Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
8b6f374f
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
8b6f374f
编写于
5月 23, 2017
作者:
Y
Yibing Liu
提交者:
GitHub
5月 23, 2017
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #2216 from kuke/enable_grad_clipping_dev
Enable the setting of global gradient clipping threshold
上级
285bee54
5cf2b2e8
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
25 addition
and
8 deletion
+25
-8
paddle/parameter/FirstOrderOptimizer.cpp
paddle/parameter/FirstOrderOptimizer.cpp
+15
-6
paddle/parameter/OptimizerWithRegularizer.cpp
paddle/parameter/OptimizerWithRegularizer.cpp
+2
-1
paddle/parameter/ParameterOptimizer.h
paddle/parameter/ParameterOptimizer.h
+2
-0
proto/TrainerConfig.proto
proto/TrainerConfig.proto
+3
-0
python/paddle/trainer/config_parser.py
python/paddle/trainer/config_parser.py
+1
-0
python/paddle/trainer_config_helpers/optimizers.py
python/paddle/trainer_config_helpers/optimizers.py
+2
-1
未找到文件。
paddle/parameter/FirstOrderOptimizer.cpp
浏览文件 @
8b6f374f
...
@@ -161,6 +161,7 @@ void AdaDeltaParameterOptimizer::update(const VectorPtr vecs[],
...
@@ -161,6 +161,7 @@ void AdaDeltaParameterOptimizer::update(const VectorPtr vecs[],
const
ParameterConfig
&
config
,
const
ParameterConfig
&
config
,
size_t
sparseId
)
const
{
size_t
sparseId
)
const
{
CHECK
(
sparseId
==
-
1LU
)
<<
"Sparse update is not supported"
;
CHECK
(
sparseId
==
-
1LU
)
<<
"Sparse update is not supported"
;
BaseMatrix
&
value
=
*
vecs
[
PARAMETER_VALUE
];
BaseMatrix
&
value
=
*
vecs
[
PARAMETER_VALUE
];
BaseMatrix
&
grad
=
*
vecs
[
PARAMETER_GRADIENT
];
BaseMatrix
&
grad
=
*
vecs
[
PARAMETER_GRADIENT
];
BaseMatrix
&
mom
=
*
vecs
[
PARAMETER_MOMENTUM
];
BaseMatrix
&
mom
=
*
vecs
[
PARAMETER_MOMENTUM
];
...
@@ -265,6 +266,7 @@ void AdamParameterOptimizer::update(const VectorPtr vecs[],
...
@@ -265,6 +266,7 @@ void AdamParameterOptimizer::update(const VectorPtr vecs[],
const
ParameterConfig
&
config
,
const
ParameterConfig
&
config
,
size_t
sparseId
)
const
{
size_t
sparseId
)
const
{
CHECK
(
sparseId
==
-
1UL
)
<<
"Sparse update is not supported"
;
CHECK
(
sparseId
==
-
1UL
)
<<
"Sparse update is not supported"
;
real
beta1_power
=
std
::
pow
(
beta1_
,
step_
);
real
beta1_power
=
std
::
pow
(
beta1_
,
step_
);
real
beta2_power
=
std
::
pow
(
beta2_
,
step_
);
real
beta2_power
=
std
::
pow
(
beta2_
,
step_
);
real
learningRate
=
config
.
learning_rate
()
*
learningRate_
;
real
learningRate
=
config
.
learning_rate
()
*
learningRate_
;
...
@@ -303,18 +305,25 @@ void AdamaxParameterOptimizer::update(const VectorPtr vecs[],
...
@@ -303,18 +305,25 @@ void AdamaxParameterOptimizer::update(const VectorPtr vecs[],
void
OptimizerWithGradientClipping
::
update
(
const
VectorPtr
vecs
[],
void
OptimizerWithGradientClipping
::
update
(
const
VectorPtr
vecs
[],
const
ParameterConfig
&
config
,
const
ParameterConfig
&
config
,
size_t
sparseId
)
const
{
size_t
sparseId
)
const
{
real
globalThreshold
=
optConfig_
.
gradient_clipping_threshold
();
real
localThreshold
=
config
.
gradient_clipping_threshold
();
// Use local gradient clipping threshold if it's enabled,
// otherwise using the global one.
real
threshold
=
localThreshold
>
0.0
f
?
localThreshold
:
globalThreshold
;
std
::
string
field
=
localThreshold
>
0.0
f
?
"local"
:
"global"
;
real
maxAbsGrad
=
vecs
[
PARAMETER_GRADIENT
]
->
getAbsMax
();
real
maxAbsGrad
=
vecs
[
PARAMETER_GRADIENT
]
->
getAbsMax
();
if
(
maxAbsGrad
>
config
.
gradient_clipping_threshold
()
)
{
if
(
maxAbsGrad
>
threshold
)
{
if
(
FLAGS_log_clipping
)
{
if
(
FLAGS_log_clipping
)
{
real
avgAbsGrad
=
vecs
[
PARAMETER_GRADIENT
]
->
getAbsSum
()
/
real
avgAbsGrad
=
vecs
[
PARAMETER_GRADIENT
]
->
getAbsSum
()
/
vecs
[
PARAMETER_GRADIENT
]
->
getSize
();
vecs
[
PARAMETER_GRADIENT
]
->
getSize
();
LOG
(
INFO
)
<<
"parameter="
<<
config
.
name
()
<<
" need clipping,"
LOG
(
INFO
)
<<
"parameter="
<<
config
.
name
()
<<
" need clipping by "
<<
" max grad="
<<
maxAbsGrad
<<
" avg grad="
<<
avgAbsGrad
;
<<
field
<<
" threshold="
<<
threshold
<<
", max grad="
<<
maxAbsGrad
<<
", avg grad="
<<
avgAbsGrad
;
}
}
vecs
[
PARAMETER_GRADIENT
]
->
clip
(
-
config
.
gradient_clipping_threshold
(),
vecs
[
PARAMETER_GRADIENT
]
->
clip
(
-
threshold
,
threshold
);
config
.
gradient_clipping_threshold
());
}
}
optimizer_
->
update
(
vecs
,
config
,
sparseId
);
optimizer_
->
update
(
vecs
,
config
,
sparseId
);
}
}
...
