const
Tensor
*
softmax
=
ctx
.
Input
<
Tensor
>
(
"Softmax"
);
const
Tensor
*
labels
=
ctx
.
Input
<
Tensor
>
(
"Label"
);
PADDLE_ENFORCE
(
ctx
.
Input
<
Tensor
>
(
"Label"
)
->
dims
().
size
()
==
2UL
,
"The labels should be a 2-D tensor."
);
if
(
ctx
.
Attr
<
bool
>
(
"softLabel"
))
{
PADDLE_ENFORCE_EQ
(
softmax
->
dims
()[
1
],
labels
->
dims
()[
1
],
"When Attr(softLabel) == true, the 2nd dimension of "
"Input(X) and Input(Label) should be equal."
);
}
else
{
PADDLE_ENFORCE_EQ
(
labels
->
dims
()[
1
],
1
,
"When Attr(softLabel) == false, the 2nd dimension of "
"Input(Label) should be 1."
);
}
ctx
.
Output
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"Logits"
))
->
Resize
(
ctx
.
Input
<
Tensor
>
(
"Softmax"
)
->
dims
());
...
...
paddle/operators/softmax_with_cross_entropy_op.cu
浏览文件 @
8b8ad6b1
...
...
@@ -24,25 +24,78 @@ namespace operators {
using
Tensor
=
framework
::
Tensor
;
template
<
typename
T
>
__global__
void
CrossEntropyKernel
(
T
*
out
,
const
T
*
softmax_out
,
const
int
*
label
,
const
int
batch_size
,
const
int
class_num
)
{
__global__
void
CrossEntropy
(
T
*
out
,
const
T
*
softmax_out
,
const
int
*
labels
,
const
int
batch_size
,
const
int
class_num
)
{
int
i
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
if
(
i
<
batch_size
)
{
PADDLE_ASSERT
(
label
[
i
]
>=
0
&&
label
[
i
]
<
class_num
);
out
[
i
]
=
-
tolerable_value
(
std
::
log
(
softmax_out
[
i
*
class_num
+
label
[
i
]]));
PADDLE_ASSERT
(
labels
[
i
]
>=
0
&&
labels
[
i
]
<
class_num
);
out
[
i
]
=
-
TolerableValue
<
T
>
()(
std
::
log
(
softmax_out
[
i
*
class_num
+
labels
[
i
]]));
}
}
template
<
typename
T
>
__global__
void
CrossEntropyWithSoftmaxGradKernel
(
T
*
softmax_out
,
const
int
*
label
,
const
int
batch_size
,
const
int
class_num
)
{
int
i
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
if
(
i
<
batch_size
)
{
PADDLE_ASSERT
(
label
[
i
]
>=
0
&&
label
[
i
]
<
class_num
);
softmax_out
[
i
*
class_num
+
label
[
i
]]
-=
1.
;
__global__
void
CrossEntropyGrad
(
T
*
out_grad
,
const
T
*
in_grad
,
const
int
*
labels
,
const
int
batch_size
,
const
int
class_num
)
{
int
tid
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
int
sample_idx
=
tid
/
class_num
;
if
(
tid
<
batch_size
*
class_num
)
out_grad
[
tid
]
*=
in_grad
[
sample_idx
];
__syncthreads
();
if
(
tid
<
batch_size
)
{
PADDLE_ASSERT
(
labels
[
sample_idx
]
>=
0
&&
labels
[
sample_idx
]
<
class_num
);
out_grad
[
tid
*
class_num
+
labels
[
tid
]]
-=
1.
