Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
8b87d5eb
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
8b87d5eb
编写于
11月 24, 2021
作者:
A
Aurelius84
提交者:
GitHub
11月 24, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[NewExe] Support HandleComplexGradToRealGrad to cast complex into Real (#37450)
上级
1c969d20
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
145 addition
and
23 deletion
+145
-23
paddle/fluid/framework/new_executor/data_transfer.cc
paddle/fluid/framework/new_executor/data_transfer.cc
+112
-4
paddle/fluid/framework/new_executor/data_transfer.h
paddle/fluid/framework/new_executor/data_transfer.h
+15
-3
paddle/fluid/framework/new_executor/interpretercore.cc
paddle/fluid/framework/new_executor/interpretercore.cc
+2
-2
paddle/fluid/framework/new_executor/interpretercore_util.cc
paddle/fluid/framework/new_executor/interpretercore_util.cc
+11
-9
paddle/fluid/framework/new_executor/interpretercore_util.h
paddle/fluid/framework/new_executor/interpretercore_util.h
+0
-1
paddle/fluid/framework/new_executor/new_executor_defs.h
paddle/fluid/framework/new_executor/new_executor_defs.h
+1
-0
paddle/fluid/framework/operator.cc
paddle/fluid/framework/operator.cc
+0
-4
paddle/fluid/framework/operator.h
paddle/fluid/framework/operator.h
+4
-0
未找到文件。
paddle/fluid/framework/new_executor/data_transfer.cc
浏览文件 @
8b87d5eb
...
@@ -62,6 +62,24 @@ bool DataTranferHelper::apply(const OpKernelType& kernel_type_for_var,
...
@@ -62,6 +62,24 @@ bool DataTranferHelper::apply(const OpKernelType& kernel_type_for_var,
return
is_transferred
;
return
is_transferred
;
}
}
void
DataTranferHelper
::
RunAndConstructShareNode
(
const
std
::
string
&
src_var_name
,
const
std
::
string
&
dst_var_name
,
std
::
vector
<
OpFuncNode
>*
op_func_nodes
)
{
VariableNameMap
in_name_map
=
{{
"X"
,
{
src_var_name
}}};
VariableNameMap
out_name_map
=
{{
"Out"
,
{
dst_var_name
}}};
AttributeMap
attr_map
;
std
::
string
op_type
(
"share_data"
);
auto
&
op_info
=
OpInfoMap
::
Instance
().
Get
(
op_type
);
auto
op
=
std
::
shared_ptr
<
OperatorBase
>
(
op_info
.
Creator
()(
op_type
,
in_name_map
,
out_name_map
,
attr_map
));
VLOG
(
3
)
<<
string
::
Sprintf
(
"Insert %s with %s -> %s."
,
op_type
,
src_var_name
,
dst_var_name
);
RunAndConstructOpFuncNode
(
op
,
src_var_name
,
dst_var_name
,
op_func_nodes
);
}
void
DataTranferHelper
::
RunAndConstructOpFuncNode
(
void
DataTranferHelper
::
RunAndConstructOpFuncNode
(
const
std
::
shared_ptr
<
OperatorBase
>&
op
,
const
std
::
string
&
var_name
,
const
std
::
shared_ptr
<
OperatorBase
>&
op
,
const
std
::
string
&
var_name
,
const
std
::
string
&
new_var_name
,
const
std
::
string
&
new_var_name
,
...
@@ -133,7 +151,7 @@ std::shared_ptr<OperatorBase> TransferLayout(const std::string& var_name,
...
@@ -133,7 +151,7 @@ std::shared_ptr<OperatorBase> TransferLayout(const std::string& var_name,
VariableNameMap
out_name_map
=
{{
"Out"
,
{
*
new_var_name
}}};
VariableNameMap
out_name_map
=
{{
"Out"
,
{
*
new_var_name
}}};
AttributeMap
attr_map
=
{{
"dst_layout"
,
static_cast
<
int
>
(
out_layout
)}};
AttributeMap
attr_map
=
{{
"dst_layout"
,
static_cast
<
int
>
(
out_layout
)}};
// 3. Create transfer_op
// 3. Create transfer_
layout_
op
std
::
string
op_type
(
"transfer_layout"
);
std
::
string
op_type
(
"transfer_layout"
);
auto
&
op_info
=
OpInfoMap
::
Instance
().
