Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
8b82aa4f
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
8b82aa4f
编写于
6月 07, 2023
作者:
Y
Yuang Liu
提交者:
GitHub
6月 07, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[hybrid performance] Early grad fusion. (#54403)
上级
97b17cd8
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
74 addition
and
57 deletion
+74
-57
python/paddle/distributed/fleet/meta_parallel/pp_utils/utils.py
.../paddle/distributed/fleet/meta_parallel/pp_utils/utils.py
+64
-55
python/paddle/distributed/fleet/meta_parallel/sharding/group_sharded_storage.py
...ted/fleet/meta_parallel/sharding/group_sharded_storage.py
+10
-2
未找到文件。
python/paddle/distributed/fleet/meta_parallel/pp_utils/utils.py
浏览文件 @
8b82aa4f
...
...
@@ -18,10 +18,21 @@ import numpy as np
import
paddle
from
paddle
import
_legacy_C_ops
from
paddle.distributed.parallel
import
_split_tensors
from
paddle.distributed.fleet.meta_parallel.sharding.group_sharded_storage
import
(
GradStorage
,
)
from
paddle.fluid
import
core
from
paddle.framework
import
base
as
imperative_base
alignment
=
{
"gpu"
:
256
,
}
align
=
{
paddle
.
float16
.
value
:
2
,
paddle
.
bfloat16
.
value
:
2
,
paddle
.
float32
.
value
:
4
,
}
__all__
=
[]
...
...
@@ -120,26 +131,47 @@ def _all_gather(tensor, group=None, use_calc_stream=True):
)
def
flatten_dense_tensors
(
parameters
,
use_main_grad
=
False
):
_buffer_size
=
0
_param2align
=
{}
dtype
=
paddle
.
float32
if
use_main_grad
else
parameters
[
0
].
dtype
for
param
in
parameters
:
assert
param
.
trainable
,
"param must be trainable..."
size
=
np
.
prod
(
param
.
shape
)
*
align
[
dtype
]
remaining
=
size
%
alignment
[
"gpu"
]
ali
=
0
if
remaining
==
0
else
alignment
[
"gpu"
]
-
remaining
align_
=
ali
//
align
[
dtype
]
_buffer_size
+=
np
.
prod
(
param
.
shape
)
+
align_
_param2align
[
param
.
name
]
=
align_
# process gradient
grad_storage
=
GradStorage
(
size
=
_buffer_size
,
dtype
=
dtype
,
device
=
"gpu"
,
destination
=
"0"
,
parm2align
=
_param2align
,
)
for
param
in
parameters
:
grad_storage
.
add_grad
(
param
,
_param2align
[
param
.
name
])
return
grad_storage
.
buffer
class
FusedCommBuffer
:
def
__init__
(
self
,
id
,
params
,
comm_group
,
acc_steps
=
1
,
act
=
None
,
dst
=-
1
,
):
def
__init__
(
self
,
id
,
params
,
comm_group
,
acc_steps
=
1
,
act
=
None
,
dst
=-
1
):
self
.
_id
=
id
self
.
_params
=
params
self
.
_acc_steps
=
acc_steps
self
.
_comm_group
=
comm_group
self
.
_tasks
=
[]
self
.
_grads
=
[]
use_main_grad
=
hasattr
(
self
.
_params
[
0
],
"main_grad"
)
self
.
_task
=
None
self
.
_params_step_dict
=
{}
self
.
_params_checked_in
=
0
self
.
_coalesced_grads_and_grad_vars
=
[]
self
.
_act
=
act
if
self
.
_act
==
HOOK_ACTION
.
ALL_REDUCE
:
...
...
@@ -154,16 +186,16 @@ class FusedCommBuffer:
self
.
_init_step_dict
()
self
.
grad_storage
=
flatten_dense_tensors
(
self
.
_params
,
use_main_grad
)
def
_init_step_dict
(
self
):
for
p
in
self
.
_params
:
self
.
_params_step_dict
[
p
.
name
]
=
0
def
_reset_params_checked_in
(
self
):
self
.
_tasks
.
clear
()
self
.
_grads
.
clear
()
self
.
_task
=
None
self
.
_init_step_dict
()
self
.
_params_checked_in
=
0
self
.
_coalesced_grads_and_grad_vars
.
clear
()
@
property
def
_all_params_checked_in
(
self
):
...
...
@@ -175,13 +207,6 @@ class FusedCommBuffer:
def
add_grad
(
self
,
param
):
assert
param
.
name
in
self
.
_params_step_dict
if
self
.
_params_step_dict
[
param
.
name
]
==
0
:
if
getattr
(
param
,
"main_grad"
,
None
)
is
not
None
:
assert
param
.
grad
is
None
self
.