;
}
}
template
<
typename
T
>
__device__
__forceinline__
T
sum_single_warp
(
T
val
)
{
val
+=
__shfl_down
(
val
,
16
);
val
+=
__shfl_down
(
val
,
8
);
val
+=
__shfl_down
(
val
,
4
);
val
+=
__shfl_down
(
val
,
2
);
val
+=
__shfl_down
(
val
,
1
);
return
val
;
}
template
<
typename
T
>
__global__
void
SoftCrossEntropyKernel
(
T
*
Y
,
const
T
*
X
,
const
T
*
label
,
const
int
class_num
)
{
int
tid
=
threadIdx
.
x
;
extern
__shared__
T
d_sum
[];
d_sum
[
tid
]
=
0
;
int
cur_idx
=
tid
;
int
next_idx
=
blockIdx
.
x
*
class_num
+
tid
;
while
(
cur_idx
<
class_num
)
{
d_sum
[
tid
]
+=
TolerableValue
<
T
>
()(
std
::
log
(
X
[
next_idx
]))
*
label
[
next_idx
];
next_idx
+=
blockDim
.
x
;
cur_idx
+=
blockDim
.
x
;
}
__syncthreads
();
for
(
unsigned
int
stride
=
blockDim
.
x
>>
1
;
stride
>=
32
;
stride
>>=
1
)
{
if
(
tid
<
stride
)
d_sum
[
tid
]
+=
d_sum
[
tid
+
stride
];
__syncthreads
();
}
T
val
=
d_sum
[
tid
];
val
=
sum_single_warp
<
T
>
(
val
);
if
(
tid
==
0
)
Y
[
blockIdx
.
x
]
=
-
val
;
}
template
<
typename
T
>
__global__
void
SoftCrossEntropyGradientKernel
(
T
*
logit_grad
,
const
T
*
loss_grad
,
const
T
*
labels
,
const
int
batch_size
,
const
int
class_num
)
{
int
ids
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
if
(
ids
<
batch_size
*
class_num
)
{
int
row_ids
=
ids
/
class_num
;
logit_grad
[
ids
]
=
logit_grad
[
ids
]
*
loss_grad
[
row_ids
]
-
labels
[
ids
];
}
}
...
...
@@ -52,27 +105,36 @@ class SoftmaxWithCrossEntropyCUDAKernel : public framework::OpKernel {
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
PADDLE_ENFORCE
(
platform
::
is_gpu_place
(
context
.
GetPlace
()),
"This kernel only runs on GPU device."
);
T
*
loss_data
=
context
.
Output
<
Tensor
>
(
"Loss"
)
->
mutable_data
<
T
>
(
context
.
GetPlace
());
// Calculate ths softmax outputs.
const
Tensor
*
logits
=
context
.
Input
<
Tensor
>
(
"Logits"
);
Tensor
*
softmax
=
context
.
Output
<
Tensor
>
(
"Softmax"
);
softmax
->
mutable_data
<
T
>
(
context
.
GetPlace
());
math
::
SoftmaxFunctor
<
platform
::
GPUPlace
,
T
>
()(
logits
,
softmax
,
context
);
T
*
softmax_out
=
softmax
->
data
<
T
>
();
// Calculate the cross entropy loss based on hard labels.
const
int
*
label_data
=
context
.
Input
<
Tensor
>
(
"Label"
)
->
data
<
int
>
();
Tensor
*
loss
=
context
.
Output
<
Tensor
>
(
"Loss"
);
loss
->
mutable_data
<
T
>
(
context
.
GetPlace
());
T
*
loss_data
=
loss
->
data
<
T
>
();
T
*
softmax_out
=
softmax
->
mutable_data
<
T
>
(
context
.
GetPlace
());
math
::
SoftmaxFunctor
<
platform
::
GPUPlace
,
T
>
()(
context
,
logits
,
softmax
);
const
int
batch_size
=
logits
->
dims
()[
0
];
const
int
class_num
=
logits
->
dims
()[
1
];
int
block
=
512
;
int
grid
=
(
batch_size
+
block
-
1
)
/
block
;
CrossEntropyKernel
<
T
><<<
grid
,
block
>>>
(
loss_data
,
softmax_out
,
label_data
,
batch_size
,
class_num
);
if
(
context
.
Attr
<
bool
>
(
"softLabel"
))
{
const
T
*
label_data
=
context
.
Input
<
Tensor
>
(
"Label"
)
->
data
<
T
>
();
block
=
class_num
>
512
?