Get
(
op_type
);
auto
&
op_info
=
OpInfoMap
::
Instance
().
Get
(
op_type
);
auto
op
=
std
::
shared_ptr
<
OperatorBase
>
(
auto
op
=
std
::
shared_ptr
<
OperatorBase
>
(
...
@@ -154,9 +172,10 @@ std::shared_ptr<OperatorBase> TransferDtype(const std::string& var_name,
...
@@ -154,9 +172,10 @@ std::shared_ptr<OperatorBase> TransferDtype(const std::string& var_name,
*
new_var_name
=
*
new_var_name
=
var_name
+
"_dtype_"
+
std
::
to_string
(
var_scope
->
VarSize
()
+
1
);
var_name
+
"_dtype_"
+
std
::
to_string
(
var_scope
->
VarSize
()
+
1
);
auto
*
ptr
=
local_scope
->
Var
(
new_var_name
);
auto
*
ptr
=
local_scope
->
Var
(
new_var_name
);
var_scope
->
SetVarDesc
(
var_name
,
nullptr
);
auto
var_type
=
var_scope
->
Var
(
var_name
)
->
Type
();
auto
var_type
=
var_scope
->
Var
(
var_name
)
->
Type
();
InitializeVariable
(
ptr
,
static_cast
<
proto
::
VarType
::
Type
>
(
var_type
));
InitializeVariable
(
ptr
,
static_cast
<
proto
::
VarType
::
Type
>
(
var_type
));
VLOG
(
3
)
<<
"Create Variable "
<<
*
new_var_name
VLOG
(
3
)
<<
"Create Variable "
<<
*
new_var_name
<<
" locally, which pointer is "
<<
ptr
<<
"Variable Type "
<<
" locally, which pointer is "
<<
ptr
<<
"Variable Type "
<<
var_type
;
<<
var_type
;
...
@@ -171,7 +190,7 @@ std::shared_ptr<OperatorBase> TransferDtype(const std::string& var_name,
...
@@ -171,7 +190,7 @@ std::shared_ptr<OperatorBase> TransferDtype(const std::string& var_name,
// NOTE(Aurelius84): In whice case use_mkldnn = true?
// NOTE(Aurelius84): In whice case use_mkldnn = true?
attr_map
[
"use_mkldnn"
]
=
false
;
attr_map
[
"use_mkldnn"
]
=
false
;
// 3. Create transfer_op
// 3. Create transfer_
dtype_
op
std
::
string
op_type
(
"transfer_dtype"
);
std
::
string
op_type
(
"transfer_dtype"
);
auto
&
op_info
=
OpInfoMap
::
Instance
().
Get
(
op_type
);
auto
&
op_info
=
OpInfoMap
::
Instance
().
Get
(
op_type
);
auto
op
=
std
::
shared_ptr
<
OperatorBase
>
(
auto
op
=
std
::
shared_ptr
<
OperatorBase
>
(
...
@@ -209,7 +228,7 @@ std::shared_ptr<OperatorBase> TransferDevice(const std::string& var_name,
...
@@ -209,7 +228,7 @@ std::shared_ptr<OperatorBase> TransferDevice(const std::string& var_name,
:
platform
::
is_gpu_place
(
dst_place
)
?
1
:
-
1
;
:
platform
::
is_gpu_place
(
dst_place
)
?
1
:
-
1
;
AttributeMap
attr_map
=
{{
"dst_place_type"
,
dst_place_type
}};
AttributeMap
attr_map
=
{{
"dst_place_type"
,
dst_place_type
}};
// 3. Create
transfer
_op
// 3. Create
memcpy_d2h_op or memcpy_h2d
_op
std
::
string
op_type
=
get_memcpy_type
(
src_place
,
dst_place
);
std
::
string
op_type
=
get_memcpy_type
(
src_place
,
dst_place
);
auto
&
op_info
=
OpInfoMap
::
Instance
().
Get
(
op_type
);
auto
&
op_info
=
OpInfoMap
::
Instance
().