...
paddle/parameter/OptimizerWithRegularizer.cpp
浏览文件 @
8b6f374f
...
@@ -131,7 +131,8 @@ ParameterOptimizer* OptimizerWithRegularizer::create(
...
@@ -131,7 +131,8 @@ ParameterOptimizer* OptimizerWithRegularizer::create(
bool
inPserver
)
{
bool
inPserver
)
{
ParameterOptimizer
*
optimizer
=
ParameterOptimizer
*
optimizer
=
ParameterOptimizer
::
create
(
optConfig
,
inPserver
);
ParameterOptimizer
::
create
(
optConfig
,
inPserver
);
if
(
paraConfig
.
gradient_clipping_threshold
()
>
0.0
f
&&
if
((
optConfig
.
gradient_clipping_threshold
()
>
0.0
f
||
paraConfig
.
gradient_clipping_threshold
()
>
0.0
f
)
&&
!
dynamic_cast
<
AddOptimizer
*>
(
optimizer
))
{
!
dynamic_cast
<
AddOptimizer
*>
(
optimizer
))
{
optimizer
=
new
OptimizerWithGradientClipping
(
optConfig
,
optimizer
);
optimizer
=
new
OptimizerWithGradientClipping
(
optConfig
,
optimizer
);
}
}
...
...
paddle/parameter/ParameterOptimizer.h
浏览文件 @
8b6f374f
...
@@ -167,6 +167,7 @@ public:
...
@@ -167,6 +167,7 @@ public:
}
}
parameterTypes_
.
push_back
(
type
);
parameterTypes_
.
push_back
(
type
);
}
}
real
getLearningRate
()
const
{
return
learningRate_
;
}
real
getLearningRate
()
const
{
return
learningRate_
;
}
virtual
void
setNoDecay
()
{
applyDecay_
=
false
;
}
virtual
void
setNoDecay
()
{
applyDecay_
=
false
;
}
...
@@ -201,6 +202,7 @@ protected:
...
@@ -201,6 +202,7 @@ protected:
* so, if lr change in StartBatch, please assign to learningRate_
* so, if lr change in StartBatch, please assign to learningRate_
*/
*/
real
learningRate_
;
real
learningRate_
;
std
::
unique_ptr
<
LearningRateScheduler
>
learningRateScheduler_
;
std
::
unique_ptr
<
LearningRateScheduler
>
learningRateScheduler_
;
int64_t
pass_
;
// current training pass (starting from 0)
int64_t
pass_
;
// current training pass (starting from 0)
bool
firstTime_
;
bool
firstTime_
;
...
...
proto/TrainerConfig.proto
浏览文件 @
8b6f374f
...
@@ -128,6 +128,9 @@ message OptimizationConfig {
...
@@ -128,6 +128,9 @@ message OptimizationConfig {
// when async_lagged_grad_discard_ratio * num_gradient_servers commit passed,
// when async_lagged_grad_discard_ratio * num_gradient_servers commit passed,
// current async gradient will be discard silently.
// current async gradient will be discard silently.
optional
double
async_lagged_grad_discard_ratio
=
37
[
default
=
1.5
];
optional
double
async_lagged_grad_discard_ratio
=
37
[
default
=
1.5
];
// global threshold for gradient clipping
optional
double
gradient_clipping_threshold
=
38
[
default
=
0.0
];
};
};
message
TrainerConfig
{
message
TrainerConfig
{
...
...
python/paddle/trainer/config_parser.py
浏览文件 @
8b6f374f
...
@@ -3377,6 +3377,7 @@ settings = dict(
...
@@ -3377,6 +3377,7 @@ settings = dict(
algorithm
=
'async_sgd'
,
algorithm
=
'async_sgd'
,
async_lagged_grad_discard_ratio
=
1.5
,
async_lagged_grad_discard_ratio
=
1.5
,
learning_method
=
'momentum'
,
learning_method
=
'momentum'
,
gradient_clipping_threshold
=
None
,
num_batches_per_send_parameter
=
None
,
num_batches_per_send_parameter
=
None
,
num_batches_per_get_parameter
=
None
,
num_batches_per_get_parameter
=
None
,
center_parameter_update_method
=
None
,
center_parameter_update_method
=
None
,
...
...
python/paddle/trainer_config_helpers/optimizers.py
浏览文件 @
8b6f374f
...
@@ -408,7 +408,8 @@ def settings(batch_size,
...
@@ -408,7 +408,8 @@ def settings(batch_size,
args
=
[
args
=
[
'batch_size'
,
'learning_rate'
,
'learning_rate_decay_a'
,
'batch_size'
,
'learning_rate'
,
'learning_rate_decay_a'
,
'learning_rate_decay_b'
,
'learning_rate_schedule'
,
'learning_rate_args'
'learning_rate_decay_b'
,
'learning_rate_schedule'
,
'learning_rate_args'
,
'gradient_clipping_threshold'
]
]
kwargs
=
dict
()
kwargs
=
dict
()
kwargs
[
'algorithm'
]
=
algorithm
kwargs
[
'algorithm'
]
=
algorithm
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录