512
:
pow
(
2
,
int
(
std
::
log2
(
class_num
)));
SoftCrossEntropyKernel
<
T
><<<
batch_size
,
block
,
block
*
sizeof
(
T
),
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
context
.
device_context
())
.
stream
()
>>>
(
loss_data
,
softmax_out
,
label_data
,
class_num
);
}
else
{
const
int
*
label_data
=
context
.
Input
<
Tensor
>
(
"Label"
)
->
data
<
int
>
();
CrossEntropy
<
T
><<<
grid
,
block
,
0
,
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
context
.
device_context
())
.
stream
()
>>>
(
loss_data
,
softmax_out
,
label_data
,
batch_size
,
class_num
);
}
}
};
...
...
@@ -82,7 +144,9 @@ class SoftmaxWithCrossEntropyGradCUDAKernel : public framework::OpKernel {
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
PADDLE_ENFORCE
(
platform
::
is_gpu_place
(
context
.
GetPlace
()),
"This kernel only runs on GPU device."
);
const
Tensor
*
labels
=
context
.
Input
<
Tensor
>
(
"Label"
);
const
T
*
loss_grad_data
=
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Loss"
))
->
data
<
T
>
();
Tensor
*
logit_grad
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Logits"
));
logit_grad
->
ShareDataWith
<
T
>
(
*
context
.
Input
<
Tensor
>
(
"Softmax"
));
...
...
@@ -90,14 +154,24 @@ class SoftmaxWithCrossEntropyGradCUDAKernel : public framework::OpKernel {
const
int
batch_size
=
logit_grad
->
dims
()[
0
];
const
int
class_num
=
logit_grad
->
dims
()[
1
];
const
int
*
label_data
=
context
.
Input
<
Tensor
>
(
"Label"
)
->
data
<
int
>
();
const
int
block
=
512
;
const
int
grid
=
(
batch_size
+
block
-
1
)
/
block
;
CrossEntropyWithSoftmaxGradKernel
<
T
><<<
grid
,
block
>>>
(
logit_grad_data
,
label_data
,
batch_size
,
class_num
);
int
block
=
512
;
int
grid
=
(
batch_size
*
class_num
+
block
-
1
)
/
block
;
if
(
context
.
Attr
<
bool
>
(
"softLabel"
))
{
const
T
*
label_data
=
labels
->
data
<
T
>
();
SoftCrossEntropyGradientKernel
<
T
><<<
grid
,
block
,
0
,
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
context
.
device_context
())
.
stream
()
>>>
(
logit_grad_data
,
loss_grad_data
,
label_data
,
batch_size
,
class_num
);
}
else
{
const
int
*
label_data
=
labels
->
data
<
int
>
();
CrossEntropyGrad
<
T
><<<
grid
,
block
,
0
,
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
context
.
device_context
())
.
stream
()
>>>
(
logit_grad_data
,
loss_grad_data
,
label_data
,
batch_size
,
class_num
);
}
}
};
...
...
paddle/operators/softmax_with_cross_entropy_op.h
浏览文件 @
8b8ad6b1
...
...
@@ -32,28 +32,35 @@ class SoftmaxWithCrossEntropyKernel : public framework::OpKernel {
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
PADDLE_ENFORCE
(
platform
::
is_cpu_place
(
context
.
GetPlace
()),
"This kernel only runs on CPU."
);
// Calculate ths softmax outputs.
const
Tensor
*
logits
=
context
.
Input
<
Tensor
>
(
"Logits"
);
const
Tensor
*
labels
=
context
.
Input
<
Tensor
>
(
"Label"
);
Tensor
*
softmax
=
context
.
Output
<
Tensor
>
(
"Softmax"
);
softmax
->
mutable_data
<
T
>
(
context
.
GetPlace
());
math
::
SoftmaxFunctor
<
platform
::
CPUPlace
,
T
>
()(
logits
,
softmax
,
context
);
Tensor
*
loss
=
context
.