Get
(
op_type
);
auto
op
=
std
::
shared_ptr
<
OperatorBase
>
(
auto
op
=
std
::
shared_ptr
<
OperatorBase
>
(
...
@@ -303,6 +322,95 @@ std::string get_memcpy_type(const platform::Place& src_place,
...
@@ -303,6 +322,95 @@ std::string get_memcpy_type(const platform::Place& src_place,
}
}
}
}
void
HandleComplexGradToRealGrad
(
const
OpFuncNode
&
op_func_node
,
const
platform
::
Place
&
place
,
const
VariableNameMap
&
out_names
,
VariableValueMap
*
out_vars
,
VariableScope
*
var_scope
,
std
::
vector
<
OpFuncNode
>*
op_func_nodes
,
framework
::
Scope
*
local_scope
)
{
DataTranferHelper
data_transfer_helper
(
place
,
var_scope
);
for
(
auto
&
var_name_item
:
out_names
)
{
std
::
vector
<
Variable
*>&
vars
=
out_vars
->
at
(
var_name_item
.
first
);
for
(
size_t
i
=
0
;
i
<
var_name_item
.
second
.
size
();
++
i
)
{
// 1. find grad_var & check whether is complex tensor
auto
var_name
=
var_name_item
.
second
[
i
];
auto
orig_var_name
=
framework
::
GradOriginalVarName
(
var_name
);
// only focus on gradient var
if
(
var_name
==
orig_var_name
)
{
VLOG
(
3
)
<<
"skip "
<<
var_name
<<
" with same name as "
<<
orig_var_name
;
continue
;
}
auto
*
grad_var
=
vars
[
i
];
// skip nullptr var
if
(
grad_var
==
nullptr
)
{
VLOG
(
3
)
<<
"skip grad_var with nullptr"
;
continue
;
}
// don't process LoDTensorArray temporarily,
// add support if necessary for complex number calculations in the future
if
(
!
framework
::
VarIsTensor
(
*
grad_var
))
{
VLOG
(
3
)
<<
"skip grad_var with LoDTensorArray type"
;
continue
;
}
auto
*
grad_tensor
=
framework
::
GetMutableLoDTensorOrSelectedRowsValueFromVar
(
grad_var
);
// skip nullptr tensor
if
(
grad_tensor
==
nullptr
||
!
grad_tensor
->
IsInitialized
())
{
VLOG
(
3
)
<<
"skip with grad_tensor not IsInitialized"
;
continue
;
}
// only focus on complex dtype now
auto
src_type
=
grad_tensor
->
type
();
if
(
!
framework
::
IsComplexType
(
src_type
))
{
VLOG
(
3
)
<<
"skip grad_tensor with not complexType"
;
continue
;
}
// 2. find forward var & check whether need to cast
auto
*
var
=
var_scope
->
FindVar
(
orig_var_name
);
// if forward var not exists, do nothing
if
(
var
==
nullptr
)
{
VLOG
(
3
)
<<
"skip "
<<
orig_var_name
<<
" with not found in var_scope"
;
continue
;
}
if
(
!
framework
::
VarIsTensor
(
*
var
))
{
VLOG
(
3
)
<<
"skip "
<<
orig_var_name
<<
" with LoDTensorArray."
;
continue
;
}
const
auto
*
tensor
=
framework
::
GetLoDTensorOrSelectedRowsValueFromVar
(
*
var
);
PADDLE_ENFORCE_NOT_NULL
(
tensor
,
platform
::
errors
::
Unavailable
(
"Forward tensor is nullptr when handle complex data to real."
));
// only need record type, the allocation may have been released
auto
dst_type
=
tensor
->
saved_type
();
// only focus on real dtype and need casting
if
(
framework
::
IsComplexType
(
dst_type
))
{
continue
;
}
// 3. cast complex grad to real grad inplacely
VLOG
(
3
)
<<
"Transform "
<<
framework
::
DataTypeToString
(
src_type
)
<<
" var `"
<<
var_name
<<
"` to "
<<
framework
::
DataTypeToString
(
dst_type
)
<<
" real var in static graph."
;
// NOTE(Aurelius84): Consider to define a complex2real op to deal this
// case.
std
::
string
new_var_name
;
auto
op
=
TransferDtype
(
var_name
,
&
new_var_name
,
src_type
,
dst_type
,
var_scope
,
local_scope
);
data_transfer_helper
.
