Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
8b587320
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
8b587320
编写于
4月 11, 2019
作者:
W
Wu Yi
提交者:
GitHub
4月 11, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
remove append_LARS not used api test=develop (#16703)
上级
f96446ca
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
2 addition
and
47 deletion
+2
-47
paddle/fluid/API.spec
paddle/fluid/API.spec
+0
-1
python/paddle/fluid/layers/learning_rate_scheduler.py
python/paddle/fluid/layers/learning_rate_scheduler.py
+2
-46
未找到文件。
paddle/fluid/API.spec
浏览文件 @
8b587320
...
@@ -361,7 +361,6 @@ paddle.fluid.layers.inverse_time_decay (ArgSpec(args=['learning_rate', 'decay_st
...
@@ -361,7 +361,6 @@ paddle.fluid.layers.inverse_time_decay (ArgSpec(args=['learning_rate', 'decay_st
paddle.fluid.layers.polynomial_decay (ArgSpec(args=['learning_rate', 'decay_steps', 'end_learning_rate', 'power', 'cycle'], varargs=None, keywords=None, defaults=(0.0001, 1.0, False)), ('document', '882634f420f626642f0874481263da40'))
paddle.fluid.layers.polynomial_decay (ArgSpec(args=['learning_rate', 'decay_steps', 'end_learning_rate', 'power', 'cycle'], varargs=None, keywords=None, defaults=(0.0001, 1.0, False)), ('document', '882634f420f626642f0874481263da40'))
paddle.fluid.layers.piecewise_decay (ArgSpec(args=['boundaries', 'values'], varargs=None, keywords=None, defaults=None), ('document', 'c717d9d1d78a53c809d01b8bc56f3cae'))
paddle.fluid.layers.piecewise_decay (ArgSpec(args=['boundaries', 'values'], varargs=None, keywords=None, defaults=None), ('document', 'c717d9d1d78a53c809d01b8bc56f3cae'))
paddle.fluid.layers.noam_decay (ArgSpec(args=['d_model', 'warmup_steps'], varargs=None, keywords=None, defaults=None), ('document', 'd9a95746353fd574be36dc28d8726c28'))
paddle.fluid.layers.noam_decay (ArgSpec(args=['d_model', 'warmup_steps'], varargs=None, keywords=None, defaults=None), ('document', 'd9a95746353fd574be36dc28d8726c28'))
paddle.fluid.layers.append_LARS (ArgSpec(args=['params_grads', 'learning_rate', 'weight_decay'], varargs=None, keywords=None, defaults=None), ('document', 'd24fa1e7d62ac8a534fc6a86002f84f8'))
paddle.fluid.layers.cosine_decay (ArgSpec(args=['learning_rate', 'step_each_epoch', 'epochs'], varargs=None, keywords=None, defaults=None), ('document', '9588c64c26ffaef3c466e404a6af9d9b'))
paddle.fluid.layers.cosine_decay (ArgSpec(args=['learning_rate', 'step_each_epoch', 'epochs'], varargs=None, keywords=None, defaults=None), ('document', '9588c64c26ffaef3c466e404a6af9d9b'))
paddle.fluid.layers.linear_lr_warmup (ArgSpec(args=['learning_rate', 'warmup_steps', 'start_lr', 'end_lr'], varargs=None, keywords=None, defaults=None), ('document', '2ef3f5ca5cd71ea4217c418e5a7a0565'))
paddle.fluid.layers.linear_lr_warmup (ArgSpec(args=['learning_rate', 'warmup_steps', 'start_lr', 'end_lr'], varargs=None, keywords=None, defaults=None), ('document', '2ef3f5ca5cd71ea4217c418e5a7a0565'))
paddle.fluid.contrib.InitState.__init__ (ArgSpec(args=['self', 'init', 'shape', 'value', 'init_boot', 'need_reorder', 'dtype'], varargs=None, keywords=None, defaults=(None, None, 0.0, None, False, 'float32')), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.contrib.InitState.__init__ (ArgSpec(args=['self', 'init', 'shape', 'value', 'init_boot', 'need_reorder', 'dtype'], varargs=None, keywords=None, defaults=(None, None, 0.0, None, False, 'float32')), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
...
...
python/paddle/fluid/layers/learning_rate_scheduler.py
浏览文件 @
8b587320
...
@@ -35,8 +35,8 @@ from ..dygraph import learning_rate_scheduler as imperate_lr
...
@@ -35,8 +35,8 @@ from ..dygraph import learning_rate_scheduler as imperate_lr
__all__
=
[
__all__
=
[
'exponential_decay'
,
'natural_exp_decay'
,
'inverse_time_decay'
,
'exponential_decay'
,
'natural_exp_decay'
,
'inverse_time_decay'
,
'polynomial_decay'
,
'piecewise_decay'
,
'noam_decay'
,
'
append_LARS
'
,
'polynomial_decay'
,
'piecewise_decay'
,
'noam_decay'
,
'
cosine_decay
'
,
'
cosine_decay'
,
'
linear_lr_warmup'
'linear_lr_warmup'
]
]
...
@@ -381,50 +381,6 @@ def cosine_decay(learning_rate, step_each_epoch, epochs):
...
@@ -381,50 +381,6 @@ def cosine_decay(learning_rate, step_each_epoch, epochs):
return
decayed_lr
return
decayed_lr
def
append_LARS
(
params_grads
,
learning_rate
,
weight_decay
):
"""
Applies LARS (LAYER-WISE ADAPTIVE RATE SCALING) to learning rate for
each layer.
Args:
learning_rate: A learning rate Variable. This
is the global learning rate for LARS.
weight_decay: A Python `float` number.
Returns:
The decayed learning rate
Examples:
.. code-block:: python
learning_rate *= local_gw_ratio * sqrt(sumsq(param))
/ (sqrt(sumsq(gradient))+ weight_decay * sqrt(sumsq(param)))
"""
assert
not
imperative_base
.
enabled
(
),
"append_LARS is NOT supported in dygraph mode now"
def
_balanced_weight
(
param_norm
,
grad_norm
):
if
weight_decay
==
1.0
:
return
grad_norm
+
param_norm
else
:
return
grad_norm
+
weight_decay
*
param_norm
for
param
,
grad
in
params_grads
:
with
param
.
block
.
program
.
optimized_guard
(
[
param
,
grad
]),
name_scope
(
"optimizer"
):
param_lr
=
param
.
optimize_attr
[
'learning_rate'
]
param_norm
=
ops
.
sqrt
(
nn
.
reduce_sum
(
input
=
ops
.
square
(
param
)))
grad_norm
=
ops
.
sqrt
(
nn
.
reduce_sum
(
input
=
ops
.
square
(
grad
)))
if
type
(
param_lr
)
==
float
and
param_lr
==
1.0
:
decayed_lr
=
learning_rate
*
param_norm
\
/
_balanced_weight
(
param_norm
,
grad_norm
)
else
:
decayed_lr
=
learning_rate
*
param_lr
*
param_norm
\
/
_balanced_weight
(
param_norm
,
grad_norm
)
# set back param local learning rate
param
.
optimize_attr
[
'learning_rate'
]
=
decayed_lr
def
linear_lr_warmup
(
learning_rate
,
warmup_steps
,
start_lr
,
end_lr
):
def
linear_lr_warmup
(
learning_rate
,
warmup_steps
,
start_lr
,
end_lr
):
"""
"""
Applies linear learning rate warmup before the normal learning rate
Applies linear learning rate warmup before the normal learning rate
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录