Output
<
Tensor
>
(
"Loss"
);
// Calculate the cross entropy loss based on hard labels.
T
*
softmax_out
=
softmax
->
data
<
T
>
();
const
int
*
label_data
=
context
.
Input
<
Tensor
>
(
"Label"
)
->
data
<
int
>
();
T
*
softmax_data
=
softmax
->
mutable_data
<
T
>
(
context
.
GetPlace
());
T
*
loss_data
=
loss
->
mutable_data
<
T
>
(
context
.
GetPlace
());
Tensor
*
loss
=
context
.
Output
<
Tensor
>
(
"Loss"
);
loss
->
mutable_data
<
T
>
(
context
.
GetPlace
());
T
*
loss_data
=
loss
->
data
<
T
>
();
math
::
SoftmaxFunctor
<
platform
::
CPUPlace
,
T
>
()(
context
,
logits
,
softmax
);
const
int
batch_size
=
logits
->
dims
()[
0
];
const
int
class_num
=
logits
->
dims
()[
1
];
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
int
index
=
i
*
class_num
+
label_data
[
i
];
loss_data
[
i
]
=
-
tolerable_value
(
std
::
log
(
softmax_out
[
index
]));
if
(
context
.
Attr
<
bool
>
(
"softLabel"
))
{
//(TODO caoying) the forward implementation can be further optimized.
// Current implementation is exactly cross entropy after softmax.
auto
prob
=
EigenMatrix
<
T
>::
From
(
*
softmax
);
auto
lbl_mat
=
EigenMatrix
<
T
>::
From
(
*
labels
);
auto
loss_mat
=
EigenMatrix
<
T
>::
From
(
*
loss
);
loss_mat
.
device
(
context
.
GetEigenDevice
<
platform
::
CPUPlace
>
())
=
-
((
lbl_mat
*
prob
.
log
().
unaryExpr
(
TolerableValue
<
T
>
()))
.
sum
(
Eigen
::
DSizes
<
int
,
1
>
(
1
))
.
reshape
(
Eigen
::
DSizes
<
int
,
2
>
(
batch_size
,
1
)));
}
else
{
const
int
*
label_data
=
labels
->
data
<
int
>
();
const
int
class_num
=
logits
->
dims
()[
1
];
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
loss_data
[
i
]
=
-
TolerableValue
<
T
>
()(
std
::
log
(
softmax_data
[
i
*
class_num
+
label_data
[
i
]]));
}
}
};
...
...
@@ -62,18 +69,34 @@ template <typename T>
class
SoftmaxWithCrossEntropyGradKernel
:
public
framework
::
OpKernel
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
const
Tensor
*
out_grad
=
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Loss"
));
const
Tensor
*
labels
=
context
.
Input
<
Tensor
>
(
"Label"
);
Tensor
*
logit_grad
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Logits"
));
logit_grad
->
ShareDataWith
<
T
>
(
*
context
.
Input
<
Tensor
>
(
"Softmax"
));
T
*
logit_grad_data
=
logit_grad
->
data
<
T
>
();
const
int
batch_size
=
logit_grad
->
dims
()[
0
];
const
int
class_num
=
logit_grad
->
dims
()[
1
];
const
int
*
label_data
=
context
.
Input
<
Tensor
>
(
"Label"
)
->
data
<
int
>
();
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
int
index
=
i
*
class_num
+
label_data
[
i
];
logit_grad_data
[
index
]
-=
1.
;
if
(
context
.
Attr
<
bool
>
(
"softLabel"
))
{
auto
out_grad_mat
=
EigenMatrix
<
T
>::
From
(
*
out_grad
);
auto
logit_grad_mat
=
EigenMatrix
<
T
>::
From
(
*
logit_grad
);
auto
lbl_mat
=
EigenMatrix
<
T
>::
From
(
*
labels
);
logit_grad_mat
.
device
(
context
.