RunAndConstructOpFuncNode
(
op
,
var_name
,
new_var_name
,
op_func_nodes
);
data_transfer_helper
.
RunAndConstructShareNode
(
new_var_name
,
var_name
,
op_func_nodes
);
}
}
}
}
// namespace interpreter
}
// namespace interpreter
}
// namespace framework
}
// namespace framework
}
// namespace paddle
}
// namespace paddle
paddle/fluid/framework/new_executor/data_transfer.h
浏览文件 @
8b87d5eb
...
@@ -37,14 +37,18 @@ class DataTranferHelper {
...
@@ -37,14 +37,18 @@ class DataTranferHelper {
const
std
::
string
&
var_name
,
std
::
string
*
new_var_name
,
const
std
::
string
&
var_name
,
std
::
string
*
new_var_name
,
std
::
vector
<
OpFuncNode
>*
new_op_func_nodes
,
bool
use_local_scope
);
std
::
vector
<
OpFuncNode
>*
new_op_func_nodes
,
bool
use_local_scope
);
private:
void
RunAndConstructShareNode
(
const
std
::
string
&
src_var_name
,
platform
::
Place
place_
;
const
std
::
string
&
dst_var_name
,
VariableScope
*
var_scope_
;
std
::
vector
<
OpFuncNode
>*
op_func_nodes
)
;
void
RunAndConstructOpFuncNode
(
const
std
::
shared_ptr
<
OperatorBase
>&
op
,
void
RunAndConstructOpFuncNode
(
const
std
::
shared_ptr
<
OperatorBase
>&
op
,
const
std
::
string
&
var_name
,
const
std
::
string
&
var_name
,
const
std
::
string
&
new_var_name
,
const
std
::
string
&
new_var_name
,
std
::
vector
<
OpFuncNode
>*
op_func_nodes
);
std
::
vector
<
OpFuncNode
>*
op_func_nodes
);
private:
platform
::
Place
place_
;
VariableScope
*
var_scope_
;
};
};
void
ApplyDataTransform
(
const
OpKernelType
&
expected_kernel_key
,
void
ApplyDataTransform
(
const
OpKernelType
&
expected_kernel_key
,
...
@@ -54,6 +58,14 @@ void ApplyDataTransform(const OpKernelType& expected_kernel_key,
...
@@ -54,6 +58,14 @@ void ApplyDataTransform(const OpKernelType& expected_kernel_key,
std
::
vector
<
OpFuncNode
>*
op_func_nodes
,
std
::
vector
<
OpFuncNode
>*
op_func_nodes
,
bool
use_local_scope
=
true
);
bool
use_local_scope
=
true
);
void
HandleComplexGradToRealGrad
(
const
OpFuncNode
&
op_func_node
,
const
platform
::
Place
&
place
,
const
VariableNameMap
&
out_names
,
VariableValueMap
*
out_vars
,
VariableScope
*
var_scope
,
std
::
vector
<
OpFuncNode
>*
op_func_nodes
,
framework
::
Scope
*
local_scope
);
std
::
string
get_memcpy_type
(
const
platform
::
Place
&
src_place
,
std
::
string
get_memcpy_type
(
const
platform
::
Place
&
src_place
,
const
platform
::
Place
&
dst_place
);
const
platform
::
Place
&
dst_place
);
...
...
paddle/fluid/framework/new_executor/interpretercore.cc
浏览文件 @
8b87d5eb
...
@@ -90,7 +90,7 @@ paddle::framework::FetchList InterpreterCore::Run(
...
@@ -90,7 +90,7 @@ paddle::framework::FetchList InterpreterCore::Run(
// return Fetch Tensors
// return Fetch Tensors
auto
*
fetch_var
=
global_scope_
->
Var
(
interpreter
::
kFetchVarName
);
auto
*
fetch_var
=
global_scope_
->
Var
(
interpreter
::
kFetchVarName
);
return
*
(
fetch_var
->
GetMutable
<
framework
::
FetchList
>
());
return
std
::
move
(
*
fetch_var
->
GetMutable
<
framework
::
FetchList
>
());
}
}
paddle
::
framework
::
FetchList
InterpreterCore
::
Run
(
paddle
::
framework
::
FetchList
InterpreterCore
::
Run
(
...