_grads
.
append
(
param
.
main_grad
)
else
:
self
.
_grads
.
append
(
param
.
grad
)
self
.
_params_step_dict
[
param
.
name
]
+=
1
if
self
.
_params_step_dict
[
param
.
name
]
==
self
.
_acc_steps
:
...
...
@@ -189,49 +214,33 @@ class FusedCommBuffer:
self
.
_params_step_dict
.
pop
(
param
.
name
)
if
self
.
_all_params_checked_in
:
self
.
_
fused_
comm_grads
()
self
.
_comm_grads
()
@
imperative_base
.
no_grad
def
_
fused_
comm_grads
(
self
):
def
_comm_grads
(
self
):
assert
self
.
_all_params_checked_in
flattened_vars
=
[]
g_var_shapes
=
[]
for
g_var
in
self
.
_grads
:
g_var_shapes
.
append
(
g_var
.
shape
)
flattened_vars
.
append
(
paddle
.
reshape
(
x
=
g_var
,
shape
=
[
np
.
prod
(
g_var
.
shape
)])
if
self
.
_act
==
HOOK_ACTION
.
ALL_REDUCE
:
task
=
paddle
.
distributed
.
all_reduce
(
self
.
grad_storage
,
group
=
self
.
_comm_group
,
sync_op
=
False
)
coalesced_grad
=
paddle
.
concat
(
flattened_vars
)
self
.
_coalesced_grads_and_grad_vars
.
append
(
[
coalesced_grad
,
self
.
_grads
,
g_var_shapes
]
)
for
coalesced_grad
,
_
,
_
in
self
.
_coalesced_grads_and_grad_vars
:
if
self
.
_act
==
HOOK_ACTION
.
ALL_REDUCE
:
task
=
paddle
.
distributed
.
all_reduce
(
coalesced_grad
,
group
=
self
.
_comm_group
,
sync_op
=
False
)
elif
self
.
_act
==
HOOK_ACTION
.
REDUCE
:
task
=
paddle
.
distributed
.
reduce
(
coalesced_grad
,
dst
=
self
.
_dst
,
group
=
self
.
_comm_group
,
sync_op
=
False
,
)
self
.
_tasks
.
append
(
task
)
elif
self
.
_act
==
HOOK_ACTION
.
REDUCE
:
task
=
paddle
.
distributed
.
reduce
(
self
.
grad_storage
,
dst
=
self
.
_dst
,
group
=
self
.
_comm_group
,
sync_op
=
False
,
)
self
.
_task
=
task
@
imperative_base
.
no_grad
def
scale_and_split_grads
(
self
):
for
task
in
self
.
_tasks
:
task
.
wait
()
assert
self
.
_task
is
not
None
self
.
_
task
.
wait
()
scale_factor
=
1.0
/
self
.
_comm_group
.
nranks
for
coalesced_grad
,
_
,
_
in
self
.
_coalesced_grads_and_grad_vars
:
coalesced_grad
.
scale_
(
scale_factor
)
self
.
grad_storage
.
scale_
(
scale_factor
)
_split_tensors
(
self
.
_coalesced_grads_and_grad_vars
)
self
.
_reset_params_checked_in
()
...
...
python/paddle/distributed/fleet/meta_parallel/sharding/group_sharded_storage.py
浏览文件 @
8b82aa4f
...
...
@@ -315,7 +315,12 @@ class GradStorage(InternalStorage):
assert
(
param
.
_numel
()
>
0
),
"Cannot add a gradient to a released InternalStorage, please rebuild"
assert
param
.
dtype
==
self
.
buffer
.
dtype
use_main_grad
=
hasattr
(
param
,
"main_grad"
)
if
use_main_grad
:
assert
self
.
buffer
.
dtype
==
paddle
.
float32
else
:
assert
param
.
dtype
==
self
.
buffer
.
dtype
grad_end
=
self
.
_fill
+
param
.
_numel
()
offset
=
grad_end
+
align
...
...
@@ -325,7 +330,10 @@ class GradStorage(InternalStorage):
with
device_guard
(
self
.
dev_id
,
self
.
_device
):
tmp_var
=
self
.
buffer
.
_slice
(
self
.
_fill
,
grad_end
)
tmp_var
.
get_tensor
().
_set_dims
(
param
.
shape
)
param
.
_copy_gradient_from
(
tmp_var
)
if
not
use_main_grad
:
param
.
_copy_gradient_from
(
tmp_var
)
else
:
param
.
main_grad
=
tmp_var
del
tmp_var
self
.
_fill
=
offset
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录