GetEigenDevice
<
platform
::
CPUPlace
>
())
=
logit_grad_mat
*
out_grad_mat
.
broadcast
(
Eigen
::
DSizes
<
int
,
2
>
(
1
,
class_num
))
-
lbl_mat
;
}
else
{
const
int
batch_size
=
logit_grad
->
dims
()[
0
];
const
int
*
label_data
=
labels
->
data
<
int
>
();
const
T
*
out_grad_data
=
out_grad
->
data
<
T
>
();
T
*
logit_grad_data
=
logit_grad
->
data
<
T
>
();
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
int
index
=
i
*
class_num
+
label_data
[
i
];
logit_grad_data
[
index
]
=
(
out_grad_data
[
i
]
*
logit_grad_data
[
index
]
-
1.
);
}
}
}
};
...
...
python/paddle/v2/framework/tests/test_softmax_with_cross_entropy_op.py
浏览文件 @
8b8ad6b1
...
...
@@ -6,22 +6,23 @@ from test_softmax_op import stable_softmax
class
TestSoftmaxWithCrossEntropyOp
(
OpTest
):
"""
Test softmax with cross entropy operator with discreate one-hot labels.
"""
def
setUp
(
self
):
self
.
op_type
=
"softmax_with_cross_entropy"
MAX_BATCH_SIZE
=
23
MAX_CLASS_NUM
=
17
batch_size
=
np
.
random
.
randint
(
1
,
MAX_BATCH_SIZE
,
1
)[
0
]
class_num
=
np
.
random
.
randint
(
2
,
MAX_CLASS_NUM
,
1
)[
0
]
batch_size
=
3
class_num
=
37
logits
=
np
.
random
.
uniform
(
0.1
,
1.0
,
[
batch_size
,
class_num
]).
astype
(
"float32"
)
softmax
=
np
.
apply_along_axis
(
stable_softmax
,
1
,
logits
)
labels
=
np
.
random
.
randint
(
0
,
class_num
,
batch_size
,
dtype
=
"int32"
)
labels
=
np
.
random
.
randint
(
0
,
class_num
,
[
batch_size
,
1
]
,
dtype
=
"int32"
)
cross_entropy
=
np
.
asmatrix
(
[[
-
np
.
log
(
softmax
[
i
][
labels
[
i
]])]
for
i
in
range
(
softmax
.
shape
[
0
])],
[[
-
np
.
log
(
softmax
[
i
][
labels
[
i
][
0
]])]
for
i
in
range
(
softmax
.
shape
[
0
])],
dtype
=
"float32"
)
self
.
inputs
=
{
"Logits"
:
logits
,
"Label"
:
labels
}
...
...
@@ -34,5 +35,36 @@ class TestSoftmaxWithCrossEntropyOp(OpTest):
self
.
check_grad
([
"Logits"
],
"Loss"
,
max_relative_error
=
0.05
)
class
TestSoftmaxWithCrossEntropyOp2
(
OpTest
):
"""
Test softmax with cross entropy operator with soft labels.
"""
def
setUp
(
self
):
self
.
op_type
=
"softmax_with_cross_entropy"
batch_size
=
2
class_num
=
17
logits
=
np
.
random
.
uniform
(
0.1
,
1.0
,
[
batch_size
,
class_num
]).
astype
(
"float32"
)
softmax
=
np
.
apply_along_axis
(
stable_softmax
,
1
,
logits
)
labels
=
np
.
random
.
uniform
(
0.1
,
1.0
,
[
batch_size
,
class_num
]).
astype
(
"float32"
)
labels
/=
np
.
sum
(
labels
,
axis
=
1
,
keepdims
=
True
)
cross_entropy
=
(
-
labels
*
np
.
log
(
softmax
)).
sum
(
axis
=
1
,
keepdims
=
True
).
astype
(
"float32"
)
self
.
inputs
=
{
"Logits"
:
logits
,
"Label"
:
labels
}
self
.
outputs
=
{
"Softmax"
:
softmax
,
"Loss"
:
cross_entropy
}
self
.
attrs
=
{
"softLabel"
:
True
}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
"Logits"
],
"Loss"
,
max_relative_error
=
0.05
)
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录