@@ -124,7 +124,7 @@ paddle::framework::FetchList InterpreterCore::Run(
...
@@ -124,7 +124,7 @@ paddle::framework::FetchList InterpreterCore::Run(
// return Fetch Tensors
// return Fetch Tensors
auto
*
fetch_var
=
global_scope_
->
Var
(
interpreter
::
kFetchVarName
);
auto
*
fetch_var
=
global_scope_
->
Var
(
interpreter
::
kFetchVarName
);
return
*
(
fetch_var
->
GetMutable
<
framework
::
FetchList
>
());
return
std
::
move
(
*
fetch_var
->
GetMutable
<
framework
::
FetchList
>
());
}
}
void
InterpreterCore
::
BuildOperatorDependences
()
{
void
InterpreterCore
::
BuildOperatorDependences
()
{
...
...
paddle/fluid/framework/new_executor/interpretercore_util.cc
浏览文件 @
8b87d5eb
...
@@ -328,20 +328,14 @@ void build_op_func_list(const platform::Place& place,
...
@@ -328,20 +328,14 @@ void build_op_func_list(const platform::Place& place,
->
GetExpectedKernelType
(
->
GetExpectedKernelType
(
ExecutionContext
(
*
op
,
scope
,
*
dev_ctx
,
runtime_context
));
ExecutionContext
(
*
op
,
scope
,
*
dev_ctx
,
runtime_context
));
// consider device_guard()
// change device by the device_guard()
apply_device_guard
(
apply_device_guard
(
op
,
place
,
&
expected_kernel_key
);
op
,
place
,
&
expected_kernel_key
);
// change device by the device_guard()
VLOG
(
3
)
<<
"expected_kernel_key : "
<<
expected_kernel_key
;
VLOG
(
3
)
<<
"expected_kernel_key : "
<<
expected_kernel_key
;
// step 3. apply data transforms and insert data transfer ops
// step 3. apply data transforms and insert data transfer ops
VariableValueMap
&
ins_map_temp
=
runtime_context
.
inputs
;
VariableValueMap
&
ins_map_temp
=
runtime_context
.
inputs
;
std
::
vector
<
OpFuncNode
>
new_op_func_nodes
;
ApplyDataTransform
(
expected_kernel_key
,
place
,
&
ins_map_temp
,
var_scope
,
ApplyDataTransform
(
expected_kernel_key
,
place
,
&
ins_map_temp
,
var_scope
,
&
op_func_node
,
&
new_op_func_nodes
,
use_local_scope
);
&
op_func_node
,
vec_func_list
,
use_local_scope
);
for
(
auto
&
item
:
new_op_func_nodes
)
{
vec_func_list
->
emplace_back
(
std
::
move
(
item
));
}
// step 4. Run op kernel
// step 4. Run op kernel
VLOG
(
3
)
<<
op
->
Type
()
VLOG
(
3
)
<<
op
->
Type
()
<<
" : expected_kernel_key : "
<<
expected_kernel_key
;
<<
" : expected_kernel_key : "
<<
expected_kernel_key
;
...
@@ -370,6 +364,14 @@ void build_op_func_list(const platform::Place& place,
...
@@ -370,6 +364,14 @@ void build_op_func_list(const platform::Place& place,
op_func_node
.
kernel_func_
=
OpKernelComputeFunc
(
kernel_iter
->
second
);
op_func_node
.
kernel_func_
=
OpKernelComputeFunc
(
kernel_iter
->
second
);
op_func_node
.
kernel_func_
(
exec_ctx
);
op_func_node
.
kernel_func_
(
exec_ctx
);
// post-process grad_op.outputs if need cast complex grad into real grad.
// NOTE(Aurelius84): insert a transfer_dtype_op inplacely to cast it.
if
(
framework
::
IsComplexType
(
expected_kernel_key
.
data_type_
))
{
interpreter
::
HandleComplexGradToRealGrad
(
op_func_node
,
place
,
outputs_names
,
&
runtime_context
.
outputs
,
var_scope
,
vec_func_list
,
local_scope
);
}
}
}
vec_func_list
->
emplace_back
(
op_func_node
);
vec_func_list
->
emplace_back
(
op_func_node
);
...
...
paddle/fluid/framework/new_executor/interpretercore_util.h
浏览文件 @
8b87d5eb
...
@@ -51,7 +51,6 @@ namespace framework {
...
@@ -51,7 +51,6 @@ namespace framework {
namespace
interpreter
{
namespace
interpreter
{
using
AtomicVectorSizeT
=
std
::
vector
<
std
::
unique_ptr
<
std
::
atomic
<
size_t
>>>
;
using
AtomicVectorSizeT
=
std
::
vector
<
std
::
unique_ptr
<
std
::
atomic
<
size_t
>>>
;
static
constexpr
char
kFetchVarName
[]
=
"fetch"
;
class
AsyncWorkQueue
{
class
AsyncWorkQueue
{
public:
public:
...
...
paddle/fluid/framework/new_executor/new_executor_defs.h
浏览文件 @
8b87d5eb
...
@@ -374,6 +374,7 @@ class Instruction {
...
@@ -374,6 +374,7 @@ class Instruction {
namespace
interpreter
{
namespace
interpreter
{
static
constexpr
char
kMemcpyH2D
[]
=
"memcpy_h2d"
;
static
constexpr
char
kMemcpyH2D
[]
=
"memcpy_h2d"
;
static
constexpr
char
kMemcpyD2H
[]
=
"memcpy_d2h"
;
static
constexpr
char
kMemcpyD2H
[]
=
"memcpy_d2h"
;
static
constexpr
char
kFetchVarName
[]
=
"fetch"
;
static
bool
IsMemcpyH2D
(
const
Instruction
&
instr
)
{
static
bool
IsMemcpyH2D
(
const
Instruction
&
instr
)
{
return
instr
.
OpBase
()
->
Type
()
==
kMemcpyH2D
;
return
instr
.
OpBase
()
->
Type
()
==
kMemcpyH2D
;
...
...
paddle/fluid/framework/operator.cc
浏览文件 @
8b87d5eb
...
@@ -479,10 +479,6 @@ void OperatorBase::GenerateTemporaryNames() {
...
@@ -479,10 +479,6 @@ void OperatorBase::GenerateTemporaryNames() {
}
}
}
}
static
bool
VarIsTensor
(
const
Variable
&
var
)
{
return
var
.
IsType
<
LoDTensor
>
()
||
var
.
IsType
<
SelectedRows
>
();
}
const
Tensor
*
GetLoDTensorOrSelectedRowsValueFromVar
(
const
Variable
&
var
)
{
const
Tensor
*
GetLoDTensorOrSelectedRowsValueFromVar
(
const
Variable
&
var
)
{
if
(
var
.
IsType
<
LoDTensor
>
())
{
if
(
var
.
IsType
<
LoDTensor
>
())
{
return
static_cast
<
const
Tensor
*>
(
&
(
var
.
Get
<
LoDTensor
>
()));
return
static_cast
<
const
Tensor
*>
(
&
(
var
.
Get
<
LoDTensor
>
()));
...
...
paddle/fluid/framework/operator.h
浏览文件 @
8b87d5eb
...
@@ -114,6 +114,10 @@ inline std::string GradOriginalVarName(const std::string& grad_var_name) {
...
@@ -114,6 +114,10 @@ inline std::string GradOriginalVarName(const std::string& grad_var_name) {
}
}
}
}
inline
bool
VarIsTensor
(
const
Variable
&
var
)
{
return
var
.
IsType
<
LoDTensor
>
()
||
var
.
IsType
<
SelectedRows
>
();
}
const
Tensor
*
GetLoDTensorOrSelectedRowsValueFromVar
(
const
Variable
&
var
);
const
Tensor
*
GetLoDTensorOrSelectedRowsValueFromVar
(
const
Variable
&
var
);
Tensor
*
GetMutableLoDTensorOrSelectedRowsValueFromVar
(
Variable
*
var
);
Tensor
*
GetMutableLoDTensorOrSelectedRowsValueFromVar
(
Variable
*
var
